375
Views
222
CrossRef citations to date
0
Altmetric
Research Article

Genetic Polymorphisms of Human N-Acetyltransferase, Cytochrome P450, Glutathione-S-Transferase, and Epoxide Hydrolase Enzymes: Relevance to Xenobiotic Metabolism and Toxicity

, &
Pages 59-124 | Published online: 29 Sep 2008

References

  • Boobis, A. R., Molecular basis for differences in susceptibility to toxicants, introduction. Toxicol. Lett. 64/65, 109, 1992.
  • Shimada, T., Yamazaki, H., Mimura, M., Inui, Y., and Guengerich, F. P., Inter-individual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemi- cals, Studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 270, 414, 1994.
  • Mulder, G. J., Polymorphism in drug conjugation in man, is it a factor of concern in drug toxicity or efficacy? Eur. J. Pharm. Sci. 3, 57, 1995.
  • Temellini, A., Castiglioni, M., Giuliani, L., Mussi, A., Giulianotti, P. C., Pietrabissa, A., Angeletti, C. A., Mosca, F., and Pacifici, G. M., Glutathione conjugation with 1-chloro-2,4-dinitrobenzene (CDNB), inter-individual variability in human liver, lung, kidney and intestine. Int. J. Clin. Pharmacol. Ther. 33, 498, 1995.
  • Transon, C., Lecoeur, S., Leemann, T., Beaune, P., and Dayer, P., Inter-individual variability in catalytic activity and immunoreactivity of three major human liver cytochrome P450 isozymes. Eur. J. Clin. Pharmacol. 51, 79, 1996.
  • Boobis, A. R., Inter-individual variability in meta- bolic activation in humans in vivo. Environ. Toxicol. and Pharmacol. 2, 161 1996.
  • Hallier, E., Goergens, H. W., Karels, H., and Golka, K., A note on individual differences in the urinary excretion of optical enantiomers of styrene metabo- lites and of styrene-derived mercapturic acids in hu- mans. Arch. Toxicol. 69, 300, 1995.
  • Fuchs, J., Wullenweber, U., Hengstler, J. G., Bienfait, H. G., Hiltl, G., and Oesch, F., Genotoxic risk for humans due to work place exposure to ethyl- ene oxide, remarkable individual differences in sus- ceptibility. Arch. Toxicol. 68, 343, 1994.
  • Kang, D. H., Rothman, N., Poirier, M. C., Greenberg, A., Hsu, C. H., Schwartz, B. S., Baser, M. E., Groopman, J. D., Weston, A., and Strickland, P. T., Inter-individual differences in the concentration of 1-hydroxypyrene-glucuronide in urine and polycy- clic aromatic hydrocarbon-DNA adducts in peripheral white blood cells after charbroiled beef consumption. Carcinogenesis, 16, 1079, 1995.
  • Du, B. N. La, Overview of pharmacogenetics. In: Pharmacogenetics of drug metabolism, Kalow, W., Pergamon Press Inc., New York, 1992, 1–12.
  • Meyer, U. A., Molecular genetics and the future of pharmacogenetics. In: Pharmacogenetics of Drug Metabolism, Kalow, W., Pergamon Press Inc., New York, 1992, 879–888.
  • Festing, M. F. W., Genetic factors in toxicology. Implications for toxicological screening. CRC Crit. Rev. Toxicol. 18, 1, 1987.
  • Eichelbaum, M., Kroemer, H. K., and Mikus, G., Genetically determined differences in drug metabo- lism as a risk factor in drug toxicity. Toxicol. Lett. 64/ 65, 115, 1992.
  • Bolt, H. M., Genetic and individual differences in the process of biotransformation and their relevance for occupational medicine. Med. Lav. 85, 37, 1994.
  • Lennard, M. S., Genetically determined adverse drug reactions involving metabolism. Drug Safety, 9, 60, 1993.
  • Alvan, G., Clinical consequences of polymorphic drug oxidation. Fundam. Clin. Pharmacol. 5, 209, 1991.
  • Vesell, E. S., Genetic and environmental factors caus- ing variation in drug response. Mutat. Res. 247, 241, 1991.
  • Tucker, G. T., Clinical implications of genetic poly- morphism in drug metabolism. J. Pharm. Pharmacol. 46, 417, 1994.
  • Gram, L. F., Brosen, K., Sindrup, S., and Skjelbo, E., Genetic and inter-ethnic variability in drug me- tabolism, What are the clinical consequences? In: Proceedings of the COST B1 European Conference on Specificity and Variability in Drug Metabolism, Besancon, May 1995, Alvan, G., Balant, L. P., Bechtel, P. R., Boobis, A. R., Gram, L. F., Paintaud, G., and Pithan, K., Luxembourg, EU, 1995, 235–245.
  • Eichelbaum, M. and Evert, B., Influence of pharma- cogenetics on drug disposition and response. Clin. Exp. Pharmacol. Physiol. 23, 983, 1996.
  • Linder, M. W., Prough, R. A., and Valdes, R., Jr., Pharmacogenetics, a laboratory tool for optimizing therapeutic efficiency. Clin. Chem. 43, 254, 1997.
  • Wolf, C. R., Metabolic factors in cancer susceptibil- ity. Cancer Surveys, 9, 437, 1990.
  • Easton, D. and Peto, J., The contribution of inherited predisposition to cancer incidence. Cancer Surv. 9, 395, 1990.
  • Idle, J.R., Is environmental carcinogenesis modu- lated by host polymorphism? Mutat. Res. 247, 259, 1991.
  • Caporaso, N., Landi, M. T., and Vineis, P., Rel- evance of metabolic polymorphisms to human car- cinogenesis, evaluation of epidemiologic evidence. Pharmacogenetics 1, 4, 1991.
  • Nebert, D. W., Role of genetics and drug metabolism in human cancer risk. Mutat. Res. 247, 267, 1991.
  • Amos, C. I., Caporaso, N. E., and Weston, A., Host factors in lung cancer risk, a review of interdiscipli- nary studies. Cancer Epidemiol. Biomark. Prevent. 1, 505, 1992.
  • Venitt, S., Mechanisms of carcinogenesis and indi- vidual susceptibility to cancer. Clin. Chem. 40, 1421, 1994.
  • Caporaso, N. and Goldstein, A., Cancer genes, single and susceptibility, exposing the difference. Pharma- cogenetics 5, 59, 1995.
  • Idle, J. R., Armstrong, M., Boddy, A. V., Boustead, C., Cholerton, S., Cooper, J., Daly, A. K., Ellis, J., Gregory, W., Hadidi, H., Hofer, C., Holt, J., Leathart, J., McCracken, N., Monkman, S. C., Painter, J. E., Taber, H., Walker, D., and Yule, M., The pharmacogenetics of chemical carcinogenesis. Pharmacogenetics 2, 246, 1992.
  • Hirvonen, A., Husgafvel-Pursiainen, K., Anttila, S., Karjalainen, A., Sorsa, M., and Vainio, H., Metabolic cytochrome P450 genotypes and assess- ment of individual susceptibility to lung cancer. Phar- macogenetics 2, 259, 1992.
  • Ingelman -Sundberg, M., Johansson, I., Persson, I., Yue, Q-Y., Dahl, M-L., Bertilsson, L., and Sjoqvist, F., Genetic polymorphism of cytochromes P450, inter-ethnic differences and relationship to inci- dence of lung cancer. Pharmacogenetics 2, 264, 1992.
  • Roots, I., Drakoulis, N., and Brockmoller, J., Poly- morphic enzymes and cancer risk, Concepts, method- ology and data review. In: Pharmacogenetics of Drug Metabolism, Kalow, W., Pergamon Press Inc., New York, 1992, 815–841.
  • Poulsen, H. E., Loft, S., and Wassermann, K., Can- cer risk related to genetic polymorphisms in carcino- gen metabolism and DNA repair. Pharmacol. Toxicol. (Suppl. 71), s93, 1993.
  • Wolf, C. R., Smith, C. A. D., and Forman, D., Metabolic polymorphisms in carcinogen metabolising enzymes and cancer susceptibility. Br. Med. Bull. 50, 718, 1994.
  • Daly, A. K., Cholerton, S., Armstrong, M., and Idle, J. R., Genotyping for polymorphisms in xenobiotic metabolism as a predictor of disease sus- ceptibility. Environ. Health Perspect. 102 (Suppl. 9), 55, 1994.
  • Raunio, H., Husgafvel-Pursiainen, K., Anttila, S., Hietanen, E., Hirvonen, A., and Pelkonen, O., Di- agnosis of polymorphisms in carcinogen-activating and inactivating enzymes and cancer susceptibility — a review. Gene, 159, 113, 1995.
  • Smith, G., Stanley, L. A., Sim, E., Strange, R. C., and Wolf, C. R., Metabolic polymorphisms and can- cer susceptibility. Cancer Surv. 25, 27, 1995.
  • d’Errico, A., Taioli, E., Chen, X., and Vineis, P., Genetic matabolic polymorphisms and the risk of cancer, a review of the literature. Biomarkers 1, 149, 1996.
  • Gonzalez, F. J., The role of carcinogen-metabolizing enzyme polymorphisms in cancer susceptibility. Reprod. Toxicol. 11, 397, 1997.
  • Nakachi, K., Imai, K., Hayashi, S-i., and Kawajiri, K., Polymorphisms of the CYP1A1 and glutathione S- transferase genes associated with susceptibility to lung cancer in relation to ciggarette dose in a Japanese population. Cancer Res. 53, 2994, 1993.
  • Uematsu, F., Ikawa, S., Kikuchi, H., Sagami, I., Kanamaru, R., Abe, T., Satoh, K., Motomiya, M., and Watanabe, M., Restriction fragment length poly- morphism of the human CYP2E1 (cytochrome P450IIE1) gene and susceptibility to lung cancer, possible relevance to low smoking exposure. Phar- macogenetics 4, 58, 1994.
  • Anttila, S., Hirvonen, A., Husgafvel-Pursiainen, K., Karjalainen, A., Nurminen, T., and Vainio, H., Combined effect of CYP1A1 inducibility and GSTM1 polymorphism on histological type of lung cancer. Carcinogenesis 15, 1133, 1994.
  • Kalow, W., Ethnic differences in drug metabolism. Clin. Pharmacokin. 7, 373, 1982.
  • Kato, S., Shields, P. G., Caporaso, N. E., Hoover, R. N., Trump, B. F., Sugimura, H., Weston, A., and Harris, C. C., Cytochrome P-450IIE1 genetic poly- morphisms, racial variation, and lung cancer risk. Cancer Res. 52, 6712, 1992.
  • Agundez, J. A. G., Martinez, C., Ledesma, M. C., Ladona, M. G., Ladero, J. M., and Benitez, J., Genetic basis for differences in debrisoquin polymor- phism between a Spanish and other white popula- tions. Clin. Pharmacol. Ther. 55, 412, 1994.
  • Stephens, E. A., Taylor, J. A., Kaplan, N., Yang, C- H., Hsieh, L. L., Lucier, G. W., and Bell, D. A., Ethnic variation in the CYP2E1 gene, polymorphism analysis of 695 African-Americans, European Ameri- cans and Taiwanese. Pharmacogenetics 4, 185, 1994.
  • Dahl, M-L., Bertilsson, L., Chang, M., Roh, H-K., Abdi, Y. A., Yue, Q-Y., Sawe, J., Masimerembwa, C., Johansson, I., Ingelman-Sundberg, M., and Sjoqvist, F., Genetic contribution to inter-ethnic varia- tions in drug oxidation. In Proceedings of the COST B1 European Conference on Specificity and Variability in Drug Metabolism, Besancon, May 1995, Alvan, G., Balant, L. P., Bechtel, P. R., Boobis, A. R., Gram, L. F., Paintaud, G., and Pithan, K., Eds. Luxembourg, EU, 1995, 111–124
  • Hayashi, S-i., Watanabe, J., and Kawajiri, K., High susceptibility to lung cancer analyzed in terms of combined genoytypes of P450IA1 and Mu-class glu- tathione S-transferase genes. Jpn. J. Cancer Res. 83, 866, 1992.
  • Green, M. H. L., Influence of environmental and genetic factors on variation in human response to DNA damaging agents. Environ. Toxicol. and Pharmacol. 2, 151, 1996.
  • Vermeulen, N.P. E., Analysis of mercapturic acids as a tool in biotransformation, biomonitoring and toxico- logical studies. Trends Pharmacol. Sci. 10, 177, 1989.
  • van Welie, R. T. H., van Dijck, R. G. J. M., and Vermeulen, N. P. E., Mercapturic acids, protein ad- ducts, and DNA adducts as biomarkers of electro- philic chemicals. Crit. Rev. Toxicol. 22, 271, 1992.
  • Harris, C. C., Future directions in the use of DNA adducts as internal dosimeters for monitoring human exposure to environmental mutagens and carcinogens. Environ. Health Perspect. 62, 185, 1985.
  • Harris, C. C., Weston, A., Willey, J. C., Trivers, G. E., and Mann, D. L., Biochemical and molecular epidemiology of human cancer, Indicators of carcino- gen exposure, DNA damage, and genetic predisposi- tion. Environ. Health Perspect. 75, 109, 1987.
  • Wogan, G. N., Markers of exposure to carcinogens. Environ. Health Perspect. 81, 9, 1989.
  • Fost, U., Hallier, E., Ottenwalder, H., Bolt, H. M., and Peter, H., Distribution of ethylene oxide in hu- man blood and its implications for biomonitoring. Hum. Exp. Toxicol. 10, 25, 1991.
  • Fost, U., Tornqvist, M., Leutbecher, M., Granath, F., Hallier, E., and Ehrenberg, L., Effects of varia- tion in detoxification rate on dose monitoring adducts. Hum. Exp. Toxicol. 14, 201, 1995.
  • Bianchini, F. and Wild, C. P., Comparison of 7-medG formation in white blood cells, liver and target organs in rats treated with methylating carcinogens. Carcino- genesis 15, 1137–1141, 1994.
  • Bianchini, F. and Wild, C. P., Effect of route of administration of environmental methylating agents on 7-methylguanine formation in white blood cells and internal organs, implications for molecular epide- miology. Cancer Lett. 87, 131, 1994.
  • Talaska, G., Schamer, M., Skipper, P., Tannen- baum, S., Caporaso, N., Kadlubar, F., Bartsch, H., and Vineis, P., Carcinogen-DNA adducts in exfoli- ated urothelial cells: techniques for noninvasive hu- man monitoring. Env. Health Perspect. 99, 289, 1993.
  • Shuker, D. E. G. and Farmer, P. B., Relevance of urinary DNA adducts as markers of carcinogen expo- sure. Chem. Res. Toxicol. 5, 450, 1992.
  • Tucker, J. D. and Preston, R. J., Chromosome abberations, micronuclei, aneuploidy, sister chroma- tid exchanges, and cancer risk assessment. Mutat. Res. 365, 147, 1996.
  • Shields, P. G., Pharmacogenetics, detecting sensitive populations. Environ. Health Perspect. 102 (Suppl. 11), 81, 1994.
  • Ikawa, S., Uematsu, F., Watanabe, K-i., Kimpara, T., Osada, M., Hossain, A., Sagami, I., Kikuchi, H., and Watanabe, M., Assessment of cancer suscepti- bility in humans by use of genetic polymorphisms in carcinogen metabolism. Pharmacogenetics, 5, S154, 1995.
  • Daly, A. K., Molecular basis of polymorphic drug metabolism. J. Mol. Med. 73, 539, 1995.
  • Nebert, D. W., Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA and Cell Biol. 15, 273, 1996.
  • Meyer, U. A. and Zanger, U. M., Molecular mecha- nisms of genetic polymorphisms of drug metabolism. Ann. Rev. Pharmacol. Toxicol. 37, 269, 1997.
  • Shows, T. B., McAlpine, P. J., Boucheir, C., Collins, F. S., Conneally, P. M., Prezal, J., Gershowitz, H., Goodfellow, P. N., Hall, J. G., Issitt, P., Jones, A., Knowles, B. B., Lewis, M., McKusic, V. A., Meisler, M., Morton, N. E., Rubinstein, P., Schanfield, M. S., Schmickel, R. D., Skolnick, M. H., Spence, M. A., Sutherland, G. R., Traver, M., Van Cong, N., and Willard, H. F., Guidelines for human gene nomenclature. Cytogen. Cell Genet. 46, 11, 1987.
  • Vatsis, K. P., Weber, W. W., Bell, D. A., Dupret, J.-M., Price Evans, D. A., Grant, D. M., Hein,D. W., Lin, H. J., Meyer, U. A., Relling, M. V., Sim, E., Suzuki, T., and Yamazoe, Y., Nomenclature for N-acetyltransferases. Pharmacogenetics, 5, 1, 1995.
  • Weber, W. W. and Hein, D. W., N-Acetylation phar- macogenetics. Pharmacol. Rev. 37, 25, 1985.
  • Price Evans, D. A., N-Acetyltransferase. Pharmac. Ther. 42, 157, 1989.
  • Price Evans, D. A. and Manley, K. A., Genetic control of isoniazid metabolism in man. Br. Med. J. 2, 485, 1960.
  • Price Evans, D. A. and White, T. A., Human acety- lation polymorphism. J. Lab. Clin. Med. 63, 394, 1964.
  • Grant, D. M., Morike, K., Eichelbaum, M., and Meyer, U. A., Acetylation pharmacogenetics; The slow acetylator phenotype is caused by decreased or absent arylamine N-Acetyltransferase in human liver. J. Clin. Invest. 85, 968, 1990.
  • Grant, D. M., Blum, M., Beer, M., and Meyer, U. A., Monomorphic and polymorphic human arylamine N-Acetyltransferases, A comparison of liver isozymes and expressed products of two cloned genes. Mol. Pharmacol. 39, 184, 1991.
