9,585
Views
750
CrossRef citations to date
0
Altmetric
Research Article

Prebiotic Chemistry and the Origin of the RNA World

Pages 99-123 | Published online: 23 Mar 2010

REFERENCES

  • Acevedo O. L., Orgel L. E.. 1987. Non-enzymatic transcription of an oligodeoxynucleotide 14 residues long. J Mol Biol. 197: 187–193. [PUBMED], [INFOTRIEVE]
  • Anders E.. 1989. Pre-biotic organic matter from comets and asteroids. Nature. 342: 255–257. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Bachmann P. A., Luisi P. L., Lang J.. 1992. Autocatalytic self-replicating micelles as models for prebiotic structures. Nature. 357: 57–59
  • Beck A., Lohrmann R., Orgel L. E.. 1967. Phosphorylation with inorganic phosphates at moderate temperatures. Science. 157: 952, [PUBMED], [INFOTRIEVE]
  • Blochl E., Keller M., Wachtershauser G., Stetter K. O.. 1992. Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc Natl Acad Sci USA. 89: 8117–8120. [PUBMED], [INFOTRIEVE]
  • Botta O., Bada J. L.. 2002. Extraterrestrial organic compounds in meteorites. Surveys Geophys. 23: 411–467
  • Breslow R.. 1959. On the mechanism of the formose reaction. Tetrahedron Lett. 21: 22–26
  • Bridson P. K., Orgel L. E.. 1980. Catalysis of accurate poly(C)-directed synthesis of 3′-5′-linked oligoguanylates by Zn2+. J Mol Biol. 144: 567–577. [PUBMED], [INFOTRIEVE]
  • Butlerow A.. 1861. Formation synthetique d'une substance sucree. Compt Rend Acad Sci. 53: 145–147
  • Cairns-Smith A. G.. 1982; Genetic Takeover and the Mineral Origin of Life. Cambridge, Cambridge University Press
  • Cairns-Smith A. G., Davies C. J.. 1977. The design of novel replicating polymers. Encyclopaedia of Ignorance, Duncan R., Weston-Smith M., New York, Pergamon Press
  • Chakrabarti A. C., Breaker R. R., Joyce G. F., Deamer D. W.. 1994. Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. J Mol Evol. 39: 555–559. [PUBMED], [INFOTRIEVE]
  • Cheng C., Fan C., Wan R., Tong C., Miao Z., Chen J., Zhao Y.. 2002. Phosphorylation of adenosine with trimetaphosphate under simulated prebiotic conditions. Orig Life Evol Biosph. 32: 219–224. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Chyba C., Sagan C.. 1992. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature. 355: 125–132. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Cody G. D., Boctor N. Z., Filley T. R., Hazen R. M., Scott J. H., Sharma A., Yoder H. S., Jr.. 2000. Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science. 289: 1337–1340. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Cooper G., Kimmich N., Belisle W., Sarinana J., Brabham J., Garrel L.. 2001. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature. 414: 879–883. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Crick F. H.C.. 1968. The origin of the genetic code. J Mol Biol. 38: 367–379. [PUBMED], [INFOTRIEVE]
  • Cronin J. R., Chang S.. 1993. Organic matter in meteorites: molecular and isotopic analysis of the Murchison meteorite. The Chemistry of Life's Origin. pp. 209–258, Greenberg J. M., Mendoza-Gomez C. X., Pirronello V., The Netherlands, Kluwer Academic Publishers
  • Deamer D., Dworkin J. P., Sandford S. A., Bernstein M. P., Allamandola L. J.. 2002. The first cell membranes. Astrobiology. 2: 371–381. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Deamer D. W., Pashley R. M.. 1989. Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. Orig Life Evol Biosph. 19: 21–38. [PUBMED], [INFOTRIEVE]
  • Decker P., Schweer H., Pohlmann R.. 1982. Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography-mass spectrometry of n-butoxime trifluoroacetates on OV-225. J Chromatog. 244: 281–291
