5,520
Views
24
CrossRef citations to date
0
Altmetric
Review Articles

Effects of atrazine on fish, amphibians, and reptiles: update of the analysis based on quantitative weight of evidence

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 670-709 | Received 14 May 2019, Accepted 29 Nov 2019, Published online: 15 Jan 2020

References

  • Abdel-Moneim A, Deegan D, Gao J, De Perre C, Doucette JS, Jenkinson B, Lee L, Sepúlveda MS. 2017. Gonadal intersex in smallmouth bass Micropterus dolomieu from northern Indiana with correlations to molecular biomarkers and anthropogenic chemicals. Environ Pollut. 230:1099–1107.
  • Acquavella J, Garabrant D, Marsh G, Sorahan T, Weed DL. 2016. Glyphosate epidemiology expert panel review: a weight of evidence systematic review of the relationship between glyphosate exposure and non-Hodgkin's lymphoma or multiple myeloma. Crit Rev Toxicol. 46:28–43.
  • Agerstrand M, Beronius A. 2016. Weight of evidence evaluation and systematic review in EU chemical risk assessment: foundation is laid but guidance is needed. Environ Int. 92–93:590–596.
  • Ali F, Khan MQ, Anjum MZ, Khattak I. 2018a. Toxic effect of atrazine herbicide on the hematological indices of snow carp (Schizothorax plagiostomus): an indigenous fish species of economic importance. Fresenius Environ Bull. 27:3075–3080.
  • Ali JM, Knight LA, D'Souza DL, Kolok AS. 2018b. Comparing the effects of atrazine and an environmentally-relevant mixture on estrogen-responsive gene expression in the northern leopard frog and the fathead minnow. Environ Toxicol Chem. 37:1182–1188.
  • Araújo CVM, Silva DCVR, Gomes LET, Acayaba RD, Montagner CC, Moreira-Santos M, Ribeiro R, Pompêo MLM. 2018. Habitat fragmentation caused by contaminants: atrazine as a chemical barrier isolating fish populations. Chemosphere. 193:24–31.
  • Armstrong BM, Murphy CA, Basu N. 2018. Using a vitellogenesis model to link in vitro neurochemical effects of pulp and paper mill effluents to adverse reproductive outcomes in fish. In: Garcia-Reyero N, Murphy CA, editors. A systems biology approach to advancing adverse outcome pathways for risk assessment. Cham: Springer; p. 317–347.
  • Arukwe A, Myburgh J, Langberg HA, Adeogun AO, Braa IG, Moeder M, Schlenk D, Crago JP, Regoli F, Botha C. 2016. Developmental alterations and endocrine-disruptive responses in farmed Nile crocodiles (Crocodylus niloticus) exposed to contaminants from the Crocodile River, South Africa. Aquat Toxicol. 173:83–93.
  • Bailey LA, Nascarella MA, Kerper LE, Rhomberg LR. 2016. Hypothesis-based weight-of-evidence evaluation and risk assessment for naphthalene carcinogenesis. Crit Rev Toxicol. 46:1–42.
  • Bailey LA, Prueitt RL, Rhomberg LR. 2012. Hypothesis-based weight-of-evidence evaluation of methanol as a human carcinogen. Regul Toxicol Pharmacol. 62:278–291.
  • Bal-Price A, Meek MEB. 2017. Adverse outcome pathways: application to enhance mechanistic understanding of neurotoxicity. Pharmacol Ther. 179:84–95.
  • Bates ME, Massey OC, Wood MD. 2018. Weight-of-evidence concepts: introduction and application to sediment management. U.S. Army Engineer Research and Development Center. No. ERDC/EL SR-18-1. p. 37.
  • Baxter L, Brain RA, Hosmer AJ, Nema M, Müller KM, Solomon KR, Hanson ML. 2015. Effects of atrazine on egg masses of the yellow-spotted salamander (Ambystoma maculatum) and its endosymbiotic alga (Oophila amblystomatis). Environ Pollut. 206:324–331.
