512
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Structure, Function, and Mechanism of HhaI DNA Methyltransferases

&
Pages 167-197 | Published online: 29 Sep 2008

REFERENCES

  • Allan, B. W. and Reich, N. O. 1996. Targeted base stacking disruption by the EcoRI DNA methyltransferase. Biochemistry 35: 14757-62.
  • Allan, B. W., Beechem, J. M., Lindstrom, W. M., and Reich, N. O. 1998. Direct real time observation of base flipping by the EcoRI DNA methyltransferase. J. Biol. Chem. 273: 2368-73.
  • Allan, B. W., Garcia, R., Maegley, K., Mort, J., Wong, D., Lindstrom, W., Beechem, J. M., and Reich, N. O. 1999. DNA bending by EcoRI DNA methyltransferase accelerates base flipping but compromises speci-ficity. J. Biol. Chem. 274: 19269-75.
  • Arkin, M. R., Stemp, E. D., Pulver, S. C. and Barton, J. K. 1997. Long-range oxidation of guanine by Ru(III) in duplex DNA. Chem. Biol. 4: 389-400.
  • Bacolla, A., Pradhan, S., Roberts, R. J., and Wells, R. D. 1999. Recombinant human DNA (cytosine-5) methyltransferase. II. Steady-state kinetics reveal allosteric acti-vation by methylated DNA. J. Biol. Chem. 274: 33011-9.
  • Baker, D. J., Kan, J. L., and Smith, S. S. 1988. Recognition of structural perturbations in DNA by human DNA(cytosine-5)methyltransferase. Gene 74: 207-10.
  • Balganesh, T. S., Reiners, L., Lauster, R., Noyer-Weidner, M., Wilke, K., and Trautner, T. A. 1987. Construction and use of chimeric SPR/phi 3T DNA methyltransferases in the definition of sequence recognizing enzyme regions. EMBO J. 6: 3543-9.
  • Barrett, T. E., Savva, R., Panayotou, G., Barlow, T., Brown, T., Jiricny, J., and Pearl, L. H. 1998. Crystal structure of a G:T/U mis-match-specific DNA glycosylase: mis-match recognition by complementary-strand interactions. Cell 92: 117-29.
  • Barrett, T. E., Scharer, O. D., Savva, R., Brown, T., Jiricny, J., Verdine, G. L., and Pearl, L. H. 1999. Crystal structure of a thwarted mismatch glycosylase DNA repair com-plex. EMBO J. 18: 6599-609.
  • Bhattacharya, S. K. and Dubey, A. K. 1999. Kinetic mechanism of cytosine DNA methyltransferase MspI. J. Biol. Chem. 274: 14743-9.
  • Carreras, C. W. and Santi, D. V. 1995. The catalytic mechanism and structure of thymidylate synthase. Annu. Rev. Biochem. 64: 721-62.
  • Caserta, M., Zacharias, W., Nwankwo, D., Wil-son, G. G., and Wells, R. D. 1987. Clon-ing, sequencing, in vivo promoter map-ping, and expression in Escherichia coli of the gene for the HhaI methyltransferase. J. Biol. Chem. 262: 4770-7.
  • Chen, L., MacMillan, A. M., Chang, W., Ezaz-Nikpay, K., Lane, W. S., and Verdine, G. L. 1991. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochem-istry 30: 11018-25.
  • Chen, L., MacMillan, A. M., and Verdine, G. L. 1993. Mutational separation of DNA bind-ing from catalysis in a DNA cytosine methyltransferase. J. Am. Chem. Soc. 115: 5318-19.
  • Chen, Y. Z., Mohan, V., and Griffey, R. H. 1998a. The opening of a single base with-out perturbations of neighboring nucle-otides: a study on crystal B-DNA duplex d(CGCGAATTCGCG)2. J. Biomol. Struct. Dyn. 15, 765-77.
  • Chen, Y. Z., Mohan, V., and Griffery, R. H. 1998b. Effect of backbone ? torsion angle on low energy single base opening in B-DNA crystal structures. Chem. Phys. Lett. 287, 570.