  • Diederichsen U.. 1996. Pairing properties of alanyl peptide nucleic acids containing an amino acid backbone with alternating configuration. Angew Chem Int Ed Engl. 35: 445–448
  • Dorr M., Kassbohrer J., Grunert R., Kreisel G., Brand W. A., Werner R. A., Geilmann H., Appel C., Robl C., Weigand W.. 2003. A possible prebiotic formation of ammonia from dinitrogen on iron sulfide surfaces. Angew Chem Int Ed Engl. 42: 1540–1543. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Dworkin J., Deamer D., Sandford S., Allamandola L.. 2001. Self-assembling amphiphilic molecules: synthesis in simulated interstellar/precometary ices. Proc Natl Acad Sci USA. 98: 815–819. [CROSSREF], [PUBMED]
  • Egholm M., Buchardt O., Christensen L., Behrens C., Freier S. M., Driver D. A., Berg R. H., Kim S. K., Norden B., Nielsen P. E.. 1993. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature. 365: 566–568. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Egholm M., Buchardt O., Nielsen P. E., Berg R. H.. 1992. Oligonucleotide analogues with an achiral peptide backbone. J Am Chem Soc. 114: 1895–1897
  • Ertem G., Ferris J. P.. 1997. Template-directed synthesis using the heterogeneous templates produced by montmorillonite catalysis. A possible bridge between the prebiotic and RNA worlds. J Am Chem Soc. 119: 7197–7201. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Ertem G., Ferris J. P.. 1998. Formation of RNA oligomers on montmorillonite: site of catalysis. Orig Life Evol Biosph. 28: 485–499. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Eschenmoser A.. 1999. Chemical etiology of nucleic acid structure. Science. 284: 2118–2124. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Etaix E., Orgel L. E.. 1978. Phosphorylation of nucleosides in aqueous solution using trimetaphosphate: formation of nucleoside triphosphates. J Carbohydrates-Nucleosides-Nucleotides. 5: 91–110
  • Ferris J. P., Joshi P. C., Wang K. J., Miyakawa S., Huang W.. 2003. Catalysis in prebiotic chemistry: application to the synthesis of RNA oligomers, Adv Space Res, in press.
  • Ferris J. P., Orgel L. E.. 1965. Aminomalononitrile and 4-amino-5-cyanoimidazole in hydrogen cyanide polymerization and adenine synthesis. J Am Chem Soc. 87: 4976–4977. [PUBMED], [INFOTRIEVE]
  • Ferris J. P., Orgel L. E.. 1966a. Studies on prebiotic synthesis. I. Aminomalononitrile and 4-amino-5-cyanoimidazole. J Am Chem Soc. 88: 3829–3831. [PUBMED], [INFOTRIEVE]
  • Ferris J. P., Orgel L. E.. 1966b. An unusual photochemical rearrangement in the synthesis of adenine from hydrogen cyanide. J Amer Chem Soc. 88: 1074
  • Ferris J. P., Sanchez R. A., Orgel L. E.. 1968. Studies in prebiotic synthesis. 3. Synthesis of pyrimidines from cyanoacetylene and cyanate. J Mol Biol. 33: 693–704. [PUBMED], [INFOTRIEVE]
  • Ferris J. P., Zamek O. S., Altbuch A. M., Freiman H.. 1974. Chemical evolution. 18. Synthesis of pyrimidines from guanidine and cyanoacetaldehyde. J Mol Evol. 3: 301–309. [PUBMED], [INFOTRIEVE]
  • Fuller W. D., Sanchez R. A., Orgel L. E.. 1972. Studies in prebiotic synthesis: VII. Solid-state synthesis of purine nucleosides. J Mol Evol. 1: 249–257. [PUBMED], [INFOTRIEVE]
  • Gabel N. W., Ponnamperuma C.. 1967. Model for origin of monosaccharides. Nature. 216: 453–455. [PUBMED], [INFOTRIEVE]
  • Gesteland R. F., Cech T. R., Atkins J. F.. 1999; The RNA World, 2nd ed., Cold Springs Harbor, NY, Cold Springs Harbor Press
  • Gilbert W.. 1986. The RNA World. Nature. 319: 618
  • Goo J.. 1961. Comets and the formation of biochemical compounds on the primitive Earth. Nature. 190: 389–390