  • Cribb, A. E., Grant, D. M., Miller, M. A., and Spielberg, S. P., Expression of monomorphic arylamine N-acetyltransferase (NAT1) in human leu- kocytes. J. Pharmacol. Exp. Ther. 259, 1241, 1991.
  • Blum, M., Grant, D. M., McBride, W., Heim, M., and Meyer, U. A., Human arylamine N-acetyl- transferase genes: isolation, chromosomal localiza- tion, and functional expression. DNA Cell. Biol. 9, 193, 1990.
  • Ebisawa, T. and Deguchi, T., Structure and restric- tion fragment length polymorphism of genes for hu- man liver arylamine N-acetyltransferases. Biochem. Biophys. Res. Commun. 177, 1252, 1991.
  • Kadlubar, F. F., Biochemical individuality and its implications for drug and carcinogen metabolism: recent insights from acetyltransferase and cytochrome P4501A2 phenotyping and genotyping in humans. Drug Metab. Rev. 26, 37, 1994.
  • Grant, D. M., Blum, M., and Meyer, U. A., Poly- morphisms of N-acetyltransferase genes. Xenobiotica, 22, 1073, 1992.
  • Meyer, U. A., Polymorphism of human acetyl- transferases. Environ. Health. Perspect. 102(Suppl. 6), 213, 1994.
  • Grant, D. M., Vohra, P., Avis, Y., and Ima, A., Detection of a new polymorphism of human arylamine N-acetyltransferase NAT1 using p-amino-salicylic acid as an in vivo probe. J. Basic Clin. Physiol. Pharmacol. 3 (Suppl.), 244, 1992.
  • Vatsis, K. P. and Weber, W. W., Structural heterogeinity of Caucasian N-acetyltransferase at the NAT1 gene locus. Arch. Biochem. Biophys. 301, 71, 1993.
  • Jenne, J. W. and Orser, M., Partial purification and properties of the isoniazid trans-acetylase in human liver. Its relationship to the acetylation of p-aminosali- cylic acid. J. Clin. Invest. 44, 1992, 1965.
  • Glowinski, I. B., Radtke, H. E., and Weber, W. W., Genetic variation in N-acetylation of carcinogenic arylamines by human and rabbit liver. Mol. Pharmacol. 14, 940, 1978.
  • McQueen, C. A. and Weber, W. W., Characteriza- tion of human lymphocyte N-acetyltransferase and its relationship to the isoniazid acetylator polymorphism. Biochem. Genet. 18, 889, 1980.
  • Kilbane, A. J., Petroff, T., and Weber, W. W., Kinetics of acetyl CoA, Arylamine N-acetyltransferase from rapid and slow acetylator human liver. Drug Metab. Dispos. 19, 503, 1991.
  • Ward, A., Hickman, D., Gordon, J. W., and Sim, E., Arylamine N-acetyltransferase in human red blood cells. Biochem. Pharmacol. 44, 1099, 1992.
  • Weber, W. W. and Vatsis, K. P., Individual variabil- ity in p-aminobenzoic acid N-acetylation by human N-acetyltransferase (NAT1) of peripheral blood. Phar- macogenetics 3, 209, 1993.
  • Dupret, J-M., Goodfellow, G. H., Janezic, S. A., and Grant, D. M., Structure-function studies of hu- man arylamine N-acetyltransferases NAT1 and NAT2: functional analysis of recombinant NAT1/NAT2 chi- meras expressed in Escherichia coli. J. Biol. Chem. 269, 26830, 1994.
  • Cribb, A. E., Isbrucker, R., Levatte, T., Tsui, T., Gillespie, C. T., and Renton, K. W., Acetylator phenotyping, the urinary metabolite ratio in slow acetylators correlates with a marker of systemic NAT1 activity. Pharmacogenetics 4, 166, 1994.
  • Grant, D. M., Molecular genetics of the N-acetyl- transferases. Pharmacogenetics 3, 45, 1993.
  • Hein, D. W., Doll, M. A., Rustan, T. D., Gray, K., Feng, Y., Ferguson, R. J., and Grant, D. M., Meta- bolic activation and deactivation of arylamine car- cinogens by recombinant human NAT1 and polymor- phic NAT2 acetyltransferases. Carcinogenesis 14, 1633, 1993.
  • Hein, D. W., Rustan, T. D., Ferguson, R. J., Doll, M. A., and Gray, K., Metabolic activation of aro- matic and heterocyclic N-hydroxyarylamines by wild- type and mutant recombinant human NAT1 and NAT2 acetyltransferases. Arch. Toxicol. 68, 129, 1994.
  • Minchin, R. F., Reeves, P. T., Teitel, C. H., McManus, M. E., Mojarrabi, B., Ilett, K. F., and Kadlubar, F. F., N- and O-acetylation of aromatic and heterocyclic amine carcinogens by human mono- morphic and polymorphic acetyltransferases expressed in COS-1 cells. Biochem. Biophys. Res. Commun. 185, 839, 1992.
  • Kadlubar, F. F., Butler, M. A., Kaderlik, K. R., Chou, H-C., and Lang, N. P., Polymorphisms for aromatic amine metabolism in humans, Relevance for human carcinogenesis. Environ. Health Perspect. 98, 69, 1992.
  • Probst, M. R., Blum, M., Fasshauer, I., D’Orazio, D., Meyer, U. A., and Wild, D., The role of human acetylation polymorphism in the metabolic activation of the food carcinogen 2-amino-3-methylimidazo [4,5-f]quinoline (IQ). Carcinogenesis 13, 1713, 1992.
  • Ohsako, S. and Deguchi, T., Cloning and expression of cDNAs for polymorphic and monomorphic arylamine N-acetyltransferases from human liver. J. Biol. Chem. 265, 4630, 1990
  • Doll, M. A., Jiang, W., Deitz, A. C., Rustan, T. D., and Hein, D. W., Identification of a novel allele at the human NAT1 acetyltransferase locus. Biochem. Biophys. Res. Commun. 233, 584, 1997.
  • Grant, D. M., Blum, M., Demierre, A., and Meyer, A., Nucleotide sequence of an intronless gene for a human arylamine N-acetyltransferase related to poly- morphic drug acetylation. Nucl. Acids Res. 17, 3978, 1989.
  • Blum, M., Demierre, A., Grant, D. M., Heim, M., and Meyer, U. A., Molecular mechanisms of slow acetylation of drugs and carcinogens in humans. Proc. Natl. Acad. Sci. U.S.A. 88, 5237, 1991.
  • Vatsis, K. P., Martell, K. J., and Weber, W. W., Diverse point mutations in the human gene for poly- morphic N-acetyltransferase. Proc. Natl. Acad. Sci. U.S.A. 88, 6333, 1991.
  • Abe, M., Deguchi, T., and Suzuki, T., The structure and characteristics of a fourth allele of polymorphic N-acetyltransferase gene found in the Japanese popu- lation. Biochem. Biophys. Res. Commun. 191, 811, 1993.
  • Hickman, D., Risch, A., Camilleri, J. P., and Sim, E., Genotyping human polymorphic arylamine N-acetyltransferase, identification of new slow allo- typic variants. Pharmacogenetics, 2, 217, 1992.
  • Ferguson, R. J., Doll, M. A., Rustan, T. D., Gray, K., and Hein, D. W., Cloning, expression, and functional characterization of two mutant (NAT2191 and NAT2341/803) and wild-type human polymorphic N-acetyltransferase (NAT2) alleles. Drug Metab. Dispos. 22, 371, 1994.
  • Doll, M. A., Fretland, A. J., Deitz, A. C., and Hein, W., Determination of human NAT2 acetylator geno- type by restriction fragment length polymorphism and allele-specific amplification. Anal. Biochem. 231, 413, 1995.
  • Deguchi, T., Sequences and expression of alleles of polymorphic arylamine N-acetyltransferase of human liver. J. Biol. Chem. 267, 18140, 1992.
  • Deguchi, T., Mashimo, M., and Suzuki, T., Corre- lations between acetylator phenotype and genotypes of polymorphic arylamine N-acetyltransferase in hu- man liver. J. Biol. Chem. 265, 12757, 1990.
  • Lin, H. J., Han, C-Y., Lin, B. K., and Hardy, S., Ethnic distribution of slow acetylator mutations in the polymorphic N-acetyltransferase (NAT2) gene. Phar- macogenetics 4, 125, 1994.
  • Vatsis, K. P., Rodgers, L., and Weber, W. W., Human N-Acetyltransferase variant r4 at the NAT2 locus. The Pharmacologist 35, 204, 1993.
  • Cascorbi, I., Brockmoller, J., Bauer, S., Reum, T., and Roots, I., NAT2*12A (803A—>G) codes for rapid arylamine N-acetylation in humans. Pharmacogenet- ics 6, 257, 1996.
  • Bell, D. A., Taylor, J. A., Butler, M. A., Stephens, A., Wiest, J., Brubaker, L. H., Kadlubar, F. F., and Lucier, G. W., Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) re- veals a new slow-acetylator allele common in Afri- can-Americans. Carcinogenesis 14, 1689, 1993.
  • Mashimo, M., Suzuki, T., Abe, M., and Deguchi, T., Molecular genotyping of N-acetylation polymor- phism to predict phenotype. Hum. Genet. 90, 139, 1992.
  • Rothman, N., Hayes, R. B., Bi, W., Caporaso, N., Broly, F., Woosley, R. L., Yin, S., Feng, P., You, X., and Meyer, U. A., Correlation between N-acetyl- transferase activity and NAT2 genotype in Chinese males. Pharmacogenetics, 3, 250, 1993.
  • Woolhouse, N. M., Qureshi, M. M., and Rayoumi, R. A. L., A new mutation C759T in the polymorphic N-acetyltransferase (NAT2) gene. Pharmacogenetics, 7, 83, 1997.
  • Cascorbi, I., Drakoulis, N., Brockmoller, J., Maurer, A., Sperling, K., and Roots, I., Arylamine N-acetyltransferase (NAT2) mutations and their al- lelic linkage in unrelated Caucasian individuals, Cor- relation with phenotypic activity. Am. J. Hum. Genet. 57, 581, 1995.
  • Alvan, G., Bechtel, P., Iselius, L., and Gundert- Remy, U., Hydroxylation polymorphisms of debrisoquine and mephenytoin in European popula- tions. Eur. J. Clin. Pharmacol. 39, 533, 1990.
  • Hirvonen, A., Husgafvel-Pursiainen, K., Anttila, S., and Vainio, H., The GSTM1 null genotype as a potential risk modifier for squamous cell carcinoma of the lung. Carcinogenesis, 14, 1479, 1993.
  • Brockmoller, J., Kerb, R., Drakoulis, N., Nitz, M., and Roots, I., Genotype and phenotype of glutathione- S-transferase class  isoenzymes  and  in lung cancer patients and controls. Cancer Res. 53, 1004, 1993.
  • Warholm, M., Rane, A., Aleandrie, A-K., Monaghan, G., and Rannug, A., Genotyping and phenotyping determination of polymorphic glutathione transferase T1 in a Swedish population. Pharmacoge- netics 5, 252, 1995.
  • Wedlund, P. J., Asianian, W. S., McAllister, C. B., Wilkinson, G. R., and Branch, R. A., Mephenytoin hydroxylation deficiency in Caucasians: frequency of a new oxidative drug metabolism polymorphism. Clin. Pharmacol. Ther. 36, 773, 1984.
  • Evans, W. E., Relling, M. V., Rahman, A., McLeod, H. L., Scott, E. P., and Lin, J-S., Genetic basis for a lower prevalence of deficient CYP2D6 oxidative drug metabolism phenotypes in black Americans. J. Clin. Invest. 91, 2150, 1993.
  • London, S. J., Daly, A. K., Cooper, J., Navidi, W. C., Carpenter, C. L., and Idle, J. R., Polymor- phism of glutathione-S-transferase M1 and lung can- cer risk among African-Americans and Caucasians in Los Angeles County, California. J. Natl. Cancer Inst. 87, 1246, 1995.
  • Chen, C-L., Liu, Q., and Relling, M. V., Simulta- neous characterization of glutathione-S-transferase M1 and T1 polymorphisms by polymerase chain reaction in American whites and blacks. Pharmacogenetics 6, 187, 1996.
  • Nelson, H. H., Wiencke, J. K., Christian, D. C., Cheng, T. J., Zuo, Z-F., Schwartz, B. S., Lee, B.-K., Spitz, M. R., Wang, M., Xu, X., and Kelsey, K. T., Ethnic differences in the prevalence of the homozy- gous deleted genotype of glutathione-S-transferase theta. Carcinogenesis. 16, 1243, 1995.
  • Horai, Y., Nakano, M., Ishizaki, T., Ishikawa, K., Zhou, H-H., Zhou, B-J., Liao, C-L., and Zhang, L- M., Metoprolol and mephenytoin oxidation polymor- phisms in far Eastern Oriental subjects, Japanese ver- sus mainland Chinese. Clin. Pharmacol. Ther. 46, 198, 1989.
  • Kihara, M., Noda, K., and Kihara, M., Distribution of GSTM1 null genotype in relation to gender, age and smoking status in Japanese lung cancer patients. Phar- macogenetics 5, s74, 1995.
  • Xie, H-G., Xu, Z-H., Luo, X., Huang, S-L., Zeng, F- D., and Zhou, H-H., Genetic polymorphisms of debrisoquine and S-mephenytoin oxidation metabo- lism in Chinese populations, a meta-analysis. Phar- macogenetics 6, 235, 1996.
  • Lee, E. J. D., Wong, J. Y. Y., Yeoh, P. N., and Gong, N. H., Glutathione-S-transferase (GSTT1) ge- netic polymorphism among Chinese, Malays and In- dians in Singapore. Pharmacogenetics 5, 332, 1995.
  • Sohn, D-R., Kusaka, M., Ishizaki, T., Shin, S-G., Jang, I-J., Shin, J-G., and Chiba, K., Incidence of S- mephenytoin hydroxylation deficiency in a Korean population and the interphenotypic differences in di-azepam pharmacokinetics. Clin. Pharmacol. Ther. 52, 160, 1992.
  • Hickman, D. and Sim, E., N-acetyltransferase polymorphism: comparison of phenotype and geno- type in humans. Biochem. Pharmacol. 42, 1007, 1991.
  • Arias, T. D., Jorge, L. F., Griese, E-U., Inaba, T., and Eichelbaum, M., Polymorphic N-acetyl- transferase (NAT2) in Amerindian populations of Panama and Columbia, high frequencies of point mutation 857A as found in allele S3/M3. Pharmaco- genetics 3, 328, 1993.
  • Hein, D. W., Ferguson, R. J., Doll, M. A., Rustan, T. D., and Gray, K., Molecular genetics of human polymorphic N-acetyltransferase, enzymatic analysis of 15 recombinant wild-type, mutant, and chimeric NAT2 allozymes. Hum. Mol. Genet. 3, 729, 1994.
  • Hein, D. W., Doll, M. A., Rustan, T. D., and Ferguson, R. J., Metabolic activation of N- hydroxyarylamines and N-hydroxyarylamides by 16 recombinant human NAT2 allozymes: effects of 7 specific NAT 2 nucleic acid substitutions. Cancer Res. 55, 3531, 1995.
  • Hickman, D., Palamanda, J. R., Unadkat, J. D., and Sim, E., Enzyme kinetic properties of human recombinant arylamine N-acetyltransferase 2 allotypic variants expressed in Escherichia coli. Biochem. Pharmacol. 50, 697, 1995.
  • Dupret, J-M. and Grant, D. M., Site-directed mu- tagenesis of recombinant human arylamine N- acetyltransferase expressed in Escherichia coli: evi- dence for direct involvement of Cys68 in the catalytic mechanism of polymorphic human NAT 2. J. Biol. Chem. 267, 7381, 1992.
  • Bell, D. A., Badawi, A. F., Lang, N. P., Ilett, K. F., Kadlubar, F. F., and Hirvonen, A., Polymorphism in the N-acetyltransferase 1 (NAT1) polyadenylation signal, association of the NAT1*10 allele with higher N-acetylation activity in bladder and colon tissue. Cancer Res. 55, 5226, 1995.
  • Zenser, T. V., Lakshmi, V. M., Rustan, T. D., Doll, M. A., Deitz, A. C., Davis, B. B., and Hein, D. W., Human N-acetylation of benzidine: role of NAT1 and NAT2. Cancer Res. 56, 3941, 1996.
  • Menon, N. K., Madras study of supervised once- weekly chemotherapy. Bull. Int. un Tuberc. 41, 316, 1968.
  • Mitchison, D. A., II. Clinical applications of antibi- otic and chemotherapeutic agents. Proc. Roy. Soc. Med. 64, 537, 1971.
  • Pasanen, M., Pasanen, A., and Jounela, A., Effect of acetylation phenotype on the antihypertensive re- sponse to hydralazine. Scand. J. Clin. Lab. Invest. 31 (Suppl. 130), 12, 1973.
  • Jounela, A. J., Pasanen, M., and Mattila, M. J., Acetylator phenotype and the antihypertensive re- sponse to hydralazine. Acta Med. Scand. 197, 303, 1975.
  • Ellard, G. A. and Gammon, P. T., Acetylator phenotyping of tuberculosis patients using matrix isoniazid or sulfadimidine and its prognostic significance for treatment with several intermittent isoniazid-con- taining regimens. Br. J. Clin. Pharmacol. 4, 5, 1977.
  • Larsson, R., Karlberg, B. E., Norlander, B., and Wirsen, A., Prizidilol, an antihypertensive with pre- capillary vasodilator and β-adrenoceptor blocking actions, in primary hypertension. Clin. Pharmacol. Ther. 29, 588, 1981.