  • Chen, Y. Z., Mohan, V., and Griffey, R. H. 2000. Spontaneous base flipping in DNA and its possible role in methyltransferase binding. Phys. Rev. E. Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Topics 62, 1133-7.
  • Cheng, X. 1995. Structure and function of DNA methyltransferases. Annu. Rev. Biophys. Biomol. Struct. 24: 293-318.
  • Cheng, X. and Blumenthal, R. M. 1996. Finding a basis for flipping bases. Structure 4: 639- 45.
  • Cheng, X. and Roberts, R. J. 2001. AdoMet-depen-dent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res. 29: 3784-95.
  • Cheng, X., Kumar, S., Posfai, J., Pflugrath, J. W., and Roberts, R. J. 1993a. Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell 74: 299-307.
  • Cheng, X., Kumar, S., Klimasauskas, S., and Roberts, R. J. 1993b. Crystal structure of the HhaI DNA methyltransferase. Cold Spring Harb. Symp. Quant. Biol. 58: 331- 8.
  • Dong, A., Yoder, J. A., Zhang, X., Zhou, L., Bestor, T. H., and Cheng, X. 2001. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res. 29: 439-48.
  • Dornberger, U., Leijon, M., and Fritzsche, H. 1999. High base pair opening rates in tracts of GC base pairs. J. Biol. Chem. 274: 6957- 62.
  • Dougherty, D. A. 1996. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271: 163-8.
  • Dubey, A. K. and Roberts, R. J. 1992. Sequence-specific DNA binding by the MspI DNA methyltransferase. Nucleic Acids Res. 20: 3167-73.
  • Erlanson, D. A., Chen, L., and Verdine, G. L. 1993. DNA methylation through a locally unpaired intermediate. J. Am. Chem. Soc. 115: 12583-12584.
  • Evdokimov, A. A., Zinoviev, V. V., Malygin, E. G., Schlagman, S. L., and Hattman, S. 2002. Bacteriophage T4 Dam DNA-[N6- adenine]methyltransferase. Kinetic evidence for a catalytically essential confor-mational change in the ternary complex. J. Biol. Chem. 277: 279-86.
  • Fauman, E. B., Blumenthal, R. M., and Cheng, X. 1999. Structure and evolution of AdoMet-dependent methyltransferases. In S-Adenosylmethionine-Dependent Methyltransferases: Structure and Func-tion. pp. 1-38. X. Cheng and R. M. Blumenthal, Eds. World Scientific Pub-lishing Co. Pvt. Ltd.
  • Flynn, J. and Reich, N. 1998. Murine DNA (cytosine-5-)-methyltransferase: steady-state and substrate trapping analyses of the kinetic mechanism. Biochemistry 37: 15162-9.
  • Friedman, S. 1985. The irreversible binding of azacytosine-containing DNA fragments to bacterial DNA(cytosine-5)methyltransferases. J. Biol. Chem. 260: 5698-705.
  • Gabbara, S., Sheluho, D., and Bhagwat, A. S. 1995. Cytosine methyltransferase from Escherichia coli in which active site cys-teine is replaced with serine is partially active. Biochemistry 34: 8914-23.
  • Goedecke, K., Pignot, M., Goody, R. S., Scheidig, A. J., and Weinhold, E. 2001. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofac-tor analog. Nat. Struct. Biol. 8: 121-5.
  • Goljer, I., Kumar, S., and Bolton, P. H. 1995. Refined solution structure of a DNA het-eroduplex containing an aldehydic abasic site. J. Biol. Chem. 270: 22980-7.
  • Gong, W., O'Gara, M., Blumenthal, R. M., and Cheng, X. 1997. Structure of PvuII DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. Nucleic Acids Res. 25: 2702-15.
  • Gowher, H. and Jeltsch, A. 2000. Molecular enzymology of the EcoRV DNA-(Ad-enine-N (6))-methyltransferase: kinetics of DNA binding and bending, kinetic mecha-nism and linear diffusion of the enzyme on DNA. J. Mol. Biol. 303: 93-110.
  • Hanck, T., Schmidt, S., and Fritz, H. J. 1993. Sequence-specific and mechanism-based crosslinking of Dcm DNA cytosine-C5 methyltransferase of E. coli K-12 to synthetic oligonucleotides containing 5- fluoro-2'-deoxycytidine. Nucleic Acids Res. 21: 303-9.