  • Groebke K., Hunziker J., Fraser W., Peng L., Diederichsen U., Zimmermann K., Holzner A., Leumann C., Eschenmoser A.. 1998. Why pentose- and not hexose-nucleic acids? Part V. Purine-purine pairing in homo-DNA: Guanine, isoguanine, 2,6-diaminopurine, and xanthine. Helv Chim Acta. 81: 375–474
  • Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S.. 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 35: 849–857. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Halmann M., Sanchez R. A., Orgel L. E.. 1969. Phosphorylation of D-ribose in aqueous solution. J Org Chem. 34: 3702–3703
  • Hanczyc M. M., Fujikawa S. M., Szostak J. W.. 2003. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science. 302: 618–622. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Handschuh G. J., Lohrmann R., Orgel L. E.. 1973. The effect of Mg2+ and Ca2+ on urea-catalyzed phosphorylation reactions. J Mol Evol. 2: 251–262. [PUBMED], [INFOTRIEVE]
  • Hill A., Orgel L. E.. 2002. Synthesis of adenine from HCN tetramer and ammonium formate. Orig Life Evol Biosph. 32: 99–102. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Hill A. R., Jr., Bohler C., Orgel L. E.. 1998. Polymerization on the rocks: negatively-charged alpha-amino acids. Orig Life Evol Biosph. 28: 235–243. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Hill A. R., Jr., Orgel L. E., Wu T.. 1993. The limits of template-directed synthesis with nucleoside-5′-phosphoro(2-methyl)imidazolides. Orig Life Evol Biosph. 23: 285–290. [PUBMED], [INFOTRIEVE]
  • Howard F. B., Frazier J., Singer M. F., Miles H. T.. 1966. Helix formation between polyribonucleotides and purines, purine nucleosides and nucleotides. II. J Mol Biol. 16: 415–439. [PUBMED], [INFOTRIEVE]
  • Huang W., Ferris J. P.. 2003. Synthesis of 35–40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem Commun (Camb). 12: 1458–1459
  • Huber C., Wachtershauser G.. 1997. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science. 276: 245–247. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Huber C., Wachtershauser G.. 1998. Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. Science. 281: 670–672. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Ingar A. A., Luke R. W., Hayter B. R., Sutherland J. D.. 2003. Synthesis of cytidine ribonucleotides by stepwise assembly of the heterocycle on a sugar phosphate. Chembiochem. 4: 504–507. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Inoue T., Orgel L. E.. 1981. Substituent control of the poly(C)-directed oligomerization of guanosine 5-phosphoroimidazolide. J Amer Chem Soc. 103: 7666–7667
  • Johnston W. K., Unrau P. J., Lawrence M. S., Glasner M. E., Bartel D. P.. 2001. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science. 292: 1319–1325. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Joshi P. C., Pitsch S., Ferris J. P.. 2000. Homochiral selection in the montmorillonite-catalyzed and uncatalyzed prebiotic synthesis of RNA. Chem Com. 24: 2497–2498
  • Joyce G. F.. 1987. Nonenzymatic template-directed synthesis of informational macromolecules. Cold Spring Harb Symp Quant Biol. 52: 41–51. [PUBMED], [INFOTRIEVE]
  • Joyce G. F.. 2004. Directed evolution of nucleic acid enzymes. Ann Rev of Biochem. 73: 791–836
  • Joyce G. F., Orgel L. E.. 1999. Prospects for understanding the origin of the RNA world. The RNA World, 2nd ed., pp. 49–77, Gesteland R. F., Cech T. R., Atkins J. F., Cold Spring Harbor, Cold Spring Harbor Press
  • Joyce G. F., Visser G. M., van Boeckel C. A., van Boom J. H., Orgel L. E., and van Westrenen J.. 1984. Chiral selection in poly(C)-directed synthesis of oligo(G). Nature. 310: 602–604. [PUBMED], [INFOTRIEVE]