  • Zacest, R. and Koch-Weser, J., Relation of hydrala- zine plasma concentration to dosage and hypotensive action. Clin. Pharmacol. Ther. 13, 420, 1972.
  • Forstrom, L., Mattila, M. J., and Mustakallio, K. K., Acetylator phenotype, minimal maintenance dose and haemolytic effect of dapsone in dermatitis herpeti- formis. Ann. Clin. Res. 6, 308, 1974.
  • Shepherd, A. M. M., McNay, J. L., Ludden, T. M., Lin, M-S., and Musgrave, G. E., Plasma concentra- tion and acetylator phenotype determine response to oral hydralazine. Hypertension 3, 580, 1981.
  • Ramsay, L. E., Silas, J. H., Ollerenshaw, J. D., Tucker, G. T., Phillips, F. C., and Freestone, S., Should the acetylator phenotype be determined when prescribing hydralazine for hypertension? Eur. J. Clin. Pharmacol. 26, 39, 1984.
  • Ratain, M. J., Mick, R., Berezin, F., Janisch, L., Schilsky, R. L., Williams, S. F., and Smiddy, J., Paradoxical relationship between acetylator pheno- type and amonafide toxicity. Clin. Pharmacol. Ther. 50, 573, 1991.
  • Devadatta, S., Gangadharam, P. R. J., Andrews, H., Fox, W., Ramakrishnan, C. V., Selkon, J. B., and Velu, S., Peripheral neuritis due to isoniazid. Bull. Wld. Hlth. Org. 23, 587, 1960.
  • Perry, H. M., Tan, E. M., Carmody, S., and Sakamoto, A., Relationship of acetyl transferase ac- tivity to antinuclear antibodies and toxic symptoms in hypertensive patients treated with hydralazine. J. Lab. Clin. Med. 76, 114, 1970.
  • Schroder, H. and Price Evans, D.A., Acetylator phenotype and adverse effects of sulphasalazine in healthy subjects. Gut 13, 278, 1972.
  • Das, K. M., Eastwood, M. A., McManus, J. P. A., and Sircus, W., Adverse reactions during salicyl- azosulfapyridine therapy and the relation with drug metabolism and acetylator phenotype. N. Engl. J. Med. 289, 491, 1973.
  • Davies, D. M., Beedie, M. A., and Rawlins, M. D., Antinuclear antibodies during procainamide treatment and drug acetylation. Br. Med. J. 3, 682, 1975.
  • Henningsen, N. C., Cederberg, A., Hanson, A., and Johansson, B. W., Effects of long-term treatment with procaine amide. Acta Med. Scand. 198, 475, 1975.
  • Strandberg, I., Boman, G., Hassler, L., and Sjoqvist, F., Acetylator phenotype in patients with hydralazine- induced lupoid syndrome. Acta Med. Scand. 200, 367, 1976.
  • Woosley, R. L., Drayer, D. E., Reidenberg, M. M., Nies, A. S., Carr, K., and Oates, J. A., Effect of acetylator phenotype on the rate at which procainamide induces antinuclear antibodies and the lupus syndrome. N. Engl. J. Med. 298, 1157, 1978.
  • Batchelor, J. R., Welsh, K. I., Mansilla Tinoco, R., Dollery, C. T., Hughes, G. R. V., Bernstein, R., Ryan, P., Naish, P. F., Aber, G. M., Bing, R. F., and Russell, G. I., Hydralazine-induced systemic lupus erythematosus, Influence of HLA-DR and sex on sus- ceptibility. Lancet, 1107, 1980.
  • Sharp, M. E., Wallace, S. M., Hindmarsh, K. W., and Brown, M. A., Acetylator phenotype and serum levels of sulfapyridine in patients with inflammatory bowel disease. Eur. J. Clin. Pharmacol. 21, 243, 1981.
  • Azad Khan, A. K., Nurazzaman, M., and Truelove , C., The effect of the acetylator phenotype on the metabolism of sulfasalazine in man. J. Med. Genet. 20, 30, 1983.
  • Shear, N. H., Spielberg, S. P., Grant, D. M., Tang, B. K., and Kalow, W., Differences in metabolism of sulfonamides predisposing to idiosyncratic toxicity. Ann. Intern. Med. 105, 179, 1986.
  • Rieder, M. J., Shear, N. H., Kanee, A., Tang, B. K., and Spielberg, S. P., Prominence of slow acetylator phenotype among patients with sulfonamide hyper- sensitivity reactions. Clin. Pharmacol. Ther. 49, 13, 1991.
  • Wolkenstein, P., Carriere, V., Charue, D., Bastuji- Garin, S., Revuz, J., Roujeau, J-C., Beaune, P., and Bagot, M., A slow acetylator genotype is a risk factor for sulphonamide-induced toxic epidermal necrolysis and Stevens-Johnson syndrome. Pharmacogenetics 5, 255, 1995.
  • Nuss, C. E., Grant, D. M., Spielberg, S. P., and Cribb, A. E., Further investigations of the role of acetylation in sulfonamide hypersensitivity reactions. Biomarkers 1, 267, 1996.
  • Spielberg, S. P., N-Acetyltransferases: pharmacoge- netics and clinical consequences of polymorphic drug metabolism. J. Pharmacokin. Biopharm. 24, 509, 1996.
  • Vineis, P., Bartsch, H., Caporaso, N., Harrington,A. M., Kadlubar, F. F., Landi, M. T., Malaveille, C., Shields, P. G., Skipper, P., Talaska, G., and Tannenbaum, S. R., Genetically based N-acetyl- transferase metabolic polymorphism and low-level en- vironmental exposure to carcinogens. Nature, 369, 154, 1994.
  • Rothman, N., Bhatnagar, V. K., Hayes, R. B., Zenser, T. V., Kashyap, S. K., Butler, M. A., Bell,D. A., Lakshmi, V., Jaeger, M., Kashyap, R., Hirvonen, A., Schulte, P. A., Dosemeci, M., Hsu, F., Parikh, D. J., Davis, B. B., and Talaska, G., The impact of inter-individual variation in NAT2 activity on benzidine urinary metabolites and urothelial DNA adducts in exposed workers. Proc. Natl. Acad. Sci. U.S.A. 93, 5084, 1996.
  • Badawi, A. F., Hirvonen, A., Bell, D. A., Lang,N. P., and Kadlubar, F. F., Role of aromatic amine acetyltransferase, NAT1 and NAT2, in carcinogen- DNA adduct formation in the human urinary bladder. Cancer Res. 55, 5230, 1995.
  • Ilett, K. F., David, B. M., Detchon, P., Castleden,W. M., and Kwa, R., Acetylation phenotype in colorectal carcinoma. Cancer Res. 47, 1466, 1987.
  • Wohlleb, J. C., Hunter, C. F., Blass, B., Kadlubar,F. F., Chu, D. Z. J., and Lang, N. P., Aromatic amine acetyltransferase as a marker for colorectal cancer: environmental and demographic associations. Int. J. Cancer 46, 22, 1990.
  • Lang, N. P., Butler, M. A., Massengill, J., Lawson, M., Stotts, R. C., Hauer-Jensen, M., and Kadlubar,F. F., Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps. Cancer Epidemiol. Biomark. Prevent. 3, 675, 1994.
  • Cartwright, R. A., Rogers, H. J., Barham-Hall, D., Glashan, R. W., Ahmad, R. A., Higgins, E., and Kahn, M. A., Role of N-acetyltransferase phenotypes in bladder cancer carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer. Lancet III, 842, 1982.
  • Mommsen, S., Barfod, N. M., and Aagaard, J., N- Acetyltransferase phenotypes in the urinary bladder carcinogenesis of a low-risk population. Carcinogen- esis 6, 199, 1985.
  • Yu, M. C., Skipper, P. L., Taghizadeh, K., Tannanbaum, S. R., Chan, K. K., Henderson, B. E., and Ross, R. K., Acetylator phenotype, aminobiphenyl-hemoglobin adduct levels, and blad- der cancer risk in white, black, and Asian men in Los Angeles, California. J. Natl. Canc. Inst. 86, 712, 1994.
  • Risch, A., Wallace, D. M. A., Bathers, S., and Sim, E., Slow N-acetylation genotype is a susceptibility factor in occupational and smoking related bladder cancer. Hum. Mol. Genet. 4, 231, 1995.
  • Brockmoller, J., Cascorbi, I., Kerb, R., and Roots, I., Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione-S-trans- ferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of blad- der cancer risk. Cancer Res. 56, 3915, 1996.
  • Bell, D. A., Stephens, E. A., Castranio, T., Umbach, D. M., Watson, M., Deakin, M., Elder, J., Hendrickse, C., Duncan, H., and Strange, R. C., Polyadenylation polymorphism in the acetyltransferase 1 gene (NAT1) increases risk of colorectal cancer. Cancer Res. 55, 3537, 1995.
  • Taylor, J. A., Umbach, D. M., Stephens, E., Paulson, D., Robertson, C., Mohler, J. L., and Bell, D. A., The role of N-acetylation polymorphisms at NAT1 and NAT2 in smoking-associated bladder cancer. Proc. Am. Ass. Cancer Res. 36, 282, 1995.
  • Bock, K. W., Metabolic polymorphisms affecting activation of toxic and mutagenic arylamines. Trends Pharmacol. Sci. 13, 223, 1992.
  • Kadlubar, F. F. and Badawi, A. F., Genetic suscep- tibility and carcinogen-DNA adduct formation in hu- man urinary bladder carcinogenesis. Toxicol. Lett. 82/ 83, 627, 1995.
  • Vineis, P. and McMichael, A., Interplay between heterocyclic amines in cooked meat and metabolic phenotype in the etiology of colon cancer. Cancer Causes and Control 7, 479, 1996.
  • Probst-Hensch, N. M., Haile, R. W., Ingles, S. A., Longnecker, M. P., Han, C.Y., Lin, B. K., Lee, D. B., Sakamoto, G.T., Frankl, H.D., Lee, E. R., and Lin, H. J., Acetylation polymorphism and prevalence of colorectal adenomas. Cancer Res. 55, 2017 1995.
  • Rodriquez, J. W., Kirlin, W. G., Ferguson, R. J., Doll, M. A., Gray, K., Rustan, T. D., Lee, M. E., Kemp, K., Urso, P., and Hein, D. W., Human acetylator genotype: relationship to colorectal cancer incidence and arylamine N-acetyltransferase expres- sion in colon cytosol. Arch. Toxicol. 67, 445, 1993.
  • Probst-Hensch, N. M., Haile, R. W., Li, D. S., Sakamoto, G. T., Louie, A. D., Lin, B. K., Frankl,H. D., Lee, E. R., and Lin, H. J., Lack of association between the polyadenylation polymorphism in the NAT1 (acetyltransferase 1) gene and colorectal ad- enomas. Carcinogenesis, 17, 2125, 1996.
  • Martinez, C., Agundez, J. A. G., Olivera, M., Mar- tin, R., Ladero, J. M., and Benitez, J., Lung cancer and mutations at the polymorphic NAT2 gene locus. Pharmacogenetics 5, 207, 1995.
  • Cascorbi, I., Brockmoller, J., Mrozikiewicz, P. M., Bauer, S., Loddenkemper, R., and Roots, I., Ho- mozygous rapid arylamine N-acetyltransferase (NAT2) genotype as a susceptibility factor for lung cancer. Cancer Res. 56, 3961, 1996.
  • Daly, A. K., Brockmoller, J., Broly, F., Eichelbaum, M., Evans, W. E., Gonzalez, F. J., Huang, J-D., Idle, J. R., Ingelman-Sundberg, M., Ishizaki, T., Jacqz-Aigrain, E., Meyer, U. A., Nebert, D. W., Steen, V. M., Wolf, C. R., and Zanger, U. M., Nomenclature for human CYP2D6 alleles. Pharma- cogenetics 6, 193, 1996.
  • Cascorbi, I., Brockmoller, J., and Roots, I., A C4887A polymorphism in exon 7 of human CYP1A1. Population frequency, mutation linkages, and impact on lung cancer susceptibility. Cancer Res. 56, 4965, 1996.
  • Nelson, D.R., Koymans, L., Kamataki, T., Stegeman, J. J., Feyereisen, R., Waxman, D. J., Waterman, M. R., Gotoh, O., Coon, M. J., Estabrook, R. W., Gunsalus, I. C., and Nebert, D. W., P450 superfamily, update on new sequences, gene mapping, accession numbers and nomenclature. Phar- macogenetics, 6, 1 1996.
  • Wrighton, S. A. and Stevens, J. C., The human hepatic cytochromes P450 involved in drug metabo- lism. Crit. Rev. Toxicol. 22, 1, 1992.
  • Goeptar, A. R., Scheerens, H., and Vermeulen, N. P. E., Oxygen and xenobiotic reductase activities of cytochrome P450. Crit. Rev. Toxicol. 25, 25, 1995.
  • Guengerich, F. P. and Shimada, T., Oxidation of toxic and carcinogenic chemicals by human cyto- chrome P-450 enzymes. Chem. Res. Toxicol. 4, 391, 1991.
  • Guengerich, F. P., Metabolic activation of carcino- gens. Pharmacol. Ther. 54, 17, 1992.
  • Gonzalez, F. J. and Gelboin, H. V., Role of human cytochromes P450 in the metabolic activation of chemi- cal carcinogens and toxins. Drug Metab. Rev. 26, 165, 1994.
  • Nebert, D. W. and Gonzalez, F. J., P450 genes, structure, evolution, and regulation. Ann. Rev. Biochem. 56, 945, 1987.
  • Gonzalez, F. J., The molecular biology of cytochrome P450s. Pharmacol. Rev. 40, 243, 1989.
  • Gonzalez, F. J., Molecular genetics of the P-450 superfamily. Pharmacol. Ther. 45, 1, 1990.
  • Park, B. K., Pirmohamed, M., and Kitteringham,N. R., The role of cytochrome P450 enzymes in he- patic and extrahepatic drug toxicity. Pharmacol. Ther. 68, 385, 1995.
  • Kawajiri, K. and Fujii-Kuriyama, Y., P450 and human cancer. Jpn. J. Cancer Res. 82, 1325, 1991.
  • de Groot, M. J. and Vermeulen, N. P. E., Modeling the active sites of cytochrome P450s and glutathione- S-transferases, two of the most important biotransfor- mation enzymes. Drug. Metab. Rev. 29, 747, 1997.
  • Hildebrand, C. E., Gonzalez, F. J., McBride, O. W., and Nebert, D. W., Assignment of the human 2,3,7,8- tetrachlorodibenzo-p-dioxin-inducible cytochrome P1- 450 gene to chromosome 15. Nucl. Acids Res. 13, 2009, 1985.
  • Jaiswal, A. K., Gonzalez, F. J., and Nebert, D. W., Human P1-450 gene sequence and correlation of mRNA with genetic differences in benzo[a]pyrene metabolism. Nucl. Acids Res. 13, 4503, 1985.
  • Spurr, N. K., Gough, A. C., Stevenson, K., and Wolf, C. R., Msp 1 polymorphism detected with a cDNA probe for the P-450 I family on chromosome 15. Nucl. Acids Res. 15, 5901, 1987.
  • Bale, A. E., Nebert, D. W., and McBride, O. W., Subchromosomal localization of the dioxin-inducible P450 locus (CYP1) and description of two RFLPs detected with a 3 P450 cDNA probe. Cytogen. Cell Genet. 46, 574, 1987.
  • Haugen, A., Willey, J., Borresen, A. L., and Tefre, T., Pst I polymorphism at the human P1450 gene on chromosome 15. Nucl. Acids Res. 18, 3114, 1990.
  • Hayashi, S-i., Watanabe, J., Nakachi, K., and Kawajiri, K., PCR detection of an A/G polymor- phism within exon 7 of the CYP1A1 gene. Nucl. Acids Res. 19, 4797, 1991.
  • Hayashi, S-i., Watanabe, J., Nakachi, K., and Kawajiri, K., Genetic linkage of lung cancer-associ- ated Msp I polymorphisms with amino acid replace- ment in the heme binding region of the human cyto- chrome P450IA1 gene. J. Biochem. 110, 407, 1991.
  • Cosma, G., Crofts, F., Taioli, E., Toniolo, P., and Garte, S., Relationship between genotype and func- tion of the human CYP1A1 gene. J. Toxicol. Environ. Health 40, 309, 1993a.
  • Wedlund, P. J., Kimura, S., Gonzalez, F. J., and Nebert, D. W., I462V mutation in the human CYP1A1 gene, Lack of correlation with either the Msp I 1.9 kb (M2) allele or CYP1A1 inducibility in a three-genera- tion family of East Mediterranean descent. Pharma- cogenetics 4, 21, 1994.
  • Drakoulis, N., Cascorbi, I., Brockmoller, J., Gross,C. R., and Roots, I., Polymorphisms in the human CYP1A1 gene as susceptibility factors for lung cancer, exon-7 mutation (4889 A to G), and a T to C mutation in the 3-flanking region. Clin. Investig. 72, 240, 1994.
  • Crofts, F., Cosma, G. N., Currie, D., Taioli, E., Toniolo, P., and Garte, S. J., A novel CYP1A1 gene polymorphism in African-Americans. Carcinogenesis 14, 1729, 1993.
  • Garte, S. J., Trachman, J., Crofts, F., Toniolo, P., Buxbaum, J., Bayo, S., and Taioli, E., Distribution of composite CYP1A1 genotypes in Africans, Afri- can-Americans and Caucasians. Hum. Hered. 46, 121, 1996.
  • Landi, M. T., Bertazzi, P. A., Clark, G., Lucier, G. W., Garte, S. J., Cosma, G., Shields, P. G., and Caporaso, N. E., Susceptibility markers in normal subjects: a pilot study for the investigation of 2,3,7,8- tetrachlorodibenzo-p- dioxin-related diseases. Chemo- sphere 27, 375, 1993.