  • Hollis, T., Ichikawa, Y., and Ellenberger, T. 2000. DNA bending and a flip-out mecha-nism for base excision by the helix-hair-pin-helix DNA glycosylase, Escherichia coli AlkA. EMBO J. 19: 758-66.
  • Holmlin, R. E., Dandliker, P. J., and Barton, J. K. 1997. Charge transfer through the DNA base stack. Angew. Chem. Int. Ed. Engl. 36: 2714-2730.
  • Holz, B., Klimasauskas, S., Serva, S., and Weinhold, E. 1998. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Res. 26: 1076-83.
  • Ingrosso, D., Fowler, A. V., Bleibaum, J., and Clarke, S. 1989. Sequence of the D-aspar-tyl/L-isoaspartyl protein methyltransferase from human erythrocytes. Common sequence motifs for protein, DNA, RNA, and small molecule S-adenosylmethionine-dependent methyltransferases. J. Biol. Chem. 264: 20131-9.
  • Kalman, T. I. and Matthews, D. A. 1995. An analogue of the first covalent intermediate of the thymidylate synthase catalyzed reaction. FASEB J. 9: A1325.
  • Klimasauskas, S. and Roberts, R. J. 1995a. M.HhaI binds tightly to substrates con-taining mismatches at the target base. Nucleic Acids Res. 23: 1388-95.
  • Klimasauskas, S. and Roberts, R. J. 1995b. Dis-ruption of the target G-C base-pair by the HhaI methyltransferase. Gene 157: 163- 4.
  • Klimasauskas, S., Timinskas, A., Menkevicius, S., Butkiene, D., Butkus, V., and Janulaitis, A. 1989. Sequence motifs characteristic of DNA[cytosine-N4]methyltransferases: similarity to adenine and cytosine-C5 DNA-methylases. Nucleic Acids Res. 17: 9823-32.
  • Klimasauskas, S., Nelson, J. L., and Roberts, R. J. 1991. The sequence specificity domain of cytosine-C5 methylases. Nucleic Acids Res. 19: 6183-90.
  • Klimasauskas, S., Kumar, S., Roberts, R. J., and Cheng, X. 1994. HhaI methyltransferase flips its target base out of the DNA helix. Cell 76: 357-69.
  • Klimasauskas, S., Szyperski, T., Serva, S., and Wuthrich, K. 1998. Dynamic modes of the flipped-out cytosine during HhaI methyltransferase-DNA interactions in solution. EMBO J. 17: 317-24.
  • Kumar, S., Cheng, X., Pflugrath, J. W., and Roberts, R. J. 1992. Purification, crystal-lization, and preliminary X-ray diffraction analysis of an M.HhaI-AdoMet complex. Biochemistry 31: 8648-53.
  • Kumar, S., Cheng, X., Klimasauskas, S., Mi, S., Posfai, J., Roberts, R. J., and Wilson, G. G. 1994. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 22: 1-10.
  • Kumar, S., Horton, J. R., Jones, G. D., Walker, R. T., Roberts, R. J., and Cheng, X. 1997. DNA containing 4'-thio-2'-deoxycytidine inhibits methylation by HhaI methyltransferase. Nucleic Acids Res. 25: 2773-83.
  • Labahn, J., Granzin, J., Schluckebier, G., Robinson, D. P., Jack, W. E., Schildkraut, I., and Saenger, W. 1994. Three-dimen-sional structure of the adenine-specific DNA methyltransferase M.Taq I in complex with the cofactor S-adenosylmethionine. Proc. Natl. Acad. Sci. U.S.A. 91: 10957-61.
  • Lau, A. Y., Scharer, O. D., Samson, L., Verdine, G. L., and Ellenberger, T. 1998. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mecha-nisms for nucleotide flipping and base excision. Cell 95: 249-58.
  • Lau, E. Y. and Bruice, T. C. 1999. Active site dynamics of the HhaI methyltransferase: insights from computer simulation. J. Mol. Biol. 293: 9-18.
  • Lauster, R., Trautner, T. A., and Noyer-Weidner, M. 1989. Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J. Mol. Biol. 206: 305-12.