  • Kanavarioti A., Monnard P. A., Deamer D. W.. 2001. Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. Astrobiology. 1: 271–281. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Kasting J. F., Brown L. L.. 1998. The early atmosphere as a source of biogenic compounds. The Molecular Origins of Life. pp. 35–56., Brack A., New York, Cambridge University Press
  • Kieboom A., VanBekkum H.. 1984. Aspects of the chemical conversion of glucose. Rec Tr Chim Pays-Bas. 103: 1–12
  • Koppitz M., Nielsen P. E., Orgel L. E.. 1998. Formation of oligonucleotide-PNA-chimeras by template-directed ligation. J Am Chem Soc. 120: 4563–4569. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Kozlov I. A., Orgel L. E.. 2000. Nonenzymatic template-directed synthesis of RNA from monomers (translated from Molekulamaya Biologlya). Molecular Biology. 34: 781–789
  • Kozlov I. A., Orgel L. E., Nielsen P. E.. 2000a. Remote enantio selection transmitted by an achiral PNA backbone. Angew Chem Int Ed. 39: 4292–4295
  • Kozlov I. A., Politis P. K., Pitsch S., Herdewijn P., Orgel L. E.. 1999a. A highly enantio-selective hexitol nucleic acid template for nonenzymatic oligoguanylate synthesis. J Am Chem Soc. 121: 1108–1109. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Kozlov I. A., Politis P. K., van Aerschot A., Busson R., Herdewijn P., Orgel L. E.. 1999b. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure. J Am Chem Soc. 121: 2653–2656. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Kozlov I. A., Zielinski M., Allart B., Kerremans L., van Aerschot A., Busson R., Herdewijn P., Orgel L. E.. 2000b. Nonenzymatic template-directed reactions on altritol oligomers, preorganized analogues of oligonucleotides. Chemistry. 6: 151–155. [PUBMED], [INFOTRIEVE]
  • Krishnamurthy R., Guntha S., Eschenmoser A.. 2000. Regioselective α-phosphorylation of aldoses in aqueous solution. Angew Chem Int Ed Engl. 39: 2281–2285. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Kruger K., Grabowski P. J., Zaug A. J., Sands J., Gottschling D. E., Cech T. R.. 1982. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 31: 147–157. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Kurz M., Gobel K., Hartel C., Gobel M.. 1997. Nonenzymatic oligomerization of ribonucleotides on guanosine-rich templates: suppression of the self-pairing of guanosine. Angew Chem Int Ed Engl. 8: 842–845
  • Kurz M., Gobel K., Hartel C., Gobel M.. 1998. Acridine-labeled primers as tools for the study of nonenzymatic RNA oligomerization. Helv Chim Acta. 81: 1156–1180
  • Lohrmann R.. 1977. Formation of nucleoside 5′-phosphoramidates under potentially prebiological conditions. J Mol Evol. 10: 137–154. [PUBMED], [INFOTRIEVE]
  • Lohrmann R., Orgel L. E.. 1968. Prebiotic synthesis: phosphorylation in aqueous solution. Science. 161: 64–66. [PUBMED], [INFOTRIEVE]
  • Lohrmann R., Orgel L. E.. 1971. Urea-inorganic phosphate mixtures as prebiotic phosphorylating agents. Science. 171: 490–494. [PUBMED], [INFOTRIEVE]
  • Lohrmann R., Orgel L. E.. 1980. Efficient catalysis of polycytidylic acid-directed oligoguanylate formation by Pb2+. J Mol Biol. 142: 555–567. [PUBMED], [INFOTRIEVE]
  • Lundstrom F. O., Whittaker C. W.. 1937. Chemical reactions in fertilizer mixtures. Effect of ammoniation on urea component of superphosphate mixtures. Ind Eng Chem. 29: 61–68
  • Miller S. L.. 1953. A production of amino acids under possible primitive earth conditions. Science. 117: 528–529. [PUBMED], [INFOTRIEVE]