  • Baxter L, Brain R, Rodriguez-Gil JL, Hosmer A, Solomon K, Hanson M. 2014. Response of the green alga Oophila sp., a salamander endosymbiont, to a PSII-inhibitor under laboratory conditions. Environ Toxicol Chem. 33:1858–1864.
  • BCPC. 2003. The e-Pesticide manual. Surrey (UK): British Crop Protection Council.
  • Becker RA, Ankley GT, Edwards SW, Kennedy SW, Linkov I, Meek B, Sachana M, Segner H, Van Der Burg B, Villeneuve DL, et al. 2015. Increasing scientific confidence in adverse outcome pathways: application of tailored Bradford-Hill considerations for evaluating weight of evidence. Regul Toxicol Pharmacol. 72:514–537.
  • Becker RA, Dellarco V, Seed J, Kronenberg JM, Meek B, Foreman J, Palermo C, Kirman C, Linkov I, Schoeny R, et al. 2017. Quantitative weight of evidence to assess confidence in potential modes of action. Regul Toxicol Pharmacol. 86:205–220.
  • Blackburn K, Daston G, Fisher J, Lester C, Naciff JM, Rufer ES, Stuard SB, Woeller K. 2015. A strategy for safety assessment of chemicals with data gaps for developmental and/or reproductive toxicity. Regul Toxicol Pharmacol. 72:202–215.
  • Borgert CJ, Mihaich EM, Ortego LS, Bentley KS, Holmes CM, Levine SL, Becker RA. 2011. Hypothesis-driven weight of evidence framework for evaluating data within the US EPA's Endocrine Disruptor Screening Program. Regul Toxicol Pharmacol. 61:185–191.
  • Borgert CJ, Stuchal LD, Mihaich EM, Becker RA, Bentley KS, Brausch JM, Coady K, Geter DR, Gordon E, Guiney PD, et al. 2014. Relevance weighting of Tier 1 endocrine screening endpoints by rank order. Birth Defects Res B. 101:90–113.
  • Borgert CJ, Wise K, Becker RA. 2015. Modernizing problem formulation for risk assessment necessitates articulation of mode of action. Regul Toxicol Pharmacol. 72:538–551.
  • Borghoff S, Fitch S, Rager J, Huggett D. 2018. A hypothesis-driven weight-of-evidence analysis to evaluate potential endocrine activity of perfluorohexanoic acid. Regul Toxicol Pharmacol. 99:168–181.
  • Brain RA, Schneider SZ, Anderson JC, Knopper LD, Wolf JC, Hanson ML. 2018. Extended fish short term reproduction assays with the fathead minnow and Japanese medaka: no evidence of impaired fecundity from exposure to atrazine. Chemosphere. 205:126–136.
  • Breton RL, Gilron G, Thompson R, Rodney S, Teed S. 2009. A new quality assurance system for the evaluation of ecotoxicity studies submitted under the new substances notification regulations in Canada. Integr Environ Assess Manag. 5:127–137.
  • Bridges J, Sauer UG, Buesen R, Deferme L, Tollefsen KE, Tralau T, van Ravenzwaay B, Poole A, Pemberton M. 2017. Framework for the quantitative weight-of-evidence analysis of ‘omics data for regulatory purposes. Regul Toxicol Pharmacol. 91:S46–S60.
  • Bridges J, Solomon KR. 2016. Quantitative weight of evidence analysis of the persistence, bioaccumulation, toxicity and potential for long range transport of the cyclic volatile methyl siloxanes. J Toxicol Environ Health B. 19:345–379.
  • Brockmeier EK, Hodges G, Hutchinson TH, Butler E, Hecker M, Tollefsen KE, Garcia-Reyero N, Kille P, Becker D, Chipman K, et al. 2017. The role of omics in the application of adverse outcome pathways for chemical risk assessment. Toxicol Sci. 158:252–262.
  • Browne P, Noyes PD, Casey WM, Dix DJ. 2017. Application of adverse outcome pathways to U.S. EPA's endocrine disruptor screening program. Environ Health Perspect. 125:096001.
  • Brusick D, Aardema M, Kier L, Kirkland D, Williams G. 2016. Genotoxicity Expert Panel review: weight of evidence evaluation of the genotoxicity of glyphosate, glyphosate-based formulations, and aminomethylphosphonic acid. Crit Rev Toxicol. 46:56–74.