  • Landi, M. T., Bertazzi, P. A., Shields, P. G., Clark, G., Lucier, G. W., Garte, S. J., Cosma, G., and Caporaso, N. E., Association between CYP1A1 geno- type, mRNA expression and enzymatic activity in humans. Pharmacogenetics 4, 242, 1994.
  • Crofts, F., Taioli, E., Trachman, J., Cosma, G. N., Currie, D., Toniolo, P., and Garte, S. J., Functional significance of different human CYP1A1 genotypes. Carcinogenesis 15, 2961, 1994.
  • Petersen, D. D., McKinney, C. E., Ikeya, K., Smith, H. H., Bale, A. E., McBride, O. W., and Nebert,D. W., Human CYP1A1 gene: cosegregation of the enzyme inducibility phenotype and an RFLP. Am. J. Hum. Genet. 48, 720, 1991.
  • Kiyohara, C., Hirohata, T., and Inutsuka, S., The relationship between aryl hydrocarbon hydroxylase and polymorphisms of the CYP1A1 gene. Jpn. J. Cancer Res. 87, 18, 1996.
  • Swanson, H. I. and Bradfield, C. A., The Ah-recep- tor, genetics, structure and function. Pharmacogenet- ics 3, 213, 1993.
  • Fujii-Kuriyama, Y., Ema, M., Mimura, J., Matsushita, N., and Sogawa, K., Polymorphic forms of the Ah receptor and induction of the CYP1A1 gene. Pharmacogenetics 5, S149, 1995.
  • Kawajiri, K., Watanabe, J., Eguchi, H., and Hayashi, S-i., Genetic polymorphisms of drug-me- tabolizing enzymes and lung cancer susceptibility. Pharmacogenetics 5, S70, 1995.
  • Kawajiri, K., Watanabe, J., Eguchi, H., Nakachi, K., Kiyohara, C., and Hayashi, S-i., Polymorphisms of human Ah receptor gene are not involved in lung cancer. Pharmacogenetics 5, 151, 1995.
  • Zhang, Z-Y., Fasco, M. J., Huang, L., Guengerich, F. P., and Kaminsky, L. S., Characterization of puri- fied human recombinant cytochrome P4501A1-Ile462 and -Val462: assessment of a role for the rare allele in carcinogenesis. Cancer Res. 56, 3926, 1996.
  • Persson, I., Johansson, I., and Ingelman-Sundberg, M., In vitro kinetics of two human CYP1A1 variant enzymes suggested to be associated with inter-indi- vidual differences in cancer susceptibility. Biochem. Biophys. Res. Commun. 231, 227, 1997.
  • Shields, P. G., Sugimura, H., Caporaso, N. E., Petruzzelli, S. F., Bowman, E. D., Trump, B. F., Weston, A., and Harris, C. C., Polycyclic aromatic hydrocarbon-DNA adducts and the CYP1A1 restric- tion fragment length polymorphism. Environ. Health Perspect. 98, 191, 1992.
  • Shields, P. G., Bowman, E. D., Harrington, A. M., Doan, V. T., and Weston, A., Polycyclic aromatic hydrocarbon-DNA adducts in human lung and cancer susceptibility genes. Cancer Res. 53, 3486, 1993.
  • Ichiba, M., Hagmar, L., Rannug, A., Högstedt, B., Alexandrie, A-K., Carstensen, U., and Hemminki, K., Aromatic DNA adducts, micronuclei and genetic polymorphism for CYP1A1 and GSTT1 in chimney sweeps. Carcinogenesis 15, 1347, 1994.
  • Kawajiri, K., Eguchi, H., Nakachi, K., Sekiya, T., and Yamamoto, M., Association of CYP1A1 germ line polymorphisms with mutations of the p53 gene in lung cancer. Cancer Res. 56, 72, 1996.
  • Maenpaa, J. and Wrighton, S.A., A new CYP poly- morphism to complicate drug development: deficient C-oxidation of nicotine, a comment. Hum. Exp. Toxicol. 15, 82, 1996.
  • Nakajima, M., Yamamoto, T., Nunoya, K-i., Yokoi, T., Nagashima, K., Inoue, K., Funae, Y., Shimada, N., Kamataki, T., and Kuroiwa, Y., Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug Metab. Dispos. 24, 1212, 1996.
  • Hoffman, S. M. G., Fernandez-Salguero, P., Gonzalez, F. J., and Mohrenweiser, H. W., Organi- zation and evolution of the cytochrome P450 CYP2A- 2B-2F subfamily gene cluster on human chromosome 19. J. Mol. Evol. 41, 894, 1995.
  • Fernandez-Salguero, P., Hoffman, S. M. G., Cholerton, S., Mohrenweiser, H., Raunio, H., Rautio, A., Pelkonen, O., Huang, J-d., Evans, W. E., Idle, J. R., and Gonzalez, F.J., A genetic polymor- phism in coumarin 7-hydroxylation, Sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am. J. Hum. Genet. 57, 651, 1995.
  • Ding, S., Lake, B. G., Friedberg, T., and Wolf,C. R., Expression and alternative splicing of the cyto- chrome P-450 CYP2A7. Biochem. J. 306, 161, 1995.
  • Goldstein, J. A. and de Morais, S. M. F., Biochem- istry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4, 285, 1994.
  • Mancy, A., Broto, P., Dijols, S., Dansette, P. M., and Mansuy, D., The substrate binding site of human liver cytochrome P450 2C9, an approach using de- signed tienilic acid derivatives and molecular model- ing. Biochemistry 34, 10365, 1995.
  • Meehan, R. R., Gosden, J. R., Rout, D., Hastie,N. D., Friedberg, T., Adesnik, M., Buckland, R., van Heyningen, V., Fletcher, J., Spurr, N. K., Sweeney, J., and Wolf, C. R., Human cytochrome P- 450 PB-1: a multigene family involved in mephenytoin and steroid oxidations that maps to chromosome 10. Am. J. Hum. Genet. 42, 26, 1988.
  • Gray, I. C., Nobile, C., Muresu, R., Ford, and Spurr, N. K., A 2.4-megabase physical map spanning the CYP2C gene cluster on chromosome 10q24. Genomics 28, 328, 1995.
  • Umbenhauer, D. R., Martin, M. V., Lloyd, R. S., and Guengerich, F. P., Cloning and sequence deter- mination of a complementary DNA related to human liver microsomal cytochrome P-450 S-mephenytoin 4-hydroxylase. Biochemistry, 26, 1094, 1987.
  • Kimura, S., Pastewka, J., Gelboin, H. V., and Gonzalez, F. J., cDNA and amino acid sequences of two members of the human P450IIC gene subfamily. Nucl. Acids Res. 15, 10053, 1987.
  • Yasumori, T., Kawano, S., Nagata, K., Shimada, M., Yamazoe, Y., and Kato, R., Nucleotide sequence of a human liver cytochrome P-450 related to the rat male specific form. J. Biochem. 102, 1075, 1987.
  • Ged, C., Umbenhauer, D. R., Bellew, T. M., Bork,R. W., Srivastava, P. K., Shinriki, N., Lloyd, R. S., and Guengerich, F. P., Characterization of cDNAs, mRNAs, and proteins related to human liver microso- mal cytochrome P-450 S)-mephenytoin 4-hydroxy- lase. Biochemistry,27, 6929, 1988.
  • Bhasker, C. R., Birkett, D. J., Veronese, M. E., and Miners, J. O., Polymorphism in the human cyto- chrome P450 2C9 gene. In: Proceedings of the ISSX Meeting, Seattle, 1995, 105.
  • Wang, S-L., Huang, J-d., Lai, M-D., and Tsai, J-J., Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmaco- genetics 5, 37–42, 1995.
  • Sullivan-Klose, T. H., Ghanayem, B. I., Bell, D. A., Zhang, Z-Y., Kaminsky, L. S., Shenfield, G. M., Miners, J. O., Birkett, D. J., and Goldstein, J. A., The role of the CYP2C9; Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6, 341, 1996.
  • Stubbins, M. J., Harries, L. W., Smith, G., Tarbit,M. H., and Wolf, C. R., Genetic analysis of the cytochrome P450 2C9 locus. Pharmacogenetics 6, 429, 1996.
  • Furuya, H., Fernandez-Salguero, P., Gregory, W., Taber, H., Steward, A., Gonzalez, F. J., and Idle,J. R., Genetic polymorphism of CYP2C9 and its ef- fect on warfarin maintanance dose requirement in patients undergoing anticoagulation therapy. Phar- macogenetics 5, 289, 1995.
  • Scott, J. and Poffenbarger, P. L., Pharmacogenetics of tolbutamide metabolism in humans. Diabetes 28, 41, 1979.
  • Page, M. A., Boutagy, J. S., and Shenfield, G. M., A screening test for slow metabolisers of tolbutamide. Br. J. Clin. Pharmacol. 31, 649, 1991.
  • Back, D. J. and Orme, M. L’E., Genetic factors influencing the metabolism of tolbutamide. In: Phar-macogenetics of Drug Metabolism, Kalow, W., Ed., Pergamon Press Inc., New York, 1992, 737–746.
  • Veronese, M. E., Miners, J. O., Rees, D. L. P., and Birkett, D. J., Tolbutamide hydroxylation in humans, lack of bimodality in 106 healthy subjects. Pharma- cogenetics 3, 86, 1993.
  • Kutt, H. and Wolk, M., Insufficient parahydroxylation as a cause of diphenylhydantoin toxocity. Neurology 14, 542, 1964.
  • Vasko, M. R., Bell, R. D., Daly, D. D., and Pippenger, C. E., Inheritance of phenytoin hypome- tabolism: a kinetic study of one family. Clin. Pharmacol. Ther. 27, 96, 1980.
  • Vermeij, P., Ferrari, M. D., Buruma, O. J. S., Veenema, H., and de Wolff, F. A., Inheritance of poor phenytoin parahydroxylation capacity in a Dutch family. Clin. Pharmacol. Ther. 44, 588, 1988.
  • Inaba, T., Phenytoin, pharmacogenetic polymorphism of 4-hydroxylation. Pharmac. Ther. 46, 341, 1990.
  • Edeki, T. I. and Brase, D. A., Phenytoin disposition and toxicity, role of pharmacogenetic and inter-ethnic factors. Drug Metab. Rev. 27, 449, 1995.
  • Horsmans, Y., Kanyinda, J. M., and Desager, J. P., Relationship between mephenytoin, phenytoin and tolbutamide hydroxylations in healthy African sub- jects. Pharmacol. Toxicol. 78, 86, 1996.
  • Veronese, M. E., Doecke, C. J., MacKenzie, P. I., McManus, M. E., Miners, J. O., Rees, D. L. P., Gasser, R., Meyer, U. A., and Birkett, D. J., Site- directed mutation studies of human liver cytochrome P-450 isoenzymes in the CYP2C subfamily. Biochem. J. 289, 533, 1993.
  • Rettie, A. E., Wienckers, L. C., Gonzalez, F. J., Trager, W. F., and Korzekwa, K. R., Impaired (S)- warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics, 4, 39, 1994.
  • Kaminsky, L. S., de Morais, S. M. F., Faletto, M. B., Dunbar, D. A., and Goldstein, J. A., Correlation of human cytochrome P4502C substrate specificities with primary structure, Warfarin as a probe. Mol. Pharmacol. 43, 234, 1993.
  • Haining, R. L., Hunter, A. P., Veronese, M. E., Trager, W. F., and Rettie, A. E., Allelic variants of human cytochrome P4502C9, Baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch. Biochem. Biophys. 333, 447, 1996.
  • Hashimoto, Y., Otsuki, Y., Odani, A., Takano, M., Hattori, H., Furusho, K., and Inui, K.i., Effect of CYP2C polymorphisms on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Biol. Pharm. Bull. 19, 1103, 1996.
  • Tsuneoka, Y., Matsuo, Y., Okuyama, E., Watanabe, Y., and Ichikawa, Y., Genetic analysis of the cyto- chrome P-450IIC18 (CYP2C18) gene and a novel member of the CYP2C subfamily. FEBS Lett. 384, 281, 1996.
  • Tsuneoka, Y., Fukushima, K., Matsuo, Y., Ichikawa, Y., and Watanabe, Y., Genotype analysis of the CYP2C19 gene in the Japanese population. Life Sci. 59, 1711, 1996.
  • Iwahashi, K., Okuyama, E., Furukawa, A., Nakamura, K., Miyatake, R., Matsuo, Y., and Ichikawa, Y., Novel 2-point linked mutations in the 5-flanking region of human CYP2C18. Clin. Chim. Acta, 252, 197, 1996.
  • Komai, K., Sumida, K., Kaneko, H., and Nakatsuka, I., Identification of a new non-functional CYP2C18 allele in Japanese, substitution of T204 to A in exon 2 generates a premature stop codon. Pharmacogenet- ics 6, 117, 1996.
  • Wilkinson, G. R., Guengerich, F. P., and Branch,R. A., Genetic polymorphism of S-mephenytoin hy- droxylation. Pharmac. Ther. 43, 53, 1989.
  • Sohn, D. R., Shin, S. G., and Ishizaki, T., S-mephenytoin pharmacogenetics and its clinical im- plications in Asian ethnic populations. Asia Pacific J. Pharmacol. 9, 287, 1994.
  • Daniel, H. I. and Edeki, T. I., Genetic polymorphism of S-mephenytoin 4-hydroxylation. Psychopharmacol. Bull. 32, 219, 1996.
  • Kupfer, A. and Preisig, R., Pharmacogenetics of mephenytoin, A new drug hydroxylation polymor- phism in man. Eur. J. Clin. Pharmacol. 26, 753, 1984.
  • Kupfer, A., Lawson, J., and Branch, R. A., Stereoselectivity of the arene epoxide pathway of mephenytoin hydroxylation in man. Epilepsia 25, 1, 1984.
  • Inaba, T., Jurima, M., and Kalow, W., Family stud- ies of mephenytoin hydroxylation deficiency. Am. J. Hum. Genet. 68, 768, 1986.
  • Ward, S. A., Goto, F., Nakamura, K., Jacqz, E., Wilkinson, G. R., and Branch, R. A., S-mephenytoin 4-hydroxylase is inherited as an autosomal-recessive trait in Japanese families. Clin. Pharmcol. Ther. 42, 96, 1987.
  • Gut, J., Meier, U. T., Catin, T., and Meyer, U. A., Mephenytoin-type polymorphism of drug oxidation, purification and characterization of a human liver cytochrome P-450 isozyme catalyzing microsomal mephenytoin hydroxylation. Biochem. Biophys. Acta 884, 435, 1986.
  • Meier, U. T., Dayer, P., Male, P-J., Kronbach, T., and Meyer, U. A., Mephenytoin hydroxylation poly- morphism: characterization of the enzymatic deficiency in liver microsomes of poor metabolizers phenotyped in vivo. Clin. Pharmacol. Ther. 38, 488, 1985.
  • Wrighton, S. A., Stevens, J. C., Becker, G. W., and Vandenbranden, M., Isolation and characterization of human liver cytochrome P450 2C19: correlation between 2C19 and S-mephenytoin 4-hydroxylation. Arch. Biochem. Biophys. 306, 240, 1993.
  • Goldstein, J. A., Faletto, M. B., Romkes-Sparks, M., Sullivan, T., Kitareewan, S., Raucy, J. L., Lasker, J. M., and Ghanayem, B.I., Evidence that CYP2C19 is the major (S)-mephenytoin 4-hydroxy- lase in humans. Biochemistry 33, 1743, 1994.
  • Kobayashi, K., Yamamoto, T., Chiba, K., Tani, M., Ishizaki, T., and Kuroiwa, Y., The effects of selective serotonin reuptake inhibitors on S- mephenytoin 4-hydroxylase activity in human liver microsomes. Br. J. Clin. Pharmacol. 40, 481 1995.4152.
  • Romkes, M., Faletto, M. B., Blaisdell, J. A., Raucy, J. L., and Goldstein, J. A., Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry 30, 3247, 1991.
  • de Morais, S. M. F., Wilkinson, G. R., Blaisdell, J., Nakamura, K., Meyer, U. A., and Goldstein, J. A., The major genetic defect responsible for the polymor- phism of S-mephenytoin metabolism in humans. J. Biol. Chem. 269, 15419, 1994.
  • de Morais, S. M. F., Wilkinson, G. R., Blaisdell, J., Meyer, U. A., Nakamura, K., and Goldstein, J. A., Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol. Pharmacol. 46, 594, 1994.
  • Takakubo, F., Kuwano, A., and Kondo, I., Evi- dence that poor metabolizers of (S)-mephenytoin could be identified by haplotypes of CYP2C19 in Japanese. Pharmacogenetics 6, 265, 1996.
  • Kubota, T., Chiba, K., and Ishizaki, T., Genotyping of S-mephenytoin 4-hydroxylation in an extended Japanese population. Clin. Pharmacol. Ther. 60, 661, 1996.
  • de Morais, S. M. F., Goldstein, J. A., Xie, H-G., Huang, S-L., Lu, Y-Q., Xia, H., Xiao, Z-S., Ile, N., and Zhou, H-H., Genetic analysis of the S-mephenytoin polymorphism in a Chinese popula- tion. Clin. Pharmcol. Ther. 58, 404, 1995.
  • Goldstein, J. A., Ishizaki, T., Chiba, K., de Morais,S. M. F., Bell, D., Krahn, P. M., and Price Evans,D. A., Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Ara- bian and American black populations. Pharmacoge- netics 7, 59, 1997.
  • Roh, H-K., Dahl, M-L., Tybring, G., Yamada, H., Cha, Y-N., and Bertilsson, L., CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics 6, 547, 1996.