  • Miller S. L.. 1957. The mechanism of synthesis of amino acids by electric discharges. Biochim Biophys Acta. 23: 480–489. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Miller S. L.. 1997. Peptide nucleic acids and prebiotic chemistry. Nat Struct Biol. 4: 167–169. [PUBMED], [INFOTRIEVE]
  • Miyakawa S., Cleaves H. J., Miller S. L.. 2002a. The cold origin of life: A. Implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Orig Life Evol Biosph. 32: 195–208. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Miyakawa S., Cleaves H. J., Miller S. L.. 2002b. The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph. 32: 209–218. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Miyakawa S., Murasawa K., Kobayashi K., Sawaoka A. B.. 2000. Abiotic synthesis of guanine with high-temperature plasma. Orig Life Evol Biosph. 30: 557–566. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Mizuno T., Weiss A. H.. 1974. Synthesis and utilization of formose sugars. Advances in Carbohydrate Chemistry and Biochemistry. v. 29: pp. 173–227, Tipson R. W., Horton D., New YorkLondon, Academic Press
  • Monnard P. A., Kanavarioti A., Deamer D. W.. 2003. Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. J Am Chem Soc. 125: 13734–13740. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Moravek J.. 1967. Formation of oligonucleotides during heating of a mixture of uridine 2′(3′)-phosphate and uridine. Tetrahedron Lett. 18: 1707–1710. [PUBMED], [INFOTRIEVE]
  • Mueller D., Pitsch S., Kittaka A., Wagner E., Wintner C. E., Eschenmoser A.. 1990. Chemistry of alpha aminonitriles. Aldomerization of glycolaldehyde phosphate to racemic hexose 2,4,6triphosphates and (in presence of formaldehyde) racemic pentose 2,4-diphosphates: rac -Allose 2, 4, 6-triphosphate and racemic ribose 2,4-diphosphate are the main reaction products. Helvetica Chimica Acta. 73: 1410–1468
  • Naylor R., Gilham P. T.. 1966. Studies on some interactions and reactions of oligonucleotides in aqueous solution. Biochemistry. 5: 2722–2728. [PUBMED], [INFOTRIEVE]
  • Nelson K. E., Robertson M. P., Levy M., Miller S. L.. 2001. Concentration by evaporation and the prebiotic synthesis of cytosine. Orig Life Evol Biosph. 31: 221–229. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Ninio J., Orgel L. E.. 1978. Heteropolynucleotides as templates for nonenzymatic polymerizations. J Mol Evol. 12: 91–99. [PUBMED], [INFOTRIEVE]
  • Oberholzer T., Albrizio M., Luisi P. L.. 1995. Polymerase chain reaction in liposomes. Chem Biol. 2: 677–682. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Orgel L., Sulston J.. 1971. Polynucleotide replication and the origin of life. Prebiotic and Biochemical Evolution. pp. 89–94, Kimball A., Oro J., Amsterdam, North-Holland Publishing Company
  • Orgel L. E.. 1968. Evolution of the genetic apparatus. J Mol Biol. 38: 381–393. [PUBMED], [INFOTRIEVE]
  • Orgel L. E.. 1992. Molecular replication. Nature. 358: 203–209. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Orgel L. E.. 1998. Polymerization on the rocks: theoretical introduction. Orig Life Evol Biosph. 28: 227–234. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Orgel L. E.. 2000. Self-organizing biochemical cycles. Proc Natl Acad Sci USA. 97: 12503–12507. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Orgel L. E.. 2002. Is cyanoacetylene prebiotic?. Orig Life Evol Biosph. 32: 279–281. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Orgel L. E.. 2003. Some consequences of the RNA world hypothesis. Orig Life Evol Biosph. 33: 211–218. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Orgel L. E.. 2004. Prebiotic adenine revisited: eutectics and photochemistry, Orig Life Evol Biosph, in press.