  • Lindstrom, W. M., Jr., Flynn, J., and Reich, N. O. 2000. Reconciling structure and function in HhaI DNA cytosine-C-5 methyltransferase. J. Biol. Chem. 275: 4912-9.
  • Malone, T., Blumenthal, R. M., and Cheng, X. 1995. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and sug-gests a catalytic mechanism for these enzymes. J. Mol. Biol. 253: 618-32.
  • Malygin, E. G., Evdokimov, A. A., Zinoviev, V. V., Ovechkina, L. G., Lindstrom, W. M., Reich, N. O., Schlagman, S. L., and Hattman, S. 2001. A dual role for substrate S-adenosyl-L-methionine in the methylation reaction with bacteriophage T4 Dam DNA-[N6-adenine]-methyltransferase. Nucleic Acids Res. 29: 2361-9.
  • Mi, S. and Roberts, R. J. 1992. How M.MspI and M.HpaII decide which base to methy-late. Nucleic Acids Res. 20: 4811-6.
  • Mi, S. and Roberts, R. J. 1993. The DNA bind-ing affinity of HhaI methylase is increased by a single amino acid substitution in the catalytic center. Nucleic Acids Res. 21: 2459-64.
  • Mi, S., Alonso, D., and Roberts, R. J. 1995. Functional analysis of Gln-237 mutants of HhaI methyltransferase. Nucleic Acids Res. 23: 620-7.
  • Millar, D. P. 1996. Fluorescence studies of DNA and RNA structure and dynamics. Curr. Opin. Struct. Biol. 6: 322-6.
  • O'-Gara, M., Klimasauskas, S., Roberts, R. J., and Cheng, X. 1996a. Enzymatic C5-cy-tosine methylation of DNA: mechanistic implications of new crystal structures for HhaI methyltransferase-DNA-AdoHcy complexes. J. Mol. Biol. 261: 634-45.
  • O'-Gara, M., Roberts, R. J., and Cheng, X. 1996b. A structural basis for the preferential bind-ing of hemimethylated DNA by HhaI DNA methyltransferase. J. Mol. Biol. 263: 597- 606.
  • O'-Gara, M., Horton, J. R., Roberts, R. J., and Cheng, X. 1998. Structures of HhaI methyltransferase complexed with substrates containing mismatches at the target base. Nat. Struct. Biol. 5: 872-7.
  • O'-Gara, M., Zhang, X., Roberts, R. J., and Cheng, X. 1999. Structure of a binary complex of HhaI methyltransferase with S-adenosyl-L-methionine formed in the presence of a short nonspecific DNA oli-gonucleotide. J. Mol. Biol. 287: 201-9.
  • Osterman, D. G., DePillis, G. D., Wu, J. C., Matsuda, A., and Santi, D. V. 1988. 5- Fluorocytosine in DNA is a mechanism-based inhibitor of HhaI methylase. Bio-chemistry 27: 5204-10.
  • Parikh, S. S., Mol, C. D., Slupphaug, G., Bharati, S., Krokan, H. E., and Tainer, J. A. 1998. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 17: 5214-26.
  • Phillips, K. and Phillips, S. E. 1994. Electro-static activation of Escherichia coli me-thionine repressor. Structure 2: 309-16.
  • Posfai, J., Bhagwat, A. S., Posfai, G., and Rob-erts, R. J. 1989. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 17: 2421-35.
  • Rajski, S. R., Kumar, S., Roberts, R. J., and Barton, J. K. 1999. Protein-modulated DNA electron transfer. J. Am. Chem. Soc. 121: 5615-5616.
  • Ramstein, J. and Lavery, R. 1988. Energetic coupling between DNA bending and base pair opening. Proc. Natl. Acad. Sci. U.S.A. 85, 7231-5.
  • Reddy, Y. V. and Rao, D. N. 2000. Binding of Eco P15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence. J. Mol. Biol. 298: 597-610.
  • Reich, N. O. and Mashhoon, N. 1990. Inhibition of EcoRI DNA methylase with cofactor analogs. J. Biol. Chem. 265: 8966-70.