  • Chang LW, Toth GP, Gordon DA, Graham DW, Meier JR, Knapp CW, deNoyelles FJ, Campbell S, Lattier DL. 2005. Responses of molecular indicators of exposure in mesocosms: common carp (Cyprinus carpio) exposed to the herbicides alachlor and atrazine. Environ Toxicol Chem. 24:190–197.
  • Chapman PM. 2007. Determining when contamination is pollution – weight of evidence determinations for sediments and effluents. Environ Int. 33:492–501.
  • Chen X, Wang J, Zhu H, Ding J, Peng Y. 2015. Proteomics analysis of Xenopus laevis gonad tissue following chronic exposure to atrazine. Environ Toxicol Chem. 34:1770–1777.
  • Collier ZA, Gust KA, Gonzalez-Morales B, Gong P, Wilbanks MS, Linkov I, Perkins EJ. 2016. A weight of evidence assessment approach for adverse outcome pathways. Regul Toxicol Pharmacol. 75:46–57.
  • D'Angelo J, Freeman E. 2017. Effects of endocrine-disrupting chemical exposure on zebrafish ovarian follicles. Bios. 88:9–18.
  • Dekant W, Bridges J. 2016a. Assessment of reproductive and developmental effects of DINP, DnHP and DCHP using quantitative weight of evidence. Regul Toxicol Pharmacol. 81:397–406.
  • Dekant W, Bridges J. 2016b. A quantitative weight of evidence methodology for the assessment of reproductive and developmental toxicity and its application for classification and labeling of chemicals. Regul Toxicol Pharmacol. 82:173–185.
  • Dekant W, Bridges J, Scialli AR. 2017. A quantitative weight of evidence assessment of confidence in modes-of-action and their human relevance. Regul Toxicol Pharmacol. 90:51–71.
  • DeQuattro ZA, Peissig EJ, Antkiewicz DS, Lundgren EJ, Hedman CJ, Hemming JDC, Barry TP. 2012. Effects of progesterone on reproduction and embryonic development in the fathead minnow (Pimephales promelas). Environ Toxicol Chem. 31:851–856.
  • dos Santos Mendonça J, Vieira LG, Valdes SAC, Vilca FZ, Tornisielo VL, Santos ALQ. 2016. Effects of the exposure to atrazine on bone development of Podocnemis expansa (Testudines, Podocnemididae). Ecotoxicology. 25:594–600.
  • Du Gas LM, Ross PS, Walker J, Marlatt VL, Kennedy CJ. 2017. Effects of atrazine and chlorothalonil on the reproductive success, development, and growth of early life stage sockeye salmon (Oncorhynchus nerka). Environ Toxicol Chem. 36:1354–1364.
  • EC. 2006. Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. In:REGULATION (EC) No 1907/2006 COUNCIL E. P. A., ed. Brussels. p. 520.
  • ECHA. 2010. Practical Guide 2: how to report weight of evidence Helsinki, Finland. European Chemicals Agency. p. 26. http://echa.europa.eu/documents/10162/13655/pg_report_weight_of_evidence_en.pdf
  • EFSA. 2017. EFSA Scientific Opinion. Guidance on the use of the weight of evidence approach in scientific assessments. EFSA J. 15:4971.
  • Ehrsam M, Knutie SA, Rohr JR. 2016. The herbicide atrazine induces hyperactivity and compromises tadpole detection of predator chemical cues. Environ Toxicol Chem. 35:2239–2244.
  • European Food Safety Authority. 2018. EFSA Scientific Colloquium 23–Joint European Food Safety Authority and Evidence-Based Toxicology Collaboration Colloquium Evidence Integration in Risk Assessment: The Science of Combining Apples and Oranges 25–26 October 2017 Lisbon, Portugal. EFSA Supporting Publications. 15:1396E.
  • Fuzzen M, Bernier NJ, Van Der Kraak G. 2011. Differential effects of 17β-estradiol and 11-ketotestosterone on the endocrine stress response in zebrafish (Danio rerio). Gen Comp Endocrinol. 70:365–373.