  • Persson, I., Aklillu, E., Rodrigues, F., Bertilsson, L., and Ingelman-Sundberg, M., S-mephenytoin hydroxylation phenotype and CYP2C19 genotype among Ethiopians. Pharmacogenetics 6, 521, 1996.
  • Kaneko, A., Kaneko, O., Taleo, G., Björkman, A., and Kobayakawa, T., High frequencies of CYP2C19 mutations and poor metabolism of proguanil in Vanuatu. Lancet 349, 921, 1997.
  • Breyer-Pfaff, U., Pfandl, B., Nill, K., Nusser, E., Monney, C., Jonzier-Perey, M., Baettig, D., and Baumann, P., Enantioselective amitriptyline metabo- lism in patients phenotyped for two cytochrome P450 isozymes. Clin. Pharmacol. Ther. 52, 350, 1992.
  • Bertilsson, L., Henthorn, T. K., Sanz, E., Tybring, G., Sawe, J., and Villen, T., Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquine, hydroxylation phenotype. Clin. Pharmacol. Ther. 45, 348, 1989.
  • Bertilsson, L., Baillie, T. A., and Reviriego, J., Fac- tors influencing the metabolism of diazepam. Pharmacol. Ther. 45, 85, 1990.
  • Wan, J., Xia, H., He, N., Lu, Y-Q., and Zhou, H.-H., The elimination of diazepam in Chinese sub- jects is dependent on the mephenytoin oxidation phe- notype. Br. J. Clin. Pharmacol. 42, 471, 1996.
  • Yasumori, T., Murayama, N., Yamazoe, Y., and Kato, R., Polymorphism in hydroxylation of mephenytoin and hexobarbital stereoisomers in rela- tion to hepatic P-450 human-2. Clin. Pharmacol. Ther. 47, 313, 1990.
  • Knodell, R. G., Dubey, R. K., Wilkinson, G. R., and Guengerich, F. P., Oxidative metabolism of hexobarbital in human liver: relationship to polymor- phic S-mephenytoin 4-hydroxylation. J. Pharmacol. Exp. Ther. 245, 845, 1988.
  • Skjelbo, E., Brosen, K., Hallas, J., and Gram, L. F., The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin. Pharmacol. Ther. 49, 18, 1991.
  • Koyama, E., Tanaka, T., Chiba, K., Kawakatsu, S., Morinobu, S., Totsuka, S., and Ishizaki, T., Steady- state plasma concentrations of imipramine and de- sipramine in relation to S-mephenytoin 4-hydroxyla- tion status in Japanese depressive patients. J. Clin. Psychopharmacol. 16, 286, 1996.
  • Kupfer, A. and Branch, R.A., Stereoselective me- phobarbital hydroxylation coseggregates with mephenytoin hydroxylation. Clin. Pharmacol. Ther. 38, 414, 1985.
  • Jacqz, E., Hall, S. D., Branch, R. A., and Wilkinson,G. R., Polymorphic metabolism of mephenytoin in man, Pharmacokinetic interaction with a co-regulated substrate, mephobarbital. Clin. Pharmacol. Ther. 39, 646, 1986.
  • Andersson, T., Regardh, C-G., Dahl-Puustinen, M- L., and Bertilsson, L., Slow omeprazole metabolizers are also poor S-mephenytoin hydroxyl-ators. Ther. Drug Monitor. 12, 415, 1990.
  • Caraco, Y., Lagerstrom, P-O., and Wood, A. J. J., Ethnic and genetic determinants of omeprazole dispo- sition and effect. Clin. Pharmacol. Ther. 60, 157, 1996.
  • Tanaka, M., Yamazaki, H., Hakusui, H., Nakamichi, N., and Sekino, H., Differential stereo- selective pharmacokinetics of pantoprazole, a proton pump inhibitor in extensive and poor metabolizers of pantoprazole-A preliminary study. Chirality 9, 17, 1997.
  • Ward, S. A., Helsby, N. A., Skjelbo, E., Brosen, K., Gram, L. F., and Breckenridge, A. M., The activa- tion of the biguanide antimalarial proguanil co-segre- gates with the mephenytoin oxidation polymor- phism — a panel study. Br. J. Clin. Pharmacol. 31, 689, 1991.
  • Skjelbo, E., Mutabingwa, T. K., Bygbjerg, I., Nielsen, K. K., Gram, L. F., and Brosen, K., Chloroguanide metabolism in relation to the efficacy in malaria prophylaxis and the S-mephenytoin oxidation in Tanzanians. Clin. Pharmacol. Ther. 59, 304, 1996.
  • Ward, S. A., Walle, T., Walle, K., Wilkinson, G. R., and Branch, R. A., Propranolol’s metabolism is de- termined by both mephenytoin and debrisoquin hy- droxylase activities. Clin. Pharmacol. Ther. 45, 72, 1989.
  • Balian, J. D., Sukhova, N., Harris, J. W., Hewett, J., Pickle, L., Goldstein, J. A., Woosley, R. L., and Flockhart, D. A.,The hydroxylation of omeprazole correlates with S-mephenytoin metabolism: a popula- tion study. Clin. Pharmacol. Ther. 57, 662, 1995.
  • Chang, M., Dahl, M-L., Tybring, G., Gotharson, E., and Bertilsson, L., Use of omeprazole as a probe drug for CYP2C19 phenotype in Swedish Caucasians, comparison with S-mephenytoin hydroxylation phe- notype and CYP2C19 genotype. Pharmacogenetics 5, 358–363, 1995.
  • Somogyi, A. A., Reinhard, H. A., and Bochner, F., Pharmacokinetic evaluation of proguanil, a probe phenotyping drug for the mephenytoin hydroxylase polymorphism. Br. J. Clin. Pharmacol. 41, 175, 1996.
  • Masimirembwa, C., Bertilsson, L., Johansson, I., Hasler, J. A., and Ingelman-Sundberg, M., Phenotyping and genotyping of S-mephenytoin hy- droxylase (cytochrome P450 2C19) in a Shona popu- lation of Zimbabwe. Clin. Pharmacol. Ther. 57, 656, 1995.
  • Brosen, K., de Morais, S. M. F., Meyer, U. A., and Goldstein, J. A., A multifamily study on the relation- ship between CYP2C19 genotype and S-mephenytoin oxidation phenotype. Pharmacogenetics 5, 312, 1995.
  • Brockmoller, J., Rost, K. L., Gross, D., Schenkel, A., and Roots, I., Phenotyping of CYP2C19 with enantiospecific HPLC-quantification of R- and S- mephenytoin and comparison with the intron4/exon5 GA-splice site mutation. Pharmacogenetics 5, 80, 1995.
  • Chiba, K., Saitoh, A., Koyama, E., Tani, M., Hayashi, M., and Ishizaki, T., The role of S-mephenytoin 4-hydroxylase in imipramine metabo- lism by human liver microsomes, a two-enzyme ki- netic analysis of N-demethylation and 2-hydroxyla- tion. Br. J. Clin. Pharmacol. 37, 237, 1994.
  • Bluhm, R. E., Wilkinson, G. R., Shelton, R., and Branch, R. A., Genetically determined drug-metabo- lizing activity and desipramine-associated cardio- toxicity: a case report. Clin. Pharmacol. Ther. 53, 89, 1993.
  • Zhang, Y., Reviriego, J., Lou, Y-q., Sjoqvist, F., and Bertilsson, L., Diazepam metabolism in native Chinese poor and extensive hydroxylators of S- mephenytoin: inter-ethnic differences in comparison with white subjects. Clin. Pharmacol. Ther. 48, 496, 1990.
  • Bertilsson, L. and Kalow, W.,Why are diazepam metabolism and polymorphic S-mephenytoin hydroxy- lation associated with each other in white and Korean populations but not in Chinese populations. Clin. Pharmacol. Ther. 53, 608, 1993.
  • Brosen, K., Skjelbo, E., and Flachs, H., Proguanil metabolism is determined by the mephenytoin oxida- tion polymorphism in Vietnamese living in Denmark. Br. J. Clin. Pharmacol. 36, 105, 1993.
  • Edstein, M. D., Yeo, A. E. T., Kyle, D. E., Looareesuwan, S., Wilairatana, P., and Rieckmann,K. H., Proguanil polymorphism does not affect anti- malarial activity of proguanil combined with atovaquone in vitro, Transact. R. Soc. Trop. Med. Hyg. 90, 418, 1996.
  • Andersson, T., Regardh, C-G., Lou, Y-C., Zhang, Y., Dahl, M-L., and Bertilsson, L., Polymorphic hydroxylation of S-mephenytoin and omeprazole metabolism in Caucasian and Chinese subjects. Phar- macogenetics 2, 25, 1992.
  • Karam, W. G., Goldstein, J. A., Lasker, J. M., and Ghanayem, B. I., Human CYP2C19 is a major omeprazole 5-hydroxylase, as demonstrated with re- combinant cytochrome P450 enzymes. Drug Metab. Dispos. 24, 1081, 1996.
  • Mahgoub, A., Dring, L. G., Idle, J. R., Lancaster, R., and Smith, R. L., Polymorphic hydroxylation of debrisoquine in man. Lancet, 584, 1977.
  • Price Evans, D. A., Mahgoub, A., Sloan, T. P., Idle,J. R., and Smith, R. L., A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population. J. Med. Genet. 17, 102, 1980.
  • Sloan, T. P., Lancaster, R., Shah, R. R., Idle, J. R., and Smith, R. L., Genetically determined oxidation capacity and the disposition of debrisoquine. Br. J. Clin. Pharmacol. 15, 443, 1983.
  • Eichelbaum, M., Spannbrucker, N., Steincke, B., and Dengler, H. J., Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur. J. Clin. Pharmacol. 16, 183, 1979.
  • Eichelbaum, M., Spannbrucker, N., and Dengler, H. J., Influence of the defective metabolism of sparteine on its pharmacokinetics. Eur. J. Clin. Pharmacol. 16, 189, 1979.
  • Eichelbaum, M., Bertilsson, L., Sawe, J., and Zekorn, C., Polymorphic oxidation of sparteine and debrisoquine, related pharmacogenetic entities. Clin. Pharmacol. Ther. 31, 184, 1982.
  • Steiner, E., Iselius, L., Alvan, G., Lindsten, J., and Sjoqvist, F., A family study of genetic and environ- mental factors determining polymorphic hydroxyla- tion of debrisoquine. Clin. Pharmacol. Ther. 38, 394, 1985.
  • Zanger, U. M., Vilbois, F., Hardwick, J. P., and Meyer, U. A., Absence of hepatic cytochrome P450bufI causes genetically deficient debrisoquine oxidation in man. Biochemistry 27, 5447, 1988.
  • Gonzalez, F. J., Skoda, R. C., Kimura, S., Umeno, M., Zanger, U. M., Nebert, D. W., Gelboin, H. V., Hardwick, J. P., and Meyer, U. A., Characterization of the common genetic defects in humans deficient in debrisoquine metabolism. Nature 331, 442, 1988.
  • Kroemer, H. K. and Eichelbaum, M., “It’s the genes, stupid”: molecular bases and clinical consequences of genetic cytochrome P450 2D6 polymorphism. Life Sci. 56, 2285, 1995.
  • Bertilsson, L., Geographical/Interracial differences in polymorphic drug oxidation; current state of knowl- edge of cytochromes P450 (CYP) 2D6 and 2C19. Clin. Pharmacokinet. 29, 192, 1995.
  • Kiivet, R. A., Svensson, J-O., Bertilsson, L., and Sjoqvist, F., Polymorphism of debrisoquine and mephenytoin hydroxylation among Estonians. Pharmacol. Toxicol. 72, 113, 1993.
  • Lou, Y-C., Ying, L., Bertilsson, L., and Sjoqvist, F., Low frequency of slow debrisoquine hydroxyla- tion in a native Chinese population. Lancet 852, 1987.
  • Bertilsson, L., Lou, Y-Q., Du, Y-L., Liu, Y., Kuang, T-Y., Liao, X-M., Wang, K-Y., Reviriego, J., Iselius, L., and Sjoqvist, F., Pronounced differences between native Chinese and Swedish populations in the poly- morphic hydroxylations of debrisoquine and S- mephenytoin. Clin. Pharmacol. Ther. 51, 388, 1992.
  • Brosen, K. and Gram, L.F., Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur. J. Clin. Pharmacol. 36, 537, 1989.
  • Eichelbaum, M. and Gross, A.S., The genetic polymorphism of debrisoquine/sparteine metabolism: clinical aspects. In: Pharmacogenetics of Drug Me- tabolism, Kalow, W., Ed., Pergamon Press Inc., New York, 1992, 625–648
  • Dahl, M-L. and Bertilsson, L., Genetically variable metabolism of antidepressants and neuroleptics in man. Pharmacogenetics 3, 61, 1993.
  • Alvan, G., von Bahr, C., Seideman, P., and Sjoqvist, F., High plasma concentrations of β-receptor block- ing drugs and deficient debrisoquine hydroxylation. The Lancet, 333, 1982.
  • Alvan, G., Grind, M., Graffner, C., and Sjoqvist, F., Relationship of N-demethylation of amiflamine and its metabolite to debrisoquine hydroxylation poly- morphism. Clin. Pharmacol. Ther. 36, 515, 1984.
  • Mellstrom, B., Bertilsson, L., Lou, Y-C., Sawe, J., and Sjoqvist, F., Amitriptyline metabolism: relation- ship to polymorphic debrisoquine hydroxylation. Clin. Pharmacol. Ther. 34, 516, 1983.
  • Mellstrom, B., Sawe, J., Bertilsson, L., and Sjoqvist, F., Amitriptyline metabolism: association with debrisoquine hydroxylation in nonsmokers. Clin. Pharmacol. Ther. 39, 369, 1986.
  • Baumann, P., Jonzier-Perey, M., Koeb, L., Kupfer, A., Tinguely, D., and Schopf, J., Amitriptyline phar- macokinetics and clinical response, II. Metabolic poly- morphism assessed by hydroxylation of debrisoquine and mephenytoin. Int. Clin. Psychopharmacol. 1, 102, 1986.
  • Ebner, T. and Eichelbaum, M., The metabolism of aprindine in relation to the sparteine/debrisoquine polymorphism. Br. J. Clin. Pharmacol. 35, 426, 1993.
  • Dayer, P., Balant, L., Kupfer, A., Striberni, R., and Leemann, T., Effect of oxidative polymorphism (debrisoquine/sparteine type) on hepatic first-pass metabolism of bufuralol. Eur. J. Clin. Pharmacol. 28, 317, 1985.
  • Dayer, P., Leemann, T., Kupfer, A., Kronbach, T., and Meyer, U. A., Stereo- and regioselectivity of hepatic oxidation in man — Effect of the debrisoquine/ sparteine phenotype on bufuralol hydroxylation. Eur.J. Clin. Pharmacol. 31, 313, 1986.
  • Gleiter, C. H., Aichele, G., Nilsson, E., Henhen, N., Antonin, K. H., and Bieck, P. R., Discovery of altered pharmacokinetics of CGP 15 210 G in poor hydroxylators of debrisoquine during early drug de- velopment. Br. J. Clin. Pharmacol. 20, 81, 1985.
  • Sindrup, S. H., Brosen, K., Hansen, M. G. J., Aaes- Jorgensen, T., Overo, K. F., and Gram, L. F., Phar- macokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther. Drug. Monitor. 15, 11, 1993.
  • Balant-Gorgia, A. E., Balant, L. P., Genet, Ch., Dayer, P., Aeschlimann, J. M., and Garrone, G., Importance of oxidative polymorphism and levome- promazine treatment on the steady-state blood con- centrations of clomipramine and its major metabo- lites. Eur. J. Clin. Pharmacol. 31, 449, 1986.
  • Kramer Nielsen, K., Brosen, K., Gram, L. F., and the Danish University Antidepressant Group, Steady-state plasma levels of clomipramine and its metabolites, impact of the sparteine/debrisoquine oxi- dation polymorphism. Eur. J. Clin. Pharmacol. 43, 405, 1992.
  • Bertilsson, L. and Aberg-Wistedt, A., The debrisoquine hydroxylation test predicts steady-state plasma levels of desipramine. Br. J. Clin. Pharmac. 15, 388, 1983.
  • Gross, A. S., Phillips, A. C., Roeutord, A., and Shenfield, G. M., The influence of the sparteine/ debrisoquine genetic polymorphism on the disposi- tion of dexfenfluramine. Br. J. Clin. Pharmacol. 41, 311, 1996.
  • Kupfer, A., Schmid, B., Preisig, R., and Pfaff, G., Dextromethorphan as a safe probe for debrisoquine hydroxylation polymorphism. Lancet 517, 1984.
  • Schmid, B., Bircher, J., Preisig, R., and Kupfer, A., Polymorphic dextromethorphan metabolism: co-seg- regation of oxidative O-demethylation with debriso- quine hydroxylation. Clin. Pharmacol. Ther. 38, 618, 1985.
  • Capon, D. A., Bochner, F., Kerry, N., Mikus, G., Danz, C., and Somogyi, A. A., The influence of CYP2D6 polymorphism and quinidine on the disposi- tion and antitussive effect of dextromethorphan in humans. Clin. Pharmacol. Ther. 60, 295, 1996.
  • Beckmann, J., Hertrampf, R., Gundert-Remy, U., Mikus, G., Gross, A. S., and Eichelbaum, M., Is there a genetic factor in flecainide toxicity? Br. Med. J. 297, 1316, 1988.
  • Hamelin, B. A., Turgeon, J., Vallee, F., Belanger, P-M., Paquet, F., and LeBel, M., The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquine. Clin. Pharmacol. Ther. 60, 512, 1996.