  • Reich, N. O. and Mashhoon, N. 1991. Kinetic mecha-nism of the EcoRI DNA methyltransferase. Biochemistry 30: 2933-9.
  • Reich, N. O. and Mashhoon, N. 1993. Presteady state kinetics of an S-adenosylmethionine-dependent enzyme. Evidence for a unique binding orientation requirement for EcoRI DNA methyltransferase. J. Biol. Chem. 268: 9191-3.
  • Reinisch, K. M., Chen, L., Verdine, G. L., and Lipscomb, W. N. 1995. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell 82: 143- 53.
  • Renbaum, P. and Razin, A. 1992. Mode of action of the Spiroplasma CpG methylase M.SssI. FEBS Lett. 313: 243-7.
  • Renbaum, P. and Razin, A. 1995a. Footprint analy-sis of M.Sssl and M.Hhal methyltransferases reveals extensive interactions with the sub-strate DNA backbone. J. Mol. Biol. 248: 19- 26.
  • Renbaum, P. and Razin, A. 1995b. Interaction of M.SssI and M.HhaI with single-base mismatched oligodeoxynucleotide du-plexes. Gene 157: 177-9.
  • Roberts, R. J., Myers, P. A., Morrison, A., and Murray, K. 1976. A specific endonuclease from Haemophilus haemolyticus. J. Mol. Biol. 103: 199-208.
  • Roberts, R. J. 1995. On base flipping. Cell 82: 9-12.
  • Roberts, R. J. and Cheng, X. 1998. Base flip-ping. Annu. Rev. Biochem. 67: 181-98.
  • Sankpal, U. T. and Rao, D. N. 2002. Mutational analysis of conserved residues in Hha I DNA methyltransferase Nucleic Acids Res. 30: 2628-2638.
  • Santi, D. V. and Hardy, L. W. 1987. Catalytic mechanism and inhibition of tRNA (uracil-5-) methyltransferase: evidence for cova-lent catalysis. Biochemistry 26: 8599-606.
  • Scavetta, R. D., Thomas, C. B., Walsh, M. A., Szegedi, S., Joachimiak, A., Gumport, R. I., and Churchill, M. E. 2000. Structure of RsrI methyltransferase, a member of the N6-ad-enine beta class of DNA methyltransferases. Nucleic Acids Res. 28: 3950-61.
  • Schluckebier, G., O'Gara, M., Saenger, W., and Cheng, X. 1995. Universal catalytic domain structure of AdoMet-dependent methyltransferases. J. Mol. Biol. 247: 16- 20.
  • Schluckebier, G., Kozak, M., Bleimling, N., Weinhold, E., and Saenger, W. 1997. Dif-ferential binding of S-adenosylmethionine S-adenosylhomocysteine and Sinefungin to the adenine-specific DNA methyltransferase M.TaqI. J. Mol. Biol. 265: 56-67.
  • Serva, S., Weinhold, E., Roberts, R. J., and Klimasauskas, S. 1998. Chemical display of thymine residues flipped out by DNA methyltransferases. Nucleic Acids Res. 26: 3473-9.
  • Sheikhnejad, G., Brank, A., Christman, J. K., Goddard, A., Alvarez, E., Ford, H., Jr., Marquez, V. E., Marasco, C. J., Sufrin, J. R., O'Gara, M., and Cheng, X. 1999. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6- dihydro-5-azacytosine. J. Mol. Biol. 285: 2021- 34.
  • Shen, J. C., Rideout, W. M., 3rd, and Jones, P. A. 1992. High frequency mutagenesis by a DNA methyltransferase. Cell 71: 1073- 80.
  • Slupphaug, G., Mol, C. D., Kavli, B., Arvai, A. S., Krokan, H. E., and Tainer, J. A. 1996. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384: 87-92.
  • Smith, H. O. 1979. Nucleotide sequence speci-ficity of restriction endonucleases. Science 205: 455-62.
  • Smith, S. S., Hardy, T. A., and Baker, D. J. 1987. Human DNA (cytosine-5)methyltransferase selectively methylates duplex DNA con-taining mispairs. Nucleic Acids Res. 15: 6899-916.