  • Fuzzen M, Van Der Kraak G, Bernier NJ. 2010. Stirring up new ideas about the regulation of the hypothalamic–pituitary–interrenal axis in zebrafish (Danio rerio). Zebrafish. 7:7349–7358.
  • Gandar A, Laffaille P, Marty-Gasset N, Viala D, Molette C, Jean S. 2017. Proteome response of fish under multiple stress exposure: effects of pesticide mixtures and temperature increase. Aquat Toxicol. 184:61–77.
  • Ghodageri MG, Katti P. 2013. In vitro induction/inhibition of germinal vesicle breakdown (GVBD) in frog (Euphlyctis cyanophlyctis) oocytes by endocrine active compounds. Drug Chem Toxicol. 36:217–223.
  • Giddings JM, Anderson TA, Hall LW Jr, Kendall RJ, Richards RP, Solomon KR, Williams WM. 2005. A probabilistic aquatic ecological risk assessment of Atrazine in North American surface waters. Pensacola (FL): SETAC Press; p. 432.
  • Giddings JM, Campana D, Nair S, Brain R. 2018. Data quality scoring system for microcosm and mesocosm studies used to derive a level of concern for atrazine. Integr Environ Assess Manag. 14:489–497.
  • Gross M, Green RM, Weltje L, Wheeler JR. 2017. Weight of evidence approaches for the identification of endocrine disrupting properties of chemicals: review and recommendations for EU regulatory application. Regul Toxicol Pharmacol. 91:20–28.
  • Gustafson KD, Belden JB, Bolek MG. 2016. Atrazine reduces the transmission of an amphibian trematode by altering snail and ostracod host-parasite interactions. Parasitol Res. 115:1583–1594.
  • Hanson ML, Wolff BA, Green JW, Kivi M, Panter GH, Warne MSJ, Ågerstrand M, Sumpter JP. 2017. How we can make ecotoxicology more valuable to environmental protection. Sci Total Environ. 578:228–235.
  • Hecker M, Park JW, Murphy MB, Jones PD, Solomon KR, Van Der Kraak G, Carr JA, Smith EE, Du Preez L, Kendall RJ, et al. 2005. Effects of atrazine on CYP19 gene expression and aromatase activity in testes and on plasma sex steroid concentrations of male African clawed frogs (Xenopus laevis). Toxicol Sci. 86:273–280.
  • Hill AB. 1965. The environment and disease: association or causation? Proc R Soc Med. 58:295–300.
  • Hoskins TD, Boone MD. 2018. Atrazine feminizes sex ratio in Blanchard's cricket frogs (Acris blanchardi) at concentrations as low as 0.1 µg/L. Environ Toxicol Chem. 37:427–435.
  • Hoskins TD, Dellapina M, Boone MD. 2017. Short-term atrazine exposure at breeding has no impact on Blanchard's cricket frog (Acris blanchardi) reproductive success. Environ Toxicol Chem. 36:3284–3288.
  • Hosmer AJ, Schneider SZ, Anderson JC, Knopper LD, Brain RA. 2017. Fish short-term reproduction assay with atrazine and the Japanese medaka (Oryzias latipes). Environ Toxicol Chem. 36:2327–2334.
  • Jones DK, Dang TD, Urbina J, Bendis RJ, Buck JC, Cothran RD, Blaustein AR, Relyea RA. 2017. Effect of simultaneous amphibian exposure to pesticides and an emerging fungal pathogen, Batrachochytrium dendrobatidis. Environ Sci Technol. 51:671–679.
  • Kerney R. 2011. Symbioses between salamander embryos and green algae. Symbiosis. 54:107–117.
  • Khalil SR, Reda RM, Awad A. 2017. Efficacy of Spirulina platensis diet supplements on disease resistance and immune-related gene expression in Cyprinus carpio L. exposed to herbicide atrazine. Fish Shellfish Immunol. 67:119–128.