  • Carrillo, J. A., Dahl, M-L., Svensson, J-O., Alm, C., Rodriguez, I., and Bertilsson, L., Disposition of fluvoxamine in humans is determined by the poly- morphic CYP2D6 and also by the CYP1A2 activity. Clin. Pharmacol. Ther. 60, 183, 1996.
  • Sloan, T. P., Mahgoub, A., Lancaster, R., Idle,J. R., and Smith, R. L., Polymorphism of carbon oxidation of drugs and clinical implications. Br. Med. J. 2, 655, 1978.
  • Llerena, A., Alm, C., Dahl, M-L., Ekqvist, B., and Bertilsson, L., Haloperidol disposition is dependent on debrisoquine hydroxylation phenotype. Ther. Drug Monitor. 14, 92, 1992.
  • Brosen, K. and Gram, L. F., First-pass metabolism of imipramine and desipramine: impact of the sparteine oxidation phenotype. Clin. Pharmacol. Ther. 43, 400, 1988.
  • Brosen, K., Klysner, R., Gram, L. F., Otton, S. V., Bech, P., and Bertilsson, L., Steady-state concentra- tions of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur. J. Clin. Pharmacol. 30, 679, 1986.
  • Brosen, K., Otton, S. V., and Gram, L. F., Imi- pramine demethylation and hydroxylation, Impact of the sparteine oxidation phenotype. Clin. Pharmacol. Ther. 40, 543, 1986.
  • Meyer, J. W., Woggon, B., and Kupfer, A., Impor- tance of oxidative polymorphism on clinical efficacy and side-effects of imipramine — a retrospective study. Pharmacopsychiatry 21, 365, 1988.
  • Pierce, D. M., Smith, S. E., and Franklin, R. A., The pharmacokinetics of indoramin and 6-hydroxy- indoramin in poor and extensive hydroxylators of debrisoquine. Eur. J. Clin. Pharmacol. 33, 59, 1987.
  • Kitchen, I., Tremblay, J., Andre, J., Dring, L.G., Idle, J. R., Smith, R. L., and Williams, R. T., Inter- individual and interspecies variation in the metabo- lism of the hallucinogen 4-methoxyamphetamine. Xenobiotica 9, 397, 1979.
  • Roy, S. D., Hawes, E. M., McKay, G., Korchinski, E. D., and Midha, K. K., Metabolism of methoxy- phenamine in extensive and poor metabolizers of debrisoquine. Clin. Pharmacol. Ther. 38, 128, 1985.
  • Lennard, M. S., Tucker, G. T., Silas, J. H., Free- stone, S., Ramsay, L. E., and Woods, H. F., Differ- ential stereoselectivemetabolism of metoprolol in ex- tensive and poor debrisoquine metabolizers. Clin. Pharmacol. Ther. 34, 732, 1983.
  • Vandamme, N., Broly, F., Libersa, C., Courseau, C., and Lhermitte, M., Stereoselective hydroxyla- tion of mexiletine in human liver microsomes, Impli- cation of P450IID6 — a preliminary report. J. Cardiovasc. Pharmacol. 21, 77, 1993.
  • Tacke, U., Leinonen, E., Lillsunde, P., Seppala, T., Arvela, P., Pelkonen, O., and Ylitalo, P., Debriso- quine hydroxylation phenotypes of patients with high versus low to normal serum antidepressant concentra- tions. J. Clin. Psychopharmacol. 12, 262, 1992.
  • Cholerton, S., Arpanahi, A., McCracken, N., Boustead, C., Taber, H., Johnstone, E., Leathart, J., Daly, A. K., and Idle, J. R., Poor metabolisers of nicotine and CYP2D6 polymorphism. Lancet 343, 62, 1994.
  • Bertilsson, L., Eichelbaum, M., Mellstrom, B., Sawe, J., Schulz, H-U., and Sjoqvist, F., Nortriptyline and antipyrine clearance in relation to debrisoquine hy- droxylation in man. Life Sci. 27, 1673, 1980.
  • Nordin, C., Siwers, B., Benitez, J., and Bertilsson, L., Plasma concentrations of nortriptyline and its 10-hydroxymetabolite in depressed patients — rela- tionship to the debrisoquine hydroxylation metabolic ratio. Br. J. Clin. Pharmacol. 19, 832, 1985.
  • Dahl, M-L., Bertilsson, L., and Nordin, C., Steady- state plasma levels of nortryptiline and its 10-hydroxy metabolite, relationship to the CYP2D6 genotype. Psychopharmacology 123, 315, 1996.
  • Sindrup, S. H., Brosen, K., Gram, L. F., Hallas, J., Skjelbo, E., Allen, A., Allen, G. D., Cooper, S. M., Mellows, G., Tasker, T. C. G., and Zussman, B. D.,. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin. Pharmacol. Ther. 51, 278, 1992.
  • Bloomer, J. C., Woods, F. R., Haddock, R. E., Lennard, M. S., and Tucker, G. T., The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br. J. Clin. Pharmacol. 33, 521, 1992
  • Cooper, R. G., Evans, D. A. P., and Whibley, E. J., Polymorphic hydroxylation of perhexiline maleate in man. J. Med. Genet. 21, 27, 1984.
  • Cooper, R. G., Evans, D. A. P., and Price, A. H.,Studies on the metabolism of perhexiline in man. Eur.J. Clin. Pharmacol. 32, 569, 1987.
  • Shah, R. R., Oates, N. S., Idle, J. R., Smith, R. L., and Lockhart, J. D. F., Impaired oxidation of debrisoquine in patients with perhexiline neuropathy. Br. Med. J. 284, 295, 1982.
  • Morgan, M. Y., Reshef, R., Shah, R. R., Oates,N. S., Smith, R. L., and Sherlock, S., Impaired oxi- dation of debrisoquine in patients with perhexiline liver injury. Gut 25, 1057, 1984.
  • Dahl-Puustinen, M-L., Liden, A., Alm, C., Nordin, C., and Bertilsson, L., Disposition of perphenazine is related to polymorphic debrisoquine hydroxylation in human beings. Clin. Pharmacol. Ther. 46, 78, 1989.
  • Jerling, M., Dahl, M-L., Aberg-Wistedt, A., Liljenberg, B., Landell, N-E., Bertilsson, L., and Sjoqvist, F., The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin. Pharmacol. Ther. 59, 423, 1996.
  • Linnet, K. and Wiborg, O., Steady-state serum con- centrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism. Clin. Pharmacol. Ther. 60, 41, 1996.
  • Oates, N. S., Shah, R. R., Idle, J. R., and Smith, R. L., Genetic polymorphism of phenformin 4-hy- droxylation. Clin. Pharmacol. Ther. 32, 81, 1982.
  • Oates, N. S., Shah, R. R., Idle, J. R., and Smith, R. L., Influence of oxidation polymorphism on phen-formin kinetics and dynamics. Clin. Pharmacol. Ther. 34, 827, 1983.
  • Siddoway, L. A., Thompson, K. A., McAllister,C. B., Wang, T., Wilkinson, G. R., Roden, D. M., and Woosley, R. L., Polymorphism of propafenone metabolism and disposition in man, clinical and phar- macokinetic consequences. Circulation 75, 785, 1987.
  • Lee, J. T., Kroemer, H. K., Silberstein, D. J., Funck- Brentano, C., Lineberry, M. D., Wood, A. J., Roden,D. M., and Woosley, R. L., The role of genetically determined polymorphic drug metabolism in the beta- blockade produced by propafenone. N. Engl. J. Med. 322, 1764, 1990.
  • Zekorn, C., Achtert, G., Hausleiter, H. J., Moon,C. H., and Eichelbaum, M., Pharmacokinetics of N-propylajmaline in relation to polymorphic sparteine oxidation. Klin. Wochenschr. 63, 1180, 1985.
  • Raghuram, T. C., Koshakji, R. P., Wilkinson, G. R., and Wood, A. J. J., Polymorphic ability to metabo- lize propranolol alters 4-hydroxypropranolol levels but not beta blockade. Clin. Pharmacol. Ther. 36, 51, 1984.
  • Eap, C. B., Guentert, T. W., Schaublin-Loidl, M., Stabl, M., Koeb, L., Powell, K., and Baumann, P., Plasma levels of the enantiomers of thioridazine, thioridazine 2-sulfoxide, thioridazine 2-sulfone, and thioridazine 5-sulfoxide in poor and extensive metabolizers of dextromethorphan and mephenytoin. Clin. Pharmacol. Ther. 59, 322, 1996.
  • Meyer, J. W., Woggon, B., Baumann, P., and Meyer, U. A., Clinical implications of slow sulphoxidation of thioridazine in a poor metabolizer of the debrisoquine type. Eur. J. Clin. Pharmacol. 39, 613, 1990.
  • von Bahr, C., Movin, G., Nordin, C., Liden, A., Hammarlund-Udenaes, M., Hedberg, A., Ring, H., and Sjoqvist, F., Plasma levels of thioridazine and metabolites are influenced by the debrisoquine hy- droxylation phenotype. Clin. Pharmacol. Ther. 49, 234, 1991.
  • McGourty, J. C., Silas, J. H., Fleming, J. J., McBurney, A., and Ward, J. W., Pharmacokinetics and beta-blocking effects of timolol in poor and ex- tensive metabolizers of debrisoquine. Clin. Pharmacol. Ther. 38, 409, 1985.
  • Lewis, R. V., Lennard, M. S., Jackson, P. R., Tucker, G. T., Ramsay, L. E., and Woods, H. F., Timolol and atenolol, relationships between oxidation phenotype, pharmacokinetics and pharmacodynam- ics. Br. J. Clin. Pharmacol. 19, 329, 1985.
  • Feher, M. D., Lucas, R. A., Farid, N. A., Idle, J. R., Bergstrom, R. F., Lemberger, L., and Sever, P. S., Single dose pharmacokinetics of tomoxetine in poor and extensive metabolizers of debrisoquine. Br. J. Clin. Pharmacol. 26, 231p, 1988.
  • Otton, S. V., Ball, S. E., Cheung, S. W., Inaba, T., Rudolph, R. L., and Sellers, E. M., Venlafaxine oxidation in vitro is catalyzed by CYP2D6. Br. J. Clin. Pharmacol. 41, 149, 1996.
  • Dahl, M-L., Ekqvist, B., Widen, J., and Bertilsson, L., Disposition of the neuroleptic zuclopenthixol cosegregates with the polymorphic hydroxylation of debrisoquine in humans. Acta Psychiatr. Scand. 84, 99, 1991.
  • Dayer, P., Desmeules, J., Leemann, T., and Striberni, R., Bioactivation of the narcotic drug co- deine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxy- lation (cytochrome P-450 db1/bufI). Biochem. Biophys. Res. Commun. 152, 411, 1988.
  • Tseng, C-Y., Wang, S-L., Lai, M-D., Lai, M-L., and Huang, J-d., Formation of morphine from co- deine in Chinese subjects of different CYP2D6 geno- types. Clin. Pharmacol. Ther. 60, 177, 1996.
  • Caraco, Y., Sheller, J., and Wood, A. J. J., Pharma- cogenetic determination of the effects of codeine and prediction of drug interactions. J. Pharmacol. Exp. Ther. 278, 1165, 1996b.
  • Wang, T., Roden, D. M., Wolfenden, H. T., Woosley,R. L., Wood, A. J. J., and Wilkinson, G.R., Influ- ence of genetic polymorphism on the metabolism and disposition of encainide in man. J. Pharmacol. Exp. Ther. 228, 605, 1984.
  • Poulsen, L., Arendt-Nielsen, L., Brosen, K., and Sindrup, S. H., The hypoalgesic effect of tramadol in relation to CYP2D6. Clin. Pharmacol. Ther. 60, 636, 1996b.
  • Gonzalez, F. J., Vilbois, F., Hardwick, J. P., McBride, O. W., Nebert, D. W., Gelboin, H. V., and Meyer, U. A., Human debrisoquine 4-hydroxy- lase (P450IID1), cDNA and deduced amino acid se- quence and assignment of the CYP2D locus to chro- mosome 22. Genomics 2, 174, 1988b.
  • Kimura, S., Umeno, M., Skoda, R. C., Meyer, U. A., and Gonzalez, F. J., The human debrisoquine 4- hydroxylase (CYP2D) locus: sequence and identifica- tion of the polymorphic CYP2D6 gene, a related gene and a pseudogene. Am. J. Hum. Genet. 45, 889, 1989.
  • Eichelbaum, M., Baur, M. P., Dengler, H. J., Osikowska-Evers, B. O., Tieves, G., Zekorn, C., and Rittner, C., Chromosomal assignment of human cytochrome P-450 (debrisoquine/sparteine type) to chromosome 22. Br. J. Clin. Pharmacol. 23, 455, 1987.
  • Gough, A. C., Dale Smith, C. A., Howell, S. M., Wolf, C. R., Bryant, S. P., and Spurr, N. K., Local- ization of the CYP2D gene locus to human chromo- some 22q13.1 by polymerase chain reaction, in situ hybridization, and linkage analysis. Genomics 15, 430, 1993.
  • Daly, A. K., Eichelbaum, M., Idle, J. R., Ingelman-Sundberg, M., Meyer, U. A., Wolf, C.R., and Zanger, U. M., Progress on CYP2D6 nomenclature. In: Proceedings of the COST B1 European Confer- ence on Specificity and Variability in Drug Metabo-lism, Besancon, May 1995, Alvan, G., Balant, L. P., Bechtel, P. R., Boobis, A. R., Gram, L. F., Paintaud, G., and Pithan, K., Eds., Luxembourg, EU, 1995a, 137–144.
  • Sabbagh, N., Brice, A., Marez, D., Durr, A., Legrand, M., Lo Guidice, J-M., Destee, A., Agid, Y., and Broly, F., CYP2D6 polymorphism in familial and sporadic Parkinson’s disease. Pharmacogenetics in press, 1997.
  • Johansson, I., Lundqvist, E., Bertilsson, L., Dahl, M-L, Sjoqvist, F., and Ingelman-Sundberg, M., Inherited amplification of an active gene in the cyto- chrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Natl. Acad. Sci. U.S.A. 90, 11825, 1993.
  • Panserat, S., Mura, C., Gerard, N., Vincent-Viry, M., Galteau, M. M., Jacqz-Aigrain, E., and Krishnamoorthy, R., DNA haplotype-dependent dif- ferences in the amino acid sequence of debrisoquine 4-hydroxylase (CYP2D6), evidence for two major allozymes in extensive metabolisers. Hum. Genet. 94, 401, 1994.
  • Ingelman-Sundberg, M., Oscarson, M., Persson, I., Masimirembwa, C., Dahl, M-L., Bertilsson, L., Sjoqvist, F., and Johansson, I., Genetic polymor- phism of human drug metabolizing enzymes, recent aspects on polymorphic forms of cytochromes P450. In: Proceedings of the COST B1 European Confer- ence on Specificity and Variability in Drug Metabo- lism, Besancon, May 1995, Alvan, G., Balant, L. P., Bechtel, P. R., Boobis, A. R., Gram, L. F., Paintaud, G., and Pithan, K., Eds., Luxembourg, EU, 1995, 93– 110.
  • Dahl, M-L., Johansson, I., Bertilsson, L., Ingelman- Sundberg, M., and Sjoqvist, F., Ultrarapid hydroxy- lation of debrisoquine in a Swedish population: analy- sis of the molecular genetic basis. J. Pharmacol. Exp. Ther. 274, 516, 1995.
  • Aklillu, E., Persson, I., Bertilsson, L., Johansson, I., Rodriques, F., and Ingelman-Sundberg, M., Fre- quent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopean population carrying duplicated and multiduplicated functional CYP2D6 alleles. J. Pharmacol. Exp. Ther. 278, 441, 1996.
  • Kagimoto, M., Heim, M., Kagimoto, K., Zeugin, T., and Meyer, U. A., Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. J. Biol. Chem. 265, 17209, 1990.
  • Gough, A. C., Miles, J. S., Spurr, N. K., Moss, J. E., Gaedigk, A., Eichelbaum, M., and Wolf, C. R., Identification of the primary gene defect at the cyto- chrome P450 CYP2D locus. Nature 347, 773, 1990.
  • Hanioka, N., Kimura, S., Meyer, U. A., and Gonzalez, F. J., The human CYP2D locus associated with a common genetic defect in drug oxidation, A G1934A base change in intron 3 of a mutant CYP2D6 allele results in an abberrant 3’ splice recog- nition site. Am. J. Hum. Genet. 47, 994, 1990.
  • Yokota, H., Tamura, S., Furuya, H., Kimura, S., Watanabe, M., Kanazawa, I., Kondo, I., and Gonzalez, F. J., Evidence for a new variant CYP2D6 allele CYP2D6J in a Japanese population associated with lower in vivo rates of sparteine metabolism. Pharmacogenetics 3, 256, 1993.
  • Gaedigk, A., Blum, M., Gaedigk, R., Eichelbaum, M., and Meyer, U. A., Deletion of the entire cyto- chrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am. J. Hum. Genet. 48, 943, 1991.
  • Steen, V. M., Molven, A., Aarskog, K., and Gulbrandsen, A-K., Homologous unequal cross-over involving a 2.8 Kb direct repeat as a mechanism for the generation of allelic variants of the human cyto- chrome P450 CYP2D6 gene. Hum. Mol. Genet. 4, 2251, 1995.
  • Saxena, R., Shaw, G. L., Relling, M. V., Frame, J. N., Moir, D. T., Evans, W. E., Caporaso, N., and Weiffenbach, B., Identification of a new variant CYP2D6 allele with a single base deletion in exon 3 and its association with the poor metabolizer pheno- type. Hum. Mol. Genet. 3, 923, 1994.
  • Evert, B., Griese, E-U., and Eichelbaum, M., Clon- ing and sequencing of a new non-functional CYP2D6 allele: deletion of T1795 in exon 3 generates a prema- ture stop codon. Pharmacogenetics 4, 271, 1994.