  • Oro J.. 1961a. Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature. 191: 1193–1194. [PUBMED], [INFOTRIEVE]
  • Oro J.. 1961b. Comets and the formation of biochemical compounds on the primitive Earth. Nature. 190: 389–390
  • Oro J., Kimball A.. 1960. Synthesis of adenine from ammonium cyanide. Biochem Biophys Res Commun. 2: 407–412
  • Oro J., Kimball A. P.. 1961. Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch Biochem Biophys. 94: 217–227. [PUBMED], [INFOTRIEVE]
  • Oro J., Kimball A. P.. 1962. Synthesis of purines under possible primitive earth conditions. II. Purine intermediates from hydrogen cyanide. Arch Biochem Biophys. 96: 293–313. [PUBMED], [INFOTRIEVE]
  • Osterberg R., Orgel L. E.. 1972. Polyphosphate and trimetaphosphate formation under potentially prebiotic conditions. J Mol Evol. 1: 241–248. [PUBMED], [INFOTRIEVE]
  • Osterberg R., Orgel L. E., Lohrmann R.. 1973. Further studies of urea-catalyzed phosphorylation reactions. J Mol Evol. 2: 231–234. [PUBMED], [INFOTRIEVE]
  • Peyser J. R., Ferris J. P.. 2001. The rates of hydrolysis of thymidyl-3′,5′-thymidine-H-phosphonate: the possible role of nucleic acids linked by diesters of phosphorous acid in the origins of life. Orig Life Evol Biosph. 31: 363–380. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Pitsch S., Eschenmoser A., Gedulin B., Hui S., Arrhenius G.. 1995. Mineral induced formation of sugar phosphates. Orig Life Evol Biosph. 25: 297–334. [PUBMED], [INFOTRIEVE]
  • Pitsch S., Wendeborn S., Krishnamurthy R., Holzner A., Minton M., Bolli M., et al, 2003. Pentopyranosyl oligonucleotide systems, 9th communication. The beta-D-ribopyranosyl-(4′-2′)-oligonucleotide system (“Pyranosyl-RNA”): synthesis and resume of base-pairing properties. Helv Chim Acta. 86: 4270–4363
  • Prabahar K. J., Ferris J. P.. 1997. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3′,5′-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA. J Am Chem Soc. 119: 4330–4337. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Prudent J. R., Uno T., Schultz P. G.. 1994. Expanding the scope of RNA catalysis. Science. 264: 1924–1927. [PUBMED], [INFOTRIEVE]
  • Puglisi J. D., Williamson J. R.. 1999. RNA interaction with small ligands and peptides. The RNA World, 2nd ed, pp. 403–425, Gesteland R. F., Cech T. R., Atkins J. F., Cold Spring Harbor, Cold Spring Harbor Laboratory Press
  • Reid C., Orgel L. E.. 1967. Synthesis of sugars in potentially prebiotic conditions. Nature. 216: 455, [PUBMED], [INFOTRIEVE]
  • Reimann R., Zubay G.. 1999. Nucleoside phosphorylation: a feasible step in the prebiotic pathway to RNA. Orig Life Evol Biosph. 29: 229–247. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Ricardo A., Carrigan M. A., Olcott A. N., Benner S. A.. 2004. Borate minerals stabilize ribose. Science. 303: 196, [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Robertson M. P., Miller S. L.. 1995a. An efficient prebiotic synthesis of cytosine and uracil. Nature. 375: 772–774. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Robertson M. P., Miller S. L.. 1995b. Correction. an Efficient Prebiotic Synthesis of Cytosine and Uracil. Nature. 377: 257
  • Rohatgi R., Bartel D. P., Szostak J. W.. 1996a. Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. J Am Chem Soc. 118: 3332–3339. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Rohatgi R., Bartel D. P., Szostak J. W.. 1996b. Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for the formation of 3′-5′ phosphodiester bonds. J Am Chem Soc. 118: 3340–3344. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Saffhill R.. 1970. Selective phosphorylation of the cis-2′,3′-diol of unprotected ribonucleosides with trimetaphosphate in aqueous solution. J Org Chem. 35: 2881–2883. [PUBMED], [INFOTRIEVE]