  • Khan A, Shah N, Gul A, Sahar N, Ismail A, Muhammad M, Aziz F, Farooq M, Adnan M, Rizwan M. 2016. Comparative study of toxicological impinge of glyphosate and atrazine (herbicide) on stress biomarkers; blood biochemical and hematological parameters of the freshwater common carp (Cyprinus carpio). Pol J Environ Stud. 25:1995–2001.
  • Khan A, Shah N, Muhammad M, Khan M, Ahmad M, Farooq M, Adnan M, Jawad S, Ullah H, Yousafzai A. 2016. Quantitative determination of lethal concentration LC50 of atrazine on biochemical parameters; total protein and serum albumin of freshwater fish grass carp (Ctenopharyngodon idella). Pol J Environ Stud. 25:1555–1561.
  • Khan A, Yousafzai A, Shah N, Muhammad M, Ahmad M, Farooq M, Aziz F, Adnan M, Rizwan M, Jawad S. 2016. Enzymatic profile activity of grass carp (Ctenopharyngodon idella) after exposure to the pollutant named atrazine (herbicide). Pol J Environ Stud. 25:2003–2008.
  • Kirsten KS, Canova R, de Figueiredo Soveral L, Friedrich MT, Frandoloso R, Kreutz LC. 2017. Reduced expression of selective immune-related genes in silver catfish (Rhamdia quelen) monocytes exposed to atrazine. Fish Shellfish Immunol. 64:78–83.
  • Klimisch H.-J, Andreae M, Tillmann U. 1997. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol. 25:1–5.
  • Knutie SA, Gabor C, Kohl KD, Rohr JR. 2018. Do host-associated gut microbiota mediate the effect of an herbicide on disease risk in frogs? J Anim Ecol. 87:489–499.
  • LaLone CA, Villeneuve DL, Wu-Smart J, Milsk RY, Sappington K, Garber KV, Housenger J, Ankley GT. 2017. Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death. Sci Total Environ. 584–585:751–775.
  • Li X, Huo J, Liu Z, Yue Q, Zhang L, Gong Y, Chen J, Bao H. 2019. An updated weight of evidence approach for deriving a health-based guidance value for 4-nonylphenol. J Appl Toxicol. 39:87–100.
  • Liu Z, Wang Y, Zhu Z, Yang E, Feng X, Fu Z, Jin Y. 2016. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio). Chemosphere. 148:163–170.
  • Lutter R, Abbott L, Becker R, Borgert C, Bradley A, Charnley G, Dudley S, Felsot A, Golden N, Gray G, et al. 2015. Improving weight of evidence approaches to chemical evaluations. Risk Anal. 35:186–192.
  • Martin P, Bladier C, Meek B, Bruyere O, Feinblatt E, Touvier M, Watier L, Makowski D. 2018. Weight of evidence for hazard identification: a critical review of the literature. Environ Health Perspect. 126:076001.
  • McMahon TA, Boughton RK, Martin LB, Rohr JR. 2017. Exposure to the herbicide atrazine nonlinearly affects tadpole corticosterone levels. J Herpetol. 51:270–273.
  • Mihaich EM, Borgert CJ. 2018. Hypothesis-driven weight-of-evidence analysis for the endocrine disruption potential of benzene. Regul Toxicol Pharmacol. 100:7–15.
  • Mihaich E, Capdevielle M, Urbach-Ross D, Slezak B. 2017. Hypothesis-driven weight-of-evidence analysis of endocrine disruption potential: a case study with triclosan. Crit Rev Toxicol. 47:263–285.
  • Moermond C, Beasley A, Breton R, Junghans M, Laskowski R, Solomon K, Zahner H. 2017. Assessing the reliability of ecotoxicological studies: an overview of current needs and approaches. Integr Environ Assess Manag. 13:640–651.
  • Moermond CT, Kase R, Korkaric M, Ågerstrand M. 2016. CRED: criteria for reporting and evaluating ecotoxicity data. Environ Toxicol Chem. 35:1297–1309.
  • Møller P, Jacobsen NR. 2017. Weight of evidence analysis for assessing the genotoxic potential of carbon nanotubes. Crit Rev Toxicol. 47:871–888.
  • Olivier HM, Moon BR. 2010. The effects of atrazine on spotted salamander embryos and their symbiotic alga. Ecotoxicology. 19:654–661.
