2,919
Views
315
CrossRef citations to date
0
Altmetric
Research Article

The Ins and Outs of Ring-Cleaving Dioxygenases

, &
Pages 241-267 | Published online: 11 Oct 2008

REFERENCES

  • Adams R. H., Huang C. -M., Higson F. K., Brenner V., Focht D. D. Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Appl Environ Microbiol 1992; 58: 647–654, [INFOTRIEVE], [CSA]
  • Alder E. Lignin chemistry—past, present and future. Wood Sci Technol 1977; 11: 169–218, [CROSSREF], [CSA]
  • Anand R., Dorrestein P. C., Kinsland C., Begley T. P., Ealick S. E. Structure of oxalate decarboxylase from Bacillus subtilis at 1.75 Å resolution. Biochemistry 2002; 41: 7659–7669, [INFOTRIEVE], [CROSSREF], [CSA]
  • Arciero D. M., Lipscomb J. D. Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. Evidence for direct substrate binding to the active site Fe2+ of extradiol dioxygenases. J Biol Chem 1986; 261: 2170–2178, [INFOTRIEVE], [CSA]
  • Arciero D. M., Orville A. M., Lipscomb J. D. [17O]Water and nitric oxide binding by protocatechuate 4,5-dioxygenase and catechol 2,3-dioxygenase. Evidence for binding of exogenous ligands to the active site Fe2 + of extradiol dioxygenases. J Biol Chem 1985; 260: 14035–14044, [INFOTRIEVE], [CSA]
  • Armengaud J., Timmis K. N., Wittich R. M. A functional 4-hydroxysalicylate/hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1. J Bacteriol 1999; 181: 3452–3461, [INFOTRIEVE], [CSA]
  • Armstrong R. N. Mechanistic diversity in a metalloenzyme superfamily. Biochemistry 2000; 39: 13625–13632, [INFOTRIEVE], [CROSSREF], [CSA]
  • Arras T., Schirawski J., Unden G. Availability of O2 as a substrate in the cytoplasm of bacteria under aerobic and microaerobic conditions. J Bacteriol 1998; 180: 2133–2136, [INFOTRIEVE], [CSA]
  • Asturias J. A., Eltis L. D., Prucha M., Timmis K. N. Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6. Identification of a new family of extradiol dioxygenases. J Biol Chem 1994; 269: 7807–7815, [INFOTRIEVE], [CSA]
  • Bartels I., Knackmuss H. -J., Reineke W. Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 1984; 47: 500–505, [INFOTRIEVE], [CSA]
  • Bernat B. A., Laughlin L. T., Armstrong R. N. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry 1997; 36: 3050–3055, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bertini I., Briganti F., Scozzafava A. Aliphatic and aromatic inhibitors binding to the active site of catechol 2,3-dioxygenase from Pseudomonas putida mt-2. FEBS Lett 1994; 343: 56–60, [INFOTRIEVE], [CROSSREF], [CSA]
  • Blasiak L. C., Vaillancourt F. H., Walsh C. T., Drennan C. L. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 2006; 440: 368–371, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bolin J. T., Eltis L. D. 2,3-Dihydroxybiphenyl 1,2-dioxygenase. Handbook of Metalloproteins, A. Messerschmidt, R. Huber, T. Poulos, K. Wieghardt. John Wiley & Sons, Chichester, UK 2001; 632–642
  • Borowski T., Georgiev V., Siegbahn P. E. Catalytic reaction mechanism of homogentisate dioxygenase: a hybrid DFT study. J Am Chem Soc 2005; 127: 17303–17314, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bugg T. D.H., Lin G. Solving the riddle of the intradiol and extradiol catechol dioxygenases: how do enzymes control hydroperoxide rearrangements?. Chem Commun 2001; 2001: 941–952, [CROSSREF], [CSA]
  • Bugg T. D.H. Overproduction, purification and properties of 2,3-dihydroxyphenylpropionate 1,2-dioxygenase from Escherichia coli. Biochim Biophys Acta 1993; 1202: 258–264, [INFOTRIEVE], [CSA]
  • Bull C., Ballou D. P., Otsuka S. The reaction of oxygen with protocatechuate 3,4-dioxygenase from Pseudomonas putida. Characterization of a new oxygenated intermediate. J Biol Chem 1981; 256: 12681–12686, [INFOTRIEVE], [CSA]
  • Cain R. B. Anthranilic acid metabolism by microorganisms. Formation of 5-hydroxyanthranilate as an intermediate in anthranilate metabolism by Norcardia opaca. Antonie Van Leeuwenhoek 1968; 34: 17–32, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cameron A. D., Olin B., Ridderstrom M., Mannervik B., Jones T. A. Crystal structure of human glyoxalase I–evidence for gene duplication and 3D domain swapping. EMBO J. 1997; 16: 3386–3395, [INFOTRIEVE], [CROSSREF], [CSA]