  • Saladino R., Crestini C., Costanzo G., Negri R., Di Mauro E.. 2001. A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: implications for the origin of life. Bioorg Med Chem. 9: 1249–1253. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Sanchez R., Ferris J. P., Orgel L. E.. 1966a. Conditions for purine synthesis: did prebiotic synthesis occur at low temperatures?. Science. 153: 72–73. [PUBMED], [INFOTRIEVE]
  • Sanchez R. A., Ferris J. P., Orgel L. E.. 1966b. Cyanoacetylene in prebiotic synthesis. Science. 154: 784–785. [PUBMED], [INFOTRIEVE]
  • Sanchez R. A., Ferris J. P., Orgel L. E.. 1967. Studies in prebiotic synthesis. II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J Mol Biol. 30: 223–253. [PUBMED], [INFOTRIEVE]
  • Sanchez R. A., Ferris J. P., Orgel L. E.. 1968. Studies in prebiotic synthesis. IV. Conversion of 4-aminoimidazole-5-carbonitrile derivatives to purines. J Mol Biol. 38: 121–128. [PUBMED], [INFOTRIEVE]
  • Sanchez R. A., Orgel L. E.. 1970. Studies in prebiotic synthesis. V. Synthesis and photoanomerization of pyrimidine nucleosides. J Mol Biol. 47: 531–543. [PUBMED], [INFOTRIEVE]
  • Sawai H.. 1976. Catalysis of internucleotide bond formation by divalent metal ions. J Am Chem Soc. 98: 7037–7039. [PUBMED], [INFOTRIEVE]
  • Sawai H., Higa K., Kuroda K.. 1992. Synthesis of cyclic and acyclic oligocytidylates by uranyl catalysis in aqueous solution. Chem Soc Perkin Trans. 1: 505–508
  • Sawai H., Karoda K., Hojo T.. 1989. Uranyl ion as a highly effective catalyst for internucleotide bond formation. Bull Chem Soc Jpn. 62: 2018–2023
  • Sawai H., Orgel L. E.. 1975. Oligonucleotide synthesis catalyzed by the Zn2+ ion. J Am Chem Soc. 97: 3532–3533. [PUBMED], [INFOTRIEVE]
  • Schmidt J. G., Christensen L., Nielsen P. E., Orgel L. E.. 1997. Information transfer from DNA to peptide nucleic acids by template-directed syntheses. Nucleic Acids Res. 25: 4792–4796. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Schoning K., Scholz P., Guntha S., Wu X., Krishnamurthy R., Eschenmoser A.. 2000. Chemical etiology of nucleic acid structure: the alpha-threofuranosyl-(3′→2′) oligonucleotide system. Science. 290: 1347–1351. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Schwartz A. W.. 1969. Specific phosphorylation of the 2′- and 3′ positions in ribonucleotides. J Am Chem Soc. 23: 1393
  • Schwartz A. W.. 1997. Prebiotic phosphorus chemistry reconsidered. Orig Life Evol Biosph. 27: 505–512. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Schwartz A. W., Joosten H., Voet A. B.. 1982. Prebiotic adenine synthesis via HCN oligomerization in ice. Biosystems. 15: 191–193. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Schwartz A. W., Orgel L. E.. 1984. Template-directed polynucleotide synthesis on mineral surfaces. J Mol Evol. 21: 299–300. [PUBMED], [INFOTRIEVE]
  • Shabarova Z. A.. 1988. Chemical development in the design of oligonucleotide probes for binding to DNA and RNA. Biochimie. 70: 1323–1334. [PUBMED], [INFOTRIEVE]
  • Shapiro R.. 1999. Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc Natl Acad Sci USA. 96: 4396–4401. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Shapiro R.. 2002. Comments on ‘concentration by evaporation and the prebiotic synthesis of cytosine.’. Orig Life Evol Biosph. 32: 275–278. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Sleeper H. L., Orgel L. E.. 1979. The catalysis of nucleotide polymerization by compounds of divalent lead. J Mol Evol. 12: 357–364. [PUBMED], [INFOTRIEVE]
  • Socha R., Weiss A. H., Sakharov M. M.. 1980. Autocatalysis in the formose reaction. React Kinet Catal Lett. 14: 119–124
  • Steitz T. A., Moore P. B.. 2003. RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci. 28: 411–418. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Sulston J., Lohrmann R., Orgel L. E., Miles H. T.. 1968a. Nonenzymatic synthesis of oligoadenylates on a polyuridylic acid template. Proc Natl Acad Sci USA. 59: 726–733. [PUBMED], [INFOTRIEVE]
  • Sulston J., Lohrmann R., Orgel L. E., Miles H. T.. 1968b. Specificity of oligonucleotide synthesis directed by polyuridylic acid. Proc Natl Acad Sci USA. 60: 409–415. [PUBMED], [INFOTRIEVE]