  • Olker JH. 2014. Effects of atrazine and climate change on amphibian larval development and growth [thesis]. Duluth: University of Minnesota. p. 238.
  • Papoulias DM, Tillitt DE, Talykina MG, Whyte JJ, Richter CA. 2014. Atrazine reduces reproduction in Japanese medaka (Oryzias latipes). Aquat Toxicol. 154:230–239.
  • Persch TSP, Weimer RN, Freitas BS, Oliveira GT. 2017. Metabolic parameters and oxidative balance in juvenile Rhamdia quelen exposed to rice paddy herbicides: Roundup®, Primoleo®, and Facet®. Chemosphere. 174:98–109.
  • Piva F, Ciaprini F, Onorati F, Benedetti M, Fattorini D, Ausili A, Regoli F. 2011. Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: a practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays. Chemosphere. 83:475–485.
  • Popoola OM. 2018. Toxicity effect of atrazine on histology, haematology and biochemical indices of Clarias gariepinus. Int J Fish Aquat Stud. 6:87–92.
  • Rhomberg L. 2015. Hypothesis-based weight of evidence: an approach to assessing causation and its application to regulatory toxicology. Risk Anal. 35:1114–1124.
  • Rhomberg LR, Bailey LA, Goodman JE. 2010. Hypothesis-based weight of evidence: a tool for evaluating and communicating uncertainties and inconsistencies in the large body of evidence in proposing a carcinogenic mode of action–naphthalene as an example. Crit Rev Toxicol. 40:671–696.
  • Rhomberg LR, Bailey LA, Goodman JE, Hamade AK, Mayfield D. 2011. Is exposure to formaldehyde in air causally associated with leukemia? – a hypothesis-based weight-of-evidence analysis. Crit Rev Toxicol. 41:555–621.
  • Richter CA, Papoulias DM, Whyte JJ, Tillitt DE. 2016. Evaluation of potential mechanisms of atrazine-induced reproductive impairment in fathead minnow (Pimephales promelas) and Japanese medaka (Oryzias latipes). Environ Toxicol Chem. 35:2230–2238.
  • Rimayi C, Odusanya D, Weiss JM, de Boer J, Chimuka L, Mbajiorgu F. 2018. Effects of environmentally relevant sub-chronic atrazine concentrations on African clawed frog (Xenopus laevis) survival, growth and male gonad development. Aquat Toxicol. 199:1–11.
  • Rocca M, Morford LL, Blanset DL, Halpern WG, Cavagnaro J, Bowman CJ. 2018. Applying a weight of evidence approach to the evaluation of developmental toxicity of biopharmaceuticals. Regul Toxicol Pharmacol. 98:69–79.
  • Russart KLG, Rhen T. 2016. Atrazine alters expression of reproductive and stress genes in the developing hypothalamus of the snapping turtle, Chelydra serpentina. Toxicology. 366:1–9.
  • Rutkoski CF, Macagnan N, Kolcenti C, Vanzetto GV, Sturza PF, Hartmann PA, Hartmann MT. 2018. Lethal and sublethal effects of the herbicide atrazine in the early stages of development of Physalaemus gracilis (Anura: Leptodactylidae). Arch Environ Contam Toxicol. 74:587–593.
  • Rycroft T, Massey O, Foran CM, Linkov I. 2018. Weight of evidence frameworks in evaluation of adverse outcome pathways. A systems biology approach to advancing adverse outcome pathways for risk assessment. Cham: Springer; p. 303–316.
  • Sai L, Dong Z, Li L, Guo Q, Jia Q, Xie L, Bo C, Liu Y, Qu B, Li X, et al. 2016. Gene expression profiles in testis of developing male Xenopus laevis damaged by chronic exposure of atrazine. Chemosphere. 159:145–152.
  • Sai L, Li L, Hu C, Qu B, Guo Q, Jia Q, Zhang Y, Bo C, Li X, Shao H, et al. 2018. Identification of circular RNAs and their alterations involved in developing male Xenopus laevis chronically exposed to atrazine. Chemosphere. 200:295–301.