  • Daly, A. K., Leathert, J. B. S., London, S. J., and Idle, J. R., An inactive cytochrome P450 CYP2D6 allele containing a deletion and a base substitution. Hum. Genet. 95, 337, 1995.
  • Evert, B., Griese, E-U., and Eichelbaum, M., A missense mutation in exon 6 of the CYP2D6 gene leading to a histidine 324 to proline exchange is asso- ciated with the poor metabolizer phenotype of sparteine. Naunyn-Schmiedeberg’s Arch. Pharmacol. 350, 434, 1994b.
  • Broly, F., Marez, D., Lo Guidice, J-M., Sabbagh, N., Legrand, M., Boone, P., and Meyer, U. A., A nonsense mutation in the cytochrome P450 CYP2D6 gene identified in a Caucasian with an enzyme defi- ciency. Hum. Genet. 96, 601, 1995.
  • Broly, F., Marez, D., Sabbagh, N., Legrand, M., Millecamps, S., Lo Guidice, J-M., Boone, P., and Meyer, U. A., An efficient strategy for detection of known and new mutations of the CYP2D6 gene using single strand conformation polymorphism analysis. Pharmacogenetics 5, 373, 1995.
  • Tyndale, R., Aoyama, T., Broly, F., Matsunaga, T., Inaba, T., Kalow, W., Gelboin, H. V., Meyer, U. A., and Gonzalez, F. J., Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281, possible association with the poor metaboliser pheno- type. Pharmacogenetics 1, 26, 1991.
  • Broly, F. and Meyer, U. A., Debrisoquine oxidation polymorphism, phenotypic consequences of a 3-base- pair deletion in exon 5 of the CYP2D6 gene. Pharma- cogenetics 3, 123, 1993.
  • Johansson, I., Oscarson, M., Yue, Q-Y., Bertilsson, L., Sjoqvist, F., and Ingelman-Sundberg, M., Ge- netic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol. Pharmacol. 46, 452, 1994.
  • Wang, S., Phenotypes and genotypes of debrisoquine hydroxylation polymorphism in Chinese. Master’s thesis, National Cheng Kung University, Tainan, Tai- wan, 1992.
  • Marez, D., Sabbagh, N., Legrand, M., Lo-Guidice,J. M., Boone, P., and Broly, F., A novel CYP2D6 allele with an abolished splice recognition site associ- ated with the poor metabolizer phenotype. Pharmaco- genetics 5, 305, 1995.
  • Marez, D., Legrand, M., Sabbagh, N., Lo-Guidice,J. M., Boone, P., and Broly, F., An additional allelic variant of the CYP2D6 gene causing impaired metabolism of sparteine. Hum. Genet. 97, 668, 1996.
  • Panserat, S., Mura, C., Gerard, N., Vincent-Viry, M., Galteau, M. M., Jacqz-Aigrain, E., and Krishnamoorthy, R., An unequal cross-over event within the CYP2D gene cluster generates a chimeric CYP2D7/CYP2D6 gene which is associated with the poor metabolizer phenotype. Br. J. Clin. Pharmacol. 40, 361, 1995.
  • Sachse, C., Brockmoller, J., Bauer, S., Reum, T., and Roots, I., A rare insertion of T226 in exon 1 of CYP2D6 causes a frameshift and is associated with the poor metabolizer phenotype, CYP2D6*15. Phar- macogenetics 6, 269, 1996.
  • Daly, A. K., Fairbrother, K. S., Andreassen, O. A., London, S. J., Idle, J. R., and Steen, V. M., Charac- terization and PCR-based detection of two different hybrid CYP2D7P/CYP2D6 alleles associated with the poor metabolizer phenotype. Pharmacogenetics 6, 319, 1996.
  • Masimirembwa, C., Persson, I., Bertilsson, L., Hasler, J., and Ingelman-Sundberg, M., A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: association with diminished debrisoquine hydroxylase activity. Br. J. Clin. Pharmacol. 42, 713, 1996.
  • Tsuneoka, Y., Matsuo, Y., Iwahashi, K., Takeuchi, H., and Ichikawa, Y., A novel cytochrome P-450IID6 mutant gene associated with Parkinson’s disease. J. Biochem. 114, 263, 1993.
  • Armstrong, M., Idle, J. R., and Daly, A. K., A polymorphic Cfo I site in exon 6 of the human cyto- chrome P450 CYP2D6 gene detected by the poly- merase chain reaction. Hum. Genet. 91, 616, 1993.
  • Bertilsson, L., Dahl, M-L., Sjoqvist, F., Aberg- Wistedt, A., Humble, M., Johansson, I., Lundqvist, E., and Ingelman-Sundberg, M., Molecular basis for rational megaprescribing in ultrarapid hydroxy lators of debrisoquine. The Lancet 341, 63, 1993.
  • Lovlie, R., Daly, A. K., Molven, A., Idle, J. R., and Steen, V. M., Ultrarapid metabolizers of debrisoquine: characterization and PCR-based detection of alleles with duplication of the CYP2D6 gene. FEBS Letters 392, 30, 1996.
  • Lee, E. J. D. and Jeyaseelan, K., Frequency of hu- man CYP2D6 mutant alleles in a normal Chinese population. Br. J. Clin. Pharmacol. 37, 605, 1994.
  • Dahl, M-L., Yue, Q-Y., Roh, H-K., Johansson, I., Sawe, J., Sjoqvist, F., and Bertilsson, L., Genetic analysis of the CYP2D locus in relation to debrisoquine hydroxylation capacity in Korean, Japanese and Chi- nese subjects. Pharmacogenetics 5, 159–164, 1995.
  • Broly, F., Gaedigk, A., Heim, M., Eichelbaum, M., Morike, K., and Meyer, U. A., Debrisoquine/sparteine hydroxylation genotype and phenotype, analysis of common mutations and alleles of CYP2D6 in a Euro- pean population. DNA Cell. Biol. 10, 545, 1991.
  • Evert, B., Eichelbaum, M., Haubruck, H., and Zanger, U. M., Functional properties of CYP2D6 1 (wild-type) and CYP2D6 7 (His 324 Pro) expressed by recombinant baculovirus in insect cells. Naunyn- Schmiedeberg’s Arch. Pharmacol. 355, 309, 1997.
  • Lai, M-L., Wang, S-L., Lai, M-D., Lin, E. T., Tse, M., and Huang, J-d., Propranolol disposition in Chi- nese subjects of different CYP2D6 genotypes. Clin. Pharmacol. Ther. 58, 264, 1995.
  • Morike, K., Magadum, S., Mettang, T., Griese, E- U., Machleidt, C., and Kuhlmann, U., Propafenone in a usual dose produces severe side-effects, the im- pact of genetically determined metabolic status on drug therapy. J. Int. Med. 238, 469, 1995.
  • Bertilsson, L., Aberg-Wistedt, A., Gustafsson, L. L., and Nordin, C., Extremely rapid hydroxylation of debrisoquine: a case report with implication for treat- ment with nortriptyline and other tricyclic antidepres- sants. Ther. Drug Monitor. 7, 478, 1985.
  • Spina, E., Ancione, M., Di Rosa, A. E., Meduri, M., and Caputi, A. P., Polymorphic debrisoquine oxida- tion and acute neuroleptic-induced adverse effects. Eur. J. Clin. Pharmacol. 42, 347, 1992.
  • Sjoqvist, F. and Bertilsson, L., Clinical pharmacol- ogy of antidepressant drugs, Pharmacogenetics. In: Frontiers in Biochemical and Pharmacological Re- search in Depression, Usdin, E., et al., Eds., Raven Press, New York, 1984, 359–372
  • Buchert, E. and Woosley, R. L., Clinical implica- tions of variable antiarrhythmic drug metabolism. Pharmacogenetics 2, 2, 1992.
  • Bertilsson., L. and Dahl., M-L., Polymorphic drug oxidation: relevance to the treatment of psychiatric disorders. CNS Drugs, 5, 200, 1996.
  • Spina, E., Gitto, C., Avenoso, A., Campo, G. M., Caputi, A. P., and Perucca, E., Relationship be- tween plasma desipramine levels, CYP2D6 pheno- type and clinical response to desipramine, a prospec- tive study. Eur. J. Clin. Pharmacol. 51, 395, 1997.
  • Brosen, K., The pharmacogenetics of the selective serotonin reuptake inhibitors. Clin. Invest. 71, 1002– 1009, 1993.
  • Lane, R., Baldwin, D., and Preskorn, S., The SSRIs, advantages, disadvantages and differences. J. Psychopharmacol. 9 (Suppl.), 163, 1995.
  • Jeppesen, U., Gram, L. F., Vistisen, K., Loft, S., Poulsen, H. E., and Brosen, K., Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur. J. Clin. Pharmacol. 51, 73, 1996.
  • Sindrup, S. H. and Brosen, K., The pharmacogenet- ics of codeine hypoalgesia. Pharmacogenetics, 5, 335, 1995.
  • Persson, K., Sjostrom, S., Sigurdardottir, I., Molnar, V., Hammarlund-Udenaes, M., and Rane, A., Patient-controlled analgesia (PCA) with codeine for postoperative pain relief in ten extensive metabolizers and one poor metabolizer of dextro- methorphan. Br. J. Clin. Pharmacol. 39, 182, 1995.
  • Poulsen, L., Brosen, K., Arendt-Nielsen, L., Gram, L. F., Elbaek, K., and Sindrup, S. H., Codeine and morphine in extensive and poor metabolizers of sparteine, pharmacokinetics, analgesic effect and side effects. Eur. J. Clin. Pharmacol. 51, 289, 1996.
  • Mikus, G., Trausch, B., Rodewald, C., Hofmann, U., Richter, K., Gramatte, T., and Eichelbaum, M., Effect of codeine on gastrointestinal motility in rela- tion to CYP2D6 phenotype. Clin. Pharmacol. Ther. 61, 459, 1997.
  • Lieber, C. S., Cytochrome P-4502E1, Its physiologi- cal and pathological role. Physiol. Rev. 77, 517, 1997.
  • McBride, O. W., Umeno, M., Gelboin, H. V., and Gonzalez, F. J., A Taq I polymorphism in the human P450IIE1 gene on chromosome 10 (CYP2E). Nucl. Acids Res. 15, 10071, 1987.
  • Song, B-J., Gelboin, H. V., Park, S-S., Yang, C. S., and Gonzalez, F. J., Complementary DNA and pro- tein sequences of ethanol-inducible rat and human cytochrome P-450s. J. Biol. Chem. 261, 16689, 1986
  • Umeno, M., McBride, O. W., Yang, C. S., Gelboin,H. V., and Gonzalez, F. J., Human ethanol-inducible P450IIE1: complete gene sequence, promoter charac- terization, chromosome mapping, and cDNA directed expression. Biochemistry, 27, 9006, 1988
  • Uematsu, F., Kikuchi, H., Ohmachi, T., Sagami, I., Motomiya, M., Kamataki, T., Komori, M., and Watanabe, M., Two common RFLPs of the human CYP2E gene. Nucl. Acids Res. 19, 2803, 1991a.
  • Uematsu, F., Kikuchi, H., Abe, T., Motomiya, M., Ohmachi, T., Sagami, I., and Watanabe, M., Msp I polymorphism of the human CYP2E1 gene. Nucl. Acids Res. 19, 5797, 1991.
  • Watanabe, J., Hayashi, S-i., Nakachi, K., Imai, K., Suda, Y., Sekine, T., and Kawajiri, K., Pst I and Rsa I RFLPs in complete linkage disequilibrium at the CYP2E gene. Nucl. Acids Res. 18, 7194, 1990.
  • Carr, L. G., Hartleroad, J. Y., Liang, Y., Mendenhall, C., Moritz, T., and Thomason, H., Polymorphism at the P450IIE1 locus is not associated with alcoholic liver disease in Caucasian men, alco- holism, Clin. Exp. Res. 19, 182, 1995.
  • Hu, Y., Oscarson, M., Johansson, I., Yue, Q-Y., Dahl, M-L., Tabone, M., Arinco, S., Albano, E., and Ingelman-Sundberg, M., Genetic polymorphism of human CYP2E1, Characterization of two variant alleles. Mol. Pharmacol. 51, 370, 1997.
  • Chao Y-C., Young T-H., Chang W-K., Tang H-S. and Hsu C-T., An investigation of whether polymor- phisms of cytochrome P4502E1 are genetic markers of susceptibility to alcoholic end-stage organ damage in Chinese populations, Hepatology 22,1409, 1995.
  • Persson, I., Johansson, I., Bergling, H., Dahl, M. L., Seidegard, J., Rylander, R., Rannug, A., Hoberg, J., and Ingelman-Sundberg, M., Genetic polymor- phism of cytochrome P450IIE1 in a Swedish popula- tion: relationship to incidence of lung cancer. FEBS Lett. 319, 207, 1993.
  • Hildesheim, A., Chen, C-J., Caporaso, N. E., Cheng, Y-J., Hoover, R. N., Hsu, M-M., Levine, P. H., Chen, I-H., Chen, J-Y., Yang, C-S., Daly, A. K., and Idle, J. R., Cytochrome P4502E1 genetic poly- morphisms and risk of nasopharyngeal carcinoma, Results from a case-control study conducted in Tai- wan. Cancer Epidemiol. Biomark. Prevent. 4, 607, 1995.
  • Hayashi, S-i., Watanabe, J., and Kawajiri, K., Genetic polymorphisms in the 5-flanking region change transcriptional regulation of the human cyto- chrome P450IIE1 gene. J. Biochem. 110, 559, 1991.
  • Watanabe, J., Hayashi, S-i., and Kawajiri, K., Dif- ferent regulation and expression of the human CYP2E1 gene due to the Rsa I polymorphism in the 5-flanking region. J. Biochem. 116, 321, 1994.
  • Tsutsumi, M., Wang, J-S., and Takada, A., Hepatic messenger RNA contents of cytochrome P4502E1 in patients with different P4502E1 genotypes. Int. Hepatol. Commun. 2, 135, 1994.
  • Tsutsumi, M., Wang, J-S., Takase, S., and Takada, A., Hepatic messenger RNA contents of cytochrome P4502E1 in patients with different P4502E1 geno- types. Alcohol & Alcoholism, 29 (S1), 29, 1994.
  • Carriere, V., Berthou, F., Baird, S., Belloc, C., Beaune, P., and de Waziers, I., Human cytochrome P450 2E1 (CYP2E1), from genotype to phenotype. Pharmacogenetics 6, 203, 1996.
  • Kato, S., Bowman, D. E., Blomeke, B., Weston, A., and Shields, P. G., 7-Alkyl-deoxyguanosine (7- alkyldGp) adduct formation in human lung and cyto- chrome P450 2E1 (CYP2E1) genetic polymorphisms. Proc. Am. Assoc. Cancer Res. 34, 144, 1993.
  • Kim, R. B., O’Shea, D., and Wilkinson, G. R., Relationship in healthy subjects between CYP2E1 genetic polymorphisms and the 6-hydroxylation of chlorzoxazone, a putative measure of CYP2E1 activ- ity. Pharmacogenetics 4, 162, 1994.
  • Campleman, S. L., Tamaki, S. J., Hoener, B-A., and Smith, M.T., Cytochrome P4502E1-dependent metabolism as a biomarker for genetic susceptibility to chemically induced cancers, a pilot study. In: Pro- ceedings of the Cytochrome P-450 8th international conference, Lechner, M. C., Ed., John Libbey Eurotext, Paris, 1994, 213–216.
  • Kim, R. B., O’Shea, D., and Wilkinson, G. R., Inter- individual variability of chlorzoxazone 6-hydroxyla- tion in men and women and its relationship to CYP2E1 genetic polymorphisms. Clin. Pharmacol. Ther. 57, 645, 1995.
  • Ueshima, Y., Tsutsumi, M., Takase, S., Matsuda, Y., and Kawahara, H., Acetaminophen metabolism in patients with different cytochrome P-4502E1 genotypes. Alcoholism, Clin. Exp. Res. 20, 25a, 1996.
  • Ueno, Y., Adachi, J., Imamichi, H., Nishimura, A., and Tatsuno, Y., Effect of the cytochrome P-450IIE1 genotype on ethanol elimination rate in alcoholics and control subjects. Alcoholism, Clin. Exp. Res. 20, 17a, 1996.
  • Kato, S., Bowman, E. D., Harrington, A. M., Blomeke, B., and Shields, P. G., Human lung car- cinogen-DNA adduct levels mediated by genetic poly- morphisms in vivo. J. Natl. Cancer Inst. 87, 902, 1995.
  • Mannervik, B., Awasthi, Y. C., Board, P. G., Hayes,J. D., Di Ilio, C., Ketterer, B., Listowsky, I., Morgenstern, R., Muramatsu, M., Pearson, W. R., Pickett, C. B., Sato, K., Widersten, M., and Wolf, C. R., Nomenclature for human glutathione trans- ferases. Biochem. J. 282, 305, 1992.
  • Pickett, C. B. and Lu, A. Y. H., The structure, genet- ics and regulation of soluble glutatione-S-transferases. In: Glutathione Conjugation, Academic Press, San Diego, 1988, 137–156
  • Ketterer, B., Meyer, D. J., and Clark, A. G., Soluble glutathione transferase isoenzymes, In: Glutathione Conjugation: Its Mechanism and Biological Signifi- cance, Ketterer, B., and Sies, H., Eds., Academic Press, London, 1988, 73–135
  • Rushmore, T. H. and Pickett, C. B., Glutathione-S- transferases, structure, regulation, and therapeutic implications. J. Biol. Chem. 268, 11475, 1993.
  • Hayes, J. D. and Pulford, D. J., The glutathione-S- transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprevention and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30, 445, 1995.