  • Sulston J., Lohrmann R., Orgel L. E., Schneider-Bernloehr H., Weimann B. J., Miles H. T.. 1969. Non-enzymic oligonucleotide synthesis on a polycytidylate template. J Mol Biol. 40: 227–234. [PUBMED], [INFOTRIEVE]
  • Tapiero C. M., Nagyvary J.. 1971. Prebiotic formation of cytidine nucleotides. Nature. 231: 42–43. [PUBMED], [INFOTRIEVE]
  • Tsuhako M., Fujimoto M., Ohashi S. A., Nariai H., Motooka I.. 1984. Phosphorylation of nucleosides with sodium cyclo-triphosphate. Bull Chem Soc Japan. 57: 3274–3280
  • Unrau P. J., Bartel D. P.. 1998. RNA-catalysed nucleotide synthesis. Nature. 395: 260–263. [PUBMED], [INFOTRIEVE]
  • Voet A. B., Schwartz A. W.. 1983. Prebiotic adenine synthesis from HCN-evidence for a newly discovered major pathway. Biorg Chem. 12: 8–17
  • Wachtershauser G.. 1988. Before enzymes and templates: theory of surface metabolism. Microbiol Rev. 52: 452–484. [PUBMED], [INFOTRIEVE]
  • Wakamatsu H., Yamada Y., Saito T., Kumashiro I., Takenishi T.. 1966. Synthesis of adenine by oligomerization of hydrogen cyanide. J Org Chem. 31: 2035–2036
  • Walde P., Wick R., Fresta M., Mangone A., Luisi P. L.. 1994. Autopoietic self-reproduction of fatty acid vesicles. J Am Chem Soc. 116: 11649–11654
  • Wang K. J., Ferris J. P.. 2001. Effect of inhibitors on the montmorillonite clay-catalyzed formation of RNA: studies on the reaction pathway. Orig Life Evol Biosph. 31: 381–402. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • White H. B., 3rd.. 1976. Coenzymes as fossils of an earlier metabolic state. J Mol Evol. 7: 101–104. [PUBMED], [INFOTRIEVE]
  • Wilson D. S., Szostak J. W.. 1999. In vitro selection of functional nucleic acids. Annu Rev Biochem. 68: 611–647. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Woese C.. 1967; The Genetic Code, the Molecular Basis for Genetic Expression. New York, Harper and Row
  • Wohler F.. 1828. On the artificial production of urea. Annalen der physik und chemie. 88: 253–256
  • Wu T., Orgel L. E.. 1992a. Nonenzymatic template-directed synthesis on oligodeoxycytidylate sequences in hairpin oligonucleotides. J Am Chem Soc. 114: 317–322. [PUBMED], [INFOTRIEVE]
  • Wu T., Orgel L. E.. 1992b. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 2. Templates containing cytidine and guanosine residues. J Am Chem Soc. 114: 5496–5501. [PUBMED], [INFOTRIEVE]
  • Wu T., Orgel L. E.. 1992c. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 3. Incorporation of adenosine and uridine residues. J Am Chem Soc. 114: 7963–7969. [PUBMED], [INFOTRIEVE]
  • Yamagata Y.. 1999. Prebiotic formation of ADP and ATP from AMP, calcium phosphates and cyanate in aqueous solution. Orig Life Evol Biosph. 29: 511–520. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Yamagata Y., Inoue H., Inomata K.. 1995. Specific effect of magnesium ion on 2′,3′-cyclic AMP synthesis from adenosine and trimeta phosphate in aqueous solution. Orig Life Evol Biosph. 25: 47–52. [PUBMED], [INFOTRIEVE]
  • Yamagata Y., Watanabe H., Saitoh M., Namba T.. 1991. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature. 352: 516–519. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Zielinski M., Kozlov I. A., Orgel L. E.. 2000. A comparison of RNA with DNA in template-directed synthesis. Helv Chim Acta. 83: 1678–1684. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Zolotov M. Y., Seewald J. S., McCallum T. M.. 2001. Experimental investigation of aqueous carbon monoxide reactivity under hydrothermal condition. Eleventh Annual V. M. Goldschmidt Conference. Hot Springs, VA
  • Zubay G.. 1998. Studies on the lead-catalyzed synthesis of aldopentoses. Orig Life Evol Biosph. 28: 13–26. [CROSSREF], [PUBMED], [INFOTRIEVE]
  • Zubay G., Mui T.. 2001. Prebiotic synthesis of nucleotides. Orig Life Evol Biosph. 31: 87–102. [CROSSREF], [PUBMED], [INFOTRIEVE]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.