  • Catelani D., Colombi A., Sorlini C., Treccani V. Metabolism of biphenyl. 2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate: the meta-cleavage product from 2,3-dihydroxybiphenyl by Pseudomonas putida. Biochem J 1973; 134: 1063–1066, [INFOTRIEVE], [CSA]
  • Cerdan P., Rekik M., Harayama S. Substrate specificity differences between two catechol 2,3-dioxygenases encoded by the TOL and NAH plasmids from Pseudomonas putida. Eur J Biochem 1995; 229: 113–118, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cerdan P., Wasserfallen A., Rekik M., Timmis K. N., Harayama S. Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. J Bacteriol 1994; 176: 6074–6081, [INFOTRIEVE], [CSA]
  • Chauhan A., Samanta S. K., Jain R. K. Degradation of 4-nitrocatechol by Burkholderia cepacia: a plasmid-encoded novel pathway. J Appl Microbiol 2000; 88: 764–772, [INFOTRIEVE], [CROSSREF], [CSA]
  • Christinet L., Burdet F. X., Zaiko M., Hinz U., Zryd J. P. Characterization and functional identification of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiol 2004; 134: 265–274, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cleasby A., Wonacott A., Skarzynski T., Hubbard R. E., Davies G. J., Proudfoot A. E., Bernard A. R., Payton M. A., Wells T. N. The x-ray crystal structure of phosphomannose isomerase from Candida albicans at 1.7 angstrom resolution. Nat Struct Biol 1996; 3: 470–479, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cooper R. A., Skinner M. A. Catabolism of 3-and 4-hydroxyphenylacetate by the 3,4-dihydroxyphenylacetate pathway in Escherichia coli. J Bacteriol 1980; 143: 302–306, [INFOTRIEVE], [CSA]
  • Crawford R. L. Pathways of 4-hydroxybenzoate degradation among species of Bacillus. J Bacteriol 1976; 127: 204–210, [INFOTRIEVE], [CSA]
  • Crawford R. L., Hutton S. W., Chapman P. J. Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J Bacteriol 1975; 121: 794–799, [INFOTRIEVE], [CSA]
  • Dagley S. Determinants of biodegradability. Q Rev Biophys 1978; 11: 577–602, [INFOTRIEVE], [CSA]
  • Dagley S. Biochemistry of aromatic hydrocarbon degradation in Pseudomonads. The Bacteria, J. R. Sokatch, J. L. Ornston. Academic Press Inc., Orlando 1986; 527–555
  • Dagley S., Geary P. J., Wood J. M. The metabolism of protocatechuate by Pseudomonas testosteroni. Biochem J 1968; 109: 559–568, [INFOTRIEVE], [CSA]
  • Dai S., Vaillancourt F. H., Maaroufi H., Drouin N. M., Neau D. B., Snieckus V., Bolin J. T., Eltis L. D. Identification and analysis of a bottleneck in PCB biodegradation. Nat Struct Biol 2002; 9: 934–939, [INFOTRIEVE], [CROSSREF], [CSA]
  • Dai Y., Wensink P. C., Abeles R. H. One protein, two enzymes. J Biol Chem 1999; 274: 1193–1195, [INFOTRIEVE], [CROSSREF], [CSA]
  • Daubaras D. L., Hershberger C. D., Kitano K., Chakrabarty A. M. Sequence analysis of a gene cluster involved in metabolism of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia AC1100. Appl Environ Microbiol 1995; 61: 1279–1289, [INFOTRIEVE], [CSA]
  • Davis J. K., He Z., Somerville C. C., Spain J. C. Genetic and biochemical comparison of 2-aminophenol 1,6-dioxygenase of Pseudomonas pseudoalcaligenes JS45 to meta-cleavage dioxygenases: divergent evolution of 2-aminophenol meta-cleavage pathway. Arch Microbiol 1999; 172: 330–339, [INFOTRIEVE], [CROSSREF], [CSA]
  • Davis M. I., Wasinger E. C., Decker A., Pau M. Y.M., Vaillancourt F. H., Bolin J. T., Eltis L. D., Hedman B., Hodgson K. O., Solomon E. I. Spectroscopic and electronic structure studies of 2,3-dihydroxybiphenyl 1,2-dioxygenase: O2 reactivity of the non-heme ferrous site in extradiol dioxygenases. J Am Chem Soc 2003; 125: 11214–11227, [INFOTRIEVE], [CROSSREF], [CSA]
  • DeLano W. L. The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA 2002
  • Denef V. J., Klappenbach J. A., Patrauchan M. A., Florizone C., Rodrigues J. L.M., Tsoi T. V., Verstraete W., Eltis L. D., Tiedje J. M. Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400. Appl Environ Microbiol 2006; 72: 585–595, [INFOTRIEVE], [CROSSREF], [CSA]
  • Dumas P., Bergdoll M., Cagnon C., Masson J. M. Crystal structure and site-directed mutagenesis of a bleomycin resistance protein and their significance for drug sequestering. EMBO J 1994; 13: 2483–2492, [INFOTRIEVE], [CSA]
  • Dunwell J. M., Culham A., Carter C. E., Sosa-Aguirre C. R., Goodenough P. W. Evolution of functional diversity in the cupin superfamily. Trends Biochem Sci 2001; 26: 740–746, [INFOTRIEVE], [CROSSREF], [CSA]
  • Dunwell J. M., Khuri S., Gane P. J. Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 2000; 64: 153–179, [INFOTRIEVE], [CROSSREF], [CSA]
  • Earhart C. A., Vetting M. W., Gosu R., Michaud-Soret I., Que L., Jr., Ohlendorf D. H. Structure of catechol 1,2-dioxygenase from Pseudomonas arvilla. Biochem Biophys Res Commun 2005; 338: 198–205, [INFOTRIEVE], [CROSSREF], [CSA]
  • Elgren T. E., Orville A. M., Kelly K. A., Lipscomb J. D., Ohlendorf D. H., Que L., Jr. Crystal structure and resonance Raman studies of protocatechuate 3,4-dioxygenase complexed with 3,4-dihydroxyphenylacetate. Biochemistry 1997; 36: 11504–11513, [INFOTRIEVE], [CROSSREF], [CSA]
  • Eltis L. D., Bolin J. T. Evolutionary relationships among extradiol dioxygenases. J Bacteriol 1996; 178: 5930–5937, [INFOTRIEVE], [CSA]
  • Eltis L. D., Hofmann B., Hecht H. -J., Lunsdorf H., Timmis K. N. Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase. J Biol Chem 1993; 268: 2727–2732, [INFOTRIEVE], [CSA]
  • Emerson J. P., Wagner M. L., Reynolds M. F., Que L., Jr., Sadowsky M. J., Wackett L. P. The role of histidine 200 in MndD, the Mn(II)-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis CM-2, a site-directed mutagenesis study. J Biol Inorg Chem 2005; 10: 751–760, [INFOTRIEVE], [CROSSREF], [CSA]
  • Ferraroni M., Seifert J., Travkin V. M., Thiel M., Kaschabek S., Scozzafava A., Golovleva L., Schlomann M., Briganti F. Crystal structure of the hydroxyquinol 1,2-dioxygenase from Nocardioides simplex 3E, a key enzyme involved in polychlorinated aromatics biodegradation. J Biol Chem 2005; 280: 21144–21154, [INFOTRIEVE], [CROSSREF], [CSA]
  • Ferraroni M., Solyanikova I. P., Kolomytseva M. P., Scozzafava A., Golovleva L., Briganti F. Crystal structure of 4-chlorocatechol 1,2-dioxygenase from the chlorophenol-utilizing gram-positive Rhodococcus opacus 1CP. J Biol Chem 2004; 279: 27646–27655, [INFOTRIEVE], [CROSSREF], [CSA]
  • Fetzner S. Oxygenases without requirement for cofactors or metal ions. Appl Microbiol Biotechnol 2002; 60: 243–257, [INFOTRIEVE], [CROSSREF], [CSA]
  • Flatmark T., Stevens R. C. Structural insight into the aromatic amino acid hydroxylases and their disease-related mutant forms. Chem Rev 1999; 99: 2137–2160, [INFOTRIEVE], [CROSSREF], [CSA]
  • Fortin P. D., Macpherson I., Neau D. B., Bolin J. T., Eltis L. D. Directed evolution of a ring-cleaving dioxygenase for polychlorinated biphenyl degradation. J Biol Chem 2005; 280: 42307–42314, [INFOTRIEVE], [CROSSREF], [CSA]
  • Frazee R. W., Orville A. M., Dolbeare K. B., Yu H., Ohlendorf D. H., Lipscomb J. D. The axial tyrosinate Fe3 + ligand in protocatechuate 3,4-dioxygenase influences substrate binding and product release: evidence for new reaction cycle intermediates. Biochemistry 1998; 37: 2131–2144, [INFOTRIEVE], [CROSSREF], [CSA]
  • Frerichs-Deeken U., Fetzner S. Dioxygenases without requirement for cofactors: identification of amino acid residues involved in substrate binding and catalysis, and testing for rate-limiting steps in the reaction of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase. Curr Microbiol 2005; 51: 344–352, [INFOTRIEVE], [CSA]
  • Frerichs-Deeken U., Ranguelova K., Kappl R., Huttermann J., Fetzner S. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion. Biochemistry 2004; 43: 14485–14499, [INFOTRIEVE], [CSA]
  • Fusetti F., Schroter K. H., Steiner R. A., van Noort P. I., Pijning T., Rozeboom H. J., Kalk K. H., Egmond M. R., Dijkstra B. W. Crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus. Structure 2002; 10: 259–268, [INFOTRIEVE], [CROSSREF], [CSA]
  • Gaal A., Neujahr H. Y. Metabolism of phenol and resorcinol in Trichosporon cutaneum. J Bacteriol 1979; 137: 13–21, [INFOTRIEVE], [CSA]
  • Gerlt J. A., Babbitt P. C. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Ann Rev Biochem 2001; 70: 209–246, [INFOTRIEVE], [CROSSREF], [CSA]
  • Gescher J., Zaar A., Mohamed M., Schagger H., Fuchs G. Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii. J Bacteriol 2002; 184: 6301–6315, [INFOTRIEVE], [CROSSREF], [CSA]
  • Gibello A., Ferrer E., Martin M., Garrido-Pertierra A. 3,4-Dihydroxyphenylacetate 2,3-dioxygenase from Klebsiella pneumoniae, a Mg2+-containing dioxygenase involved in aromatic catabolism. Biochem J 1994; 301: 145–150, [INFOTRIEVE], [CSA]
  • Gibson D. T., Koch J. R., Kallio R. E. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 1968; 7: 2653–2662, [INFOTRIEVE], [CROSSREF], [CSA]
  • Gonçalves E. R., Hara H., Miyazawa D., Davies J., Eltis L. D., Mohn W. W. A Large Stimulon Induced by Biphenyl and Alkyl Benzenes in Rhodococcus sp. RHA1. Appl Environ Microbiol 2006; 72, In press[CSA]
  • Groce S. L., Lipscomb J. D. Conversion of extradiol aromatic ring-cleaving homoprotocatechuate 2,3-dioxygenase into an intradiol cleaving enzyme. J Am Chem Soc 2003; 125: 11780–11781, [INFOTRIEVE], [CROSSREF], [CSA]
  • Groce S. L., Lipscomb J. D. Aromatic ring cleavage by homoprotocatechuate 2,3-dioxygenase: role of His200 in the kinetics of interconversion of reaction cycle intermediates. Biochemistry 2005; 44: 7175–7188, [INFOTRIEVE], [CROSSREF], [CSA]
  • Groce S. L., Miller-Rodeberg M. A., Lipscomb J. D. Single-turnover kinetics of homoprotocatechuate 2,3-dioxygenase. Biochemistry 2004; 43: 15141–15153, [INFOTRIEVE], [CROSSREF], [CSA]
  • Grund E., Denecke B., Eichenlaub R. Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl Environ Microbiol 1992; 58: 1874–1877, [INFOTRIEVE], [CSA]
  • Hamilton A. J., Lycett G. W., Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 1990; 346: 284–287, [CROSSREF], [CSA]
  • Han S., Eltis L. D., Timmis K. N., Muchmore S. W., Bolin J. T. Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science 1995; 270: 976–980, [INFOTRIEVE], [CSA]
  • Happe B., Eltis L. D., Poth H., Hedderich R., Timmis K. N. Characterization of 2,2′,3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran-and dibenzo-p-dioxin-degrading bacterium Sphingomonas sp. strain RW1. J Bacteriol 1993; 175: 7313–7320, [INFOTRIEVE], [CSA]
  • Harayama S., Rekik M. Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J Biol Chem 1989; 264: 15328–15333, [INFOTRIEVE], [CSA]
  • Harayama S., Kok M., Neidle E. L. Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 1992; 46: 565–601, [INFOTRIEVE], [CROSSREF], [CSA]
  • Harpel M. R., Lipscomb J. D. Gentisate 1,2-dioxygenase from pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans. J Biol Chem 1990; 265: 6301–6311, [INFOTRIEVE], [CSA]
  • Hatta T., Mukerjee-Dhar G., Damborsky J., Kiyohara H., Kimbara K. Characterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a PCB and naphthalene-degrading Bacillus sp. JF8. J Biol Chem 2003; 278: 21483–21492, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hausinger R. P. FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol 2004; 39: 21–68, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hayaishi O., Hashimoto K. Pyrocatecase, a new enzyme catalyzing oxidative breakdown of pyrocatechin. J Biochem 1950; 37: 371–374, [CSA]
  • Heiss G., Stolz A., Kuhm A. E., Müller C., Klein J., Altenbuchner J., Knackmuss H. -J. Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6. J Bacteriol 1995; 177: 5865–5871, [INFOTRIEVE], [CSA]
  • Hewitson K. S., McNeill L. A., Riordan M. V., Tian Y