  • Sai L, Wu Q, Qu B, Bo C, Yu G, Jia Q, Xie L, Li Y, Guo Q, Ng J, et al. 2015. Assessing atrazine-induced toxicities in Bufo bufo gargarizans Cantor. Bull Environ Contam Toxicol. 94:152–157.
  • Saka M, Tada N, Kamata Y. 2018. Chronic toxicity of 1,3,5-triazine herbicides in the postembryonic development of the western clawed frog Silurana tropicalis. Ecotoxicol Environ Saf. 147:373–381.
  • Scott PD, Coleman HM, Colville A, Lim R, Matthews B, McDonald JA, Miranda A, Neale PA, Nugegoda D, Tremblay LA, et al. 2017. Assessing the potential for trace organic contaminants commonly found in Australian rivers to induce vitellogenin in the native rainbowfish (Melanotaenia fluviatilis) and the introduced mosquitofish (Gambusia holbrooki). Aquat Toxicol. 185:105–120.
  • Shenoy K. 2014. Prenatal exposure to low doses of atrazine affects mating behaviors in male guppies. Homone Behav. 66:439–448.
  • Shukla S, Jhamtani RC, Dahiya MS, Agarwal R. 2017. Oxidative injury caused by individual and combined exposure of neonicotinoid, organophosphate and herbicide in zebrafish. Toxicol Rep. 4:240–244.
  • Snyder MN, Henderson WM, Glinski DA, Purucker ST. 2017. Biomarker analysis of American toad (Anaxyrus americanus) and grey tree frog (Hyla versicolor) tadpoles following exposure to atrazine. Aquat Toxicol. 182:184–193.
  • Solomon KR, Stephenson GL. 2017. Quantitative weight of evidence assessment of higher tier studies on the toxicity and risks of neonicotinoid insecticides in honeybees 3: Clothianidin. J Toxicol Environ Health B. 20:346–364.
  • Solomon KR, Stephenson GL. 2017a. Quantitative weight of evidence assessment of risk to honeybee colonies from use of imidacloprid, clothianidin, and thiamethoxam as seed treatments: a postscript. J Toxicol Environ Health B. 20:383–386.
  • Solomon KR, Stephenson GL. 2017b. Quantitative weight of evidence assessment of higher tier studies on the toxicity and risks of neonicotinoid insecticides in honeybees 1: methods. J Toxicol Environ Health B. 20:316–329.
  • Stephenson GL, Solomon KR. 2017a. Quantitative weight of evidence assessment of higher tier studies on the toxicity and risks of neonicotinoid insecticides in honeybees 2: Imidacloprid. J Toxicol Environ Health B. 20:330–345.
  • Stephenson GL, Solomon KR. 2017b. Quantitative weight of evidence assessment of higher tier studies on the toxicity and risks of neonicotinoid insecticides in honeybees 4: Thiamethoxam. J Toxicol Environ Health B. 20:365–382.
  • Stevenson RW, Chapman PM. 2017. Integrating causation in investigative ecological weight of evidence assessments. Integr Environ Assess Manag. 13:702–713.
  • Suter G, Cormier S, Barron M. 2017. A weight of evidence framework for environmental assessments: inferring qualities. Integr Environ Assess Manag. 13:1038–1044.
  • Svartz G, Herkovits J, Perez-Coll C. 2012. Sublethal effects of atrazine on embryo-larval development of Rhinella arenarum (Anura: Bufonidae). Ecotoxicology. 21:1251–1259.
  • Syngenta. 2015. Atrazine – fish short-term reproduction assay with the Japanese Medaka (Oryzias latipes). Greensboro (NC): Syngenta Crop Protection (unpublished report). No. 528A-275. p. 139.
  • Syngenta. 2017a. Atrazine – fish short-term reproduction assay with the Fathead Minnow (Pimephales promelas). Greensboro (NC): Syngenta Crop Protection (unpublished report). No. 528A-315. p. 159.
  • Syngenta. 2017b. Atrazine – fish short-term reproduction assay with the Japanese Medaka (Oryzias latipes). Greensboro (NC): Syngenta Crop Protection (unpublished report). No. 528A-275. p. 139.
  • Tillitt DE, Papoulias DM, Whyte JJ, Richter CA. 2010. Atrazine reduces reproduction in fathead minnow (Pimephales promelas). Aquat Toxicol. 99:149–159.
  • Tulaby Dezfuly Z, Mohammadian T. 2016. Acute toxicity evaluation of five herbicides: paraquat, 2, 4-dichlorophenoxy acetic acid (2, 4-D), trifluralin, glyphosite and atrazine in Luciobarbus esocinus fingerlings. Iran J Vet Med. 10:319–331.
  • USEPA. 2016. Refined ecological risk assessment for atrazine. Washington (DC): United States Environmental Protection Agency, Office of Pesticide Programs, Environmental Fate and Effects Division. p. 520.
  • USEPA. 2017. Data from Atrazine Ecological Monitoring Program for 2004 to 2017. USEPA website. [accessed 2018 September]. https://www.regulations.gov/docket?D=EPA-HQ-OPP-2003-0367
  • Van Der Kraak GJ, Hosmer AJ, Hanson ML, Kloas W, Solomon KR. 2014. Effects of atrazine in fish, amphibians, and reptiles: an analysis based on quantitative weight of evidence. Crit Rev Toxicol. 44:1–66.
  • Van Der Kraak G, Matsumoto J, Kim M, Hosmer AJ. 2015. Atrazine and its degradates have little effect on the corticosteroid stress response in the zebrafish. Comp Biochem Physiol C. 170:1–7.
  • Walker BS, Kramer AG, Lassiter CS. 2018. Atrazine affects craniofacial chondrogenesis and axial skeleton mineralization in zebrafish (Danio rerio). Toxicol Ind Health. 34:329–338.
  • Wang Y, Lv L, Yu Y, Yang G, Xu Z, Wang Q, Cai L. 2017. Single and joint toxic effects of five selected pesticides on the early life stages of zebrafish (Denio rerio). Chemosphere. 170:61–67.
  • Weber GJ, Sepulveda MS, Peterson SM, Lewis SS, Freeman JL. 2013. Transcriptome alterations following developmental atrazine exposure in zebrafish are associated with disruption of neuroendocrine and reproductive system function, cell cycle, and carcinogenesis. Toxicol Sci. 132:458–466.
  • Weed DL. 2005. Weight of evidence: a review of concepts and methods. Risk Anal. 25:1545–1557.
  • Wirbisky SE, Freeman JL. 2017. Atrazine exposure elicits copy number alterations in the zebrafish genome. Comp Biochem Physiol C. 194:1–8.
  • Wirbisky S, Freeman J. 2015. Atrazine exposure and reproductive dysfunction through the hypothalamus-pituitary-gonadal (HPG) axis. Toxics. 3:414–450.
  • Wirbisky SE, Sepúlveda MS, Weber GJ, Jannasch AS, Horzmann KA, Freeman JL. 2016a. Embryonic atrazine exposure elicits alterations in genes associated with neuroendocrine function in adult male zebrafish. Toxicol Sci. 153:149–164.
  • Wirbisky SE, Weber GJ, Schlotman KE, Sepúlveda MS, Freeman JL. 2016b. Embryonic atrazine exposure alters zebrafish and human miRNAs associated with angiogenesis, cancer, and neurodevelopment. Food Chem Toxicol. 98:25–33.
  • Wirbisky SE, Weber GJ, Sepúlveda MS, Lin TL, Jannasch AS, Freeman JL. 2016c. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring. Sci Rep. 6:21337.
  • Wirbisky-Hershberger SE, Sanchez OF, Horzmann KA, Thanki D, Yuan C, Freeman JL. 2017. Atrazine exposure decreases the activity of DNMTs, global DNA methylation levels, and dnmt expression. Food Chem Toxicol. 109:727–734.
  • Wrubleswski J, Reichert FW, Galon L, Hartmann PA, Hartmann MT. 2018. Acute and chronic toxicity of pesticides on tadpoles of Physalaemus cuvieri (Anura, Leptodactylidae). Ecotoxicology. 27:360–368.