  • Armstrong, R. N., Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem. Res. Toxicol. 10, 2, 1997.
  • Pickett, C. B. and Lu, A. Y. H., Glutathione-S- transferases, gene structure, regulation, and biological function. Ann. Rev. Biochem. 58, 743, 1989.
  • Board, P., Coggan, M., Johnston, P., Ross, V., Suzuki, T., and Webb, G., Genetic heterogeinity of the human glutathione-S-transferases, a complex of gene families. Pharmacol. Ther. 48, 357, 1990.
  • Pemble, S. E., Wardle, A. F., and Taylor, J. B., Glutathione-S-transferase class kappa: characteriza- tion by the cloning of rat mitochondrial GST and identification of a human orthologue. Biochem. J. 319, 749, 1996.
  • Listowsky, I., Abramovitz, M., Homma, H., and Niitsu, Y., Intracellular binding and transport of hor- mones and xenobiotics by glutathione-S-transferases. Drug Metab. Rev. 19, 305, 1988.
  • Ketterer, B., Protective role of glutathione and glu- tathione transferases in mutagenesis and carcinogen- esis. Mutat. Res. 202, 343, 1988.
  • Coles, B. and Ketterer, B., The role of glutathione and glutathione transferases in chemical carcinogen- esis. Crit. Rev. Biochem. Mol. Biol. 25, 47, 1990.
  • Commandeur, J. N. M., Stijntjes, G. J., and Vermeulen, N. P. E., Enzymes and transport systems involved in the formation and disposition of glu- tathione-S-conjugates. Pharmacol. Rev. 47, 271, 1995.
  • DeJong, J. L., Chang, C-M., Whang-Peng, J., Nutsen, T., and Tu, C-P. D., The human liver glu- tathione-S-transferase gene superfamily, expression and chromosome mapping of an Hb subunit cDNA. Nucl. Acids Res. 16, 8541, 1988.
  • Islam, M. Q., Platz, A., Szpirer, J., Szpirer, C., Levan, G., and Mannervik, B., Chromosomal localisation of human glutathione transferase genes of classes alpha, mu and pi. Hum. Genet. 82, 338, 1989.
  • DeJong, J. L., Mohandas, T., and Tu, C-P. D., The human Hb (mu) class glutathione-S-transferases are encoded by a dispersed gene family. Biochem. Biophys. Res. Commun. 180, 15, 1991.
  • Zhong, S., Wolf, C. R., and Spurr, N. K., Chromo- somal assignment and linkage analysis of the human glutathione-S-transferase  gene (GSTM1) using in- tron specific polymerase chain reaction. Hum. Genet. 90, 435, 1992.
  • Pearson, W. R., Vorachek, W. R., Xu, S-j., Berger, R., Hart, I., Vannais, D., and Patterson, D., Identi- fication of class-mu glutathione transferase genes GSTM1–GSTM5 on human chromosome 1p13. Am. J. Hum. Genet. 53, 220, 1993.
  • Seidegard, J., Vorachek, W. R., Pero, R. W., and Pearson, W. R., Hereditary differences in the expres- sion of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc. Natl. Acad. Sci. U.S.A. 85, 7293, 1988.
  • Fryer, A. A., Zhao, L., Alldersea, J., Pearson, W. R., and Strange, R. C., Use of site-directed mutagen- esis of allele-specific PCR primers to identify the GSTM1 A, GSTM1 B, GSTM1 A,B and GSTM1 null polymorphisms at the glutathione-S-transferase, GSTM1 locus. Biochem. J. 295, 313, 1993.
  • Widersten, M., Pearson, W. R., Engstrom, A., and Mannervik, B., Heterologous expression of the al- lelic variant Mu-class glutathione transferases  and. Biochem. J. 276, 519, 1991.
  • Topinka, J., Binkova, B., Mrackova, G., Stavkova, Z., Benes, I., Dejmek, J., Lenicek, J., and Sram,R. J., DNA adducts in human placenta as related to air pollution and to GSTM1 genotype. Mutat. Res. 390, 59, 1997.
  • Grinberg-Funes, R. A., Singh, V. N., Perera, F. P., Bell, D. A., Young, T. L., Dickey, C., Wang, L. W., and Santella, R. M., Polycyclic aromatic hydrocar- bon-DNA adducts in smokers and their relationship to micronutrient levels and the glutathione-S-transferase M1 genotype. Carcinogenesis 15, 2449, 1994
  • Santella, R. M., Perera, F. P., Young, T. L., Zhang, Y-J., Chiamprasert, S., Tang, D., Wang, L. W., Beachman, A., Lin, J-H., and DeLeo, V. A., Polycy- clic aromatic hydrocarbon-DNA and protein adducts in coal tar treated patients and controls and their rela- tionship to glutathione-S-transferase genotype. Mutat. Res. 334, 117, 1995.
  • Rothman, N., Shields, P. G., Poirier, M. C., Harrington, A. M., Ford, D. P., and Strickland,P. T., The impact of glutathione-S-transferase M1 and cytochrome P450 1A1 genotypes on white-blood-cell polycyclic aromatic hydrocarbon-DNA adduct levels in humans. Mol. Carcinogen. 14, 63, 1995.
  • Nielsen, P. S., de Pater, N., Okkels, H., and Autrup, H., Environmental air pollution and DNA adducts in Copenhagen bus drivers: effect of GSTM1 and NAT2 genotypes on adduct levels. Carcinogenesis 17, 1021, 1996.
  • Ichiba, M., Wang, Y., Oishi, H., Iyadomi, M., Shono, N., and Tomokuni, K., Smoking-related DNA ad- ducts and genetic polymorphism for metabolic en- zymes in human lymphocytes. Biomarkers 1, 211, 1996.
  • Yu, M. C., Ross, R. K., Chan, K. K., Henderson B. E., Skipper, P. L., Tannenbaum, S. R., and Coetzee, G. A., Glutathione-S-transferase M1 geno- type affects aminobiphenyl-hemoglobin adduct levels in white, black, and Asian smokers and nonsmokers. Cancer Epidemiol. Biomark. Prevent. 4, 861, 1995.
  • McGlynn, K. A., Rosvold, E. A., Lustbader, E. D., Hu, Y., Clapper, M. L., Zhou, T., Wild, C. P., Xia, X-L., Baffoe-Bonnie, A., Ofori-Adjei, D., Chen, G- C., London, W. T., Shen, F-M., and Buetow, K. H., Susceptibility to hepatocellular carcinoma is associ- ated with genetic variation in the enzymatic detoxifi- cation of aflatoxin B1. Proc. Natl. Acad. Sci. U.S.A. 92, 2384, 1995.
  • van Poppel, G., de Vogel, N., van Bladeren, P. J., and Kok, F. J., Increased cytogenetic damage in smokers deficient in glutathione S-transferase isozyme mu. Carcinogenesis 13, 303, 1992.
  • Ryberg, D., Kure, E., Lystad, S., Skaug, V., Stangeland, L., Mercy, I., Borresen, A-L., and Haugen, A., p53 Mutations in lung tumors: relation- ship to putative susceptibility markers for cancer. Cancer Res. 54, 1551, 1994.
  • Hou, S-M., Falt, S., and Steen, A-M., Hprt mutant frequency and GSTM1 genotype in non-smoking healthy individuals. Environ. Mol. Mutagen. 25, 97, 1995.
  • Bernardini, S., Pelin, K., Peltonen, K., Jarventous, H., Hirvonen, A., Neagu, C., Sorsa, M., and Norppa, H., Induction of sister chromatid exchange by 3,4- epoxybutane-1,2-diol in cultured human lymphocytes of different GSTT1 and GSTM1 genotypes. Mutat. Res. 361, 121, 1996.
  • Uuskula, M., Jarventaus, H., Hirvonen, A., Sorsa, M., and Norppa, H., Influence of GSTM1 genotype on sister chromatid exchange induction by styrene- 7,8-oxide and 1,2-epoxy-3-butene in cultured human lymphocytes. Carcinogenesis 16, 947, 1995.
  • McWilliams, J. E., Sanderson, B. J. S., Harris, E. L., Richert-Boe, K. E., and Henner, W. D., Glu- tathione-S-transferase M1 (GSTM1) deficiency and lung cancer risk. Cancer Epidemiol. Biomark. Pre- vent. 4, 589, 1995.
  • Hussey, A. J. and Hayes, J. D., Human Mu-class glutathione-S-transferases present in liver, skeletal muscle and testicular tissue. Biochem. Biophys. Acta, 1203, 131, 1993.
  • Anttila, S., Hirvonen, A., Vainio, H., Husgafvel- Pursiainen, K., Hayes, J. D., and Ketterer, B., Immunohistochemical localization of glutathione-S- transferases in human lung. Cancer Res. 53, 5643, 1993.
  • Ketterer, B., Harris, J. M., Talaska, G., Meyer,D. J., Pemble, S. E., Taylor, J. B., Lang, N. P., and Kadlubar, F. F., The human glutathione-S-transferase supergene family: its polymorphism, and its effects on susceptibility to lung cancer. Environ. Health Perspect. 98, 87, 1992.
  • Anttila, S., Luostarinen, L., Hirvonen, A., Elovaara, E., Karjalainen, A., Nurminen, T., Hayes, J. D., Vainio, H., and Ketterer, B., Pulmonary expression of glutathione-S-transferase M3 in lung cancer pa- tients: association with GSTM1 polymorphism, smok- ing, and asbestos exposure. Cancer Res. 55, 3305, 1995.
  • Inskip, A., Elexperu-Camiruaga, J., Buxton, N., Dias, P. S., MacIntosh, J., Campbell, D., Jones, P. W., Yengi, L., Talbot, J. A., Strange, R. C., and Fryer, A. A., Identification of polymorphism at the glutathione-S-transferase, GSTM3 locus: evidence for linkage with GSTM1*A. Biochem. J. 312, 713, 1995.
  • Yengi, L., Inskip, A., Gilford, J., Alldersea, J., Bailey, L., Smith, A., Lear, J. T., Heagerty, A. H., Bowers, B., Hand, P., Hayes, J. D., Jones, P. W., Strange, R. C., and Fryer, A. A., Polymorphism at the glutathione-S-transferase locus GSTM3: interac- tions with cytochrome P450 and glutathione-S-trans- ferase genotypes as risk factors for multiple cutaneous basal cell carcinoma. Cancer Res. 56, 1974, 1996.
  • Hand, P. A., Inskip, A., Gilford, J., Alldersea, J., Elexpuru-Camiruaga, J., Hayes, J. D., Jones, P. W., Strange, R. C., and Freyer, A. A., Allelism at the glutathione-S-transferase GSTM3 locus: interactions with GSTM1 and GSTT1 as risk factors for astrocy- toma. Carcinogenesis 17, 1919, 1996.
  • Webb, G., Vaska, V., Coggan, M., and Board, P., Chromosomal localization of the gene for the human theta class glutathione transferase (GSTT1). Genomics 33, 121, 1996.
  • Pemble, S., Schroder, K. R., Spencer, S. R., Meyer,D. J., Hallier, E., Bolt, H. M., Ketterer, B., and Taylor, J. B., Human glutathione-S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem. J. 300, 271, 1994.
  • Peter, H., Deutschmann, S., Reichel, C., and Hallier, E., Metabolism of methyl chloride by human erythrocytes. Arch. Toxicol. 63, 351, 1989.
  • Hallier, E., Langhof, T., Dannappel, D., Leutbecher, M., Schroder, K., Goergens, H. W., Muller, A., and Bolt, H. M., Polymorphism of glutathione conjuga- tion of methyl bromide, ethylene oxide and dichloromethane in human blood, influence on the induction of sister chromatid exchanges (SCE) in lym- phocytes. Arch. Toxicol. 67, 173, 1993.
  • Hallier, E., Schroder, K. R., Asmuth, K., Dommermuth, A., Aust, B., and Goergens, H. W., Metabolism of dichloromethane (methylene chloride) to formaldehyde in human erythrocytes: influence of polymorphism of glutathione transferase theta (GSTT1-1). Arch. Toxicol. 68, 423, 1994.
  • Warholm, M., Alexandrie, A-K., Hogberg, J., Sigvardsson, K., and Rannug, A., Polymorphic dis- tribution of glutathione transferase activity with me- thyl chloride in human blood. Pharmacogenetics 4, 307, 1994.
  • Ploemen, J. H. T. M., Wormhoudt, L. W., van Ommen, B., Commandeur, J. N. M., Vermeulen,N. P. E., and van Bladeren, P. J., Polymorphism in the glutathione conjugation activity of human eryth- rocytes toward ethylene dibromide and 1,2-epoxy-3- (p-nitrophenoxy)-propane. Biochim. Biophys. Acta, 1243, 469, 1995.
  • Thier, R., Pemble, S. E., Kramer, H., Taylor, J. B., Guengerich, F. P., and Ketterer, B., Human glu- tathione-S-transferase T1-1 enhances mutagenicity of 1,2-dibromoethane, dibromomethane and 1,2,3,4- diepoxybutane in Salmonella typhimurium. Carcino- genesis 17, 163, 1996.
  • Kelsey, K. T., Christiani, D. C., and Wiencke, J. K., Bimodal distribution of sensitivity to SCE induction by diepoxybutane in human lymphocytes. II. Rela- tionship to baseline SCE frequency. Mutat. Res. 248, 27, 1991.
  • Schroder, K. R., Wiebel, F. A., Reich, S., Dannappel, D., Bolt, H. M., and Hallier, E., Glutathione-S-trans- ferase (GST) theta polymorphism influences back- ground SCE rate. Arch. Toxicol. 69, 505, 1995.
  • Wiencke, J. K., Wrensch, M. R., Miike, R., and Petrakis, N. L., Individual susceptibility to induced chromosome damage and its implications for detect- ing genotoxic exposures in human populations. Can- cer Res. 51, 5266, 1991.
  • Tornqvist, M., Gustafsson, B., Kautiainen, A., Harms-Ringdahl, M., Granath, F., and Ehrenberg, L., Unsaturated lipids and intestinal bacteria as sources of endogenous production of ethene and ethylene oxide. Carcinogenesis 10, 39, 1989.
  • Wiencke, J. K., Christiani, D. C., and Kelsey, K. T., Bimodal distribution of sensitivity to SCE induction by diepoxybutane in human lymphocytes. I. Correla- tion with chromosomal abberations. Mutat. Res. 248, 17, 1991.
  • Thier, R., Persmark, M., Pemble, S. E., Taylor, J. B., Ketterer, B., and Guengerich, F. P., Mutage- nicity of 1,2,3,4-butadiene diepoxide is altered by mammalian -class glutathione-S-transferase. Naunyn Schmiedeberg’s Arch. Pharmacol. 481 (Suppl.), 349, 1992.
  • Norppa, H., Hirvonen, A., Jarventaus, H., Uuskula, M., Tasa, G., Ojajarvi, A., and Sorsa, M., Role of GSTT1 and GSTM1 genotypes in determining indi- vidual sensitivity to sister chromatid exchange induc- tion by diepoxybutane in cultured human lympho- cytes. Carcinogenesis 16, 1261, 1995.
  • Pelin, K., Hirvonen, A., and Norppa, H., Influence of erythrocyte glutathione-S-transferase T1 on sister chromatid exchanges induced by diepoxybutane in cultured human lymphocytes. Mutagenesis 11, 213, 1996.
  • Landi, S., Ponzanelli, I., Hirvonen, A., Norppa, H., and Barale, R., Repeated analysis of sister chromatid exchange induction by diepoxybutane in cultured human lymphocytes: effect of glutathione-S-transferase T1 and M1 genotype. Mutat. Res. 351, 79, 1996.
  • Harries, L. W., Stubbins, M. J., Forman, D., Howard, G. C., and Wolf, C. R., Identification of genetic polymorphisms at the glutathione-S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis, 18, 641, 1997.
  • Guenthner, T. M., Epoxide hydrolases. In: Conjuga- tion Reactions in Drug Metabolism, Mulder, G. J., Ed., 1990, 365–404.
  • Skoda, R. C., Demierre, A., McBride, O. W., Gonzalez, F. J., and Meyer, U. A., Human microso- mal xenobiotic epoxide hydrolase. Complementary DNA sequence, complementary DNA-directed expression in COS-1 cells, and chromosomal localization. J. Biol. Chem. 263, 1549, 1988.
  • Hassett, C., Aicher, L., Sidhu, J. S., and Omiecinski,C. J., Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum. Mol. Genet. 3, 421, 1994.
  • Hassett, C., Lin, J., Carty, C. L., Laurenzana, E. M., and Omiecinski, C. J., Human hepatic microsomal epoxide hydrolase: comparative analysis of polymor- phic expression. Arch. Biochem. Biophys. 337, 275, 1997.
  • Gaedigk, A., Spielberg, S. P., and Grant, D. M., Characterization of the microsomal epoxide hydro- lase gene in patients with anticonvulsant adverse drug reactions. Pharmacogenetics 4, 142, 1994.
  • Green, V. J., Pirmohamed, M., Kitteringham, N. R., Gaedigk, A., Grant, D. M., Boxer, M., Burchell, B., and Park, B. K., Genetic analysis of microsomal epoxide hydrolase in patients with carbamazepine hypersensitivity. Biochem. Pharmacol. 50, 1353, 1995.
  • Johnson, W. W., Yamazaki, H., Shimada, T., Ueng,Y. F., and Guengerich, F. P., Aflatoxin B1 8,9- epoxide hydrolysis in the presence of rat and human epoxide hydrolase. Chem. Res. Toxicol. 10, 672, 1997.
  • Guengerich, F. P., Johnson, W. W., Ueng, Y-F., Yamazaki, H., and Shimada, T., Involvement of cytochrome P450, glutathione-S-transferase, and ep- oxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer. Environ. Health Perspect. 104(Suppl. 3), 557, 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.