  • Smith, S. S., Kan, J. L., Baker, D. J., Kaplan, B. E., and Dembek, P. 1991. Recognition of unusual DNA structures by human DNA (cytosine-5)methyltransferase. J. Mol. Biol. 217: 39-51.
  • Smith, S. S., Kaplan, B. E., Sowers, L. C., and Newman, E. M. 1992. Mechanism of hu-man methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc. Natl. Acad. Sci. U.S.A. 89: 4744-8.
  • Som, S. and Friedman, S. 1990. Direct photolabeling of the EcoRII methyltransferase with S-adenosyl-L-methionine. J. Biol. Chem. 265: 4278-83.
  • Swaminathan, C. P., Sankpal, U. T., Rao, D. N., and Surolia, A. 2002. Water-assisted dual mode cofactor recognition by HhaI DNA methyltransferase. J. Biol. Chem. 277: 4042-4049.
  • Szczelkun, M. D. and Connolly, B. A. 1995. Sequence-specific binding of DNA by the EcoRV restriction and modification enzymes with nucleic acid and cofactor ana-logues. Biochemistry 34: 10724-33.
  • Szegedi, S. S., Reich, N. O., and Gumport, R. I. 2000. Substrate binding in vitro and kinetics of RsrI [N6-adenine] DNA methyltransferase. Nucleic Acids Res. 28: 3962-71.
  • Tan, N. W. and Li, B. F. 1990. Interaction of oligo-nucleotides containing 6-O-methylguanine with human DNA (cytosine-5-)-methyltransferase [published erratumm appears in Biochemistry 1992 Aug 4;31(30):7008]. Biochemistry 29: 9234-40.
  • Tran, P. H., Korszun, Z. R., Cerritelli, S., Springhorn, S. S., and Lacks, S. A. 1998.
  • Crystal structure of the DpnM DNA adenine methyltransferase from the DpnII restriction system of streptococcus pneumoniae bound to S-adenosylmethionine. Structure 6: 1563- 75.
  • Trautner, T. A., Balganesh, T. S., and Pawlek, B. 1988. Chimeric multispecific DNA methyltransferases with novel combina-tions of target recognition. Nucleic Acids Res. 16: 6649-58.
  • Verdine, G. L. 1994. The flip side of DNA methylation. Cell 76: 197-200.
  • Vilkaitis, G., Dong, A., Weinhold, E., Cheng, X., and Klimasauskas, S. 2000. Functional roles of the conserved threonine 250 in the target recognition domain of HhaI DNA methyltransferase. J. Biol. Chem. 275: 38722-30.
  • Vilkaitis, G., Merkiene, E., Serva, S., Weinhold, E., and Klimasauskas, S. 2001. The mecha-nism of DNA cytosine-5 methylation. Kinetic and mutational dissection of HhaI methyltransferase. J. Biol. Chem. 276: 20924-34.
  • Wilke, K., Rauhut, E., Noyer-Weidner, M., Lauster, R., Pawlek, B., Behrens, B., and Trautner, T. A. 1988. Sequential order of target-recognizing domains in multispecific DNA-methyltransferases. EMBO J. 7: 2601-9.
  • Wu, J. C. and Santi, D. V. 1987. Kinetic and cata-lytic mechanism of HhaI methyltransferase. J. Biol. Chem. 262: 4778-86.
  • Wu, J. C. and Santi, D. V. 1988. High-level expression and purification of HhaI methyltransferase. Nucleic Acids Res. 16: 703-17.
  • Wyszynski, M. W., Gabbara, S., and Bhagwat, A. S. 1992. Substitutions of a cysteine conserved among DNA cytosine methy-lases result in a variety of phenotypes. Nucleic Acids Res. 20: 319-26.
  • Wyszynski, M. W., Gabbara, S., Kubareva, E. A., Romanova, E. A., Oretskaya, T. S., Gromova, E. S., Shabarova, Z. A., and Bhagwat, A. S. 1993. The cysteine conserved among DNA cytosine methylases is required for methyl transfer, but not for specific DNA binding. Nucleic Acids Res. 21: 295-301.
  • Yang, A. S., Shen, J. C., Zingg, J. M., Mi, S., and Jones, P. A. 1995. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res. 23: 1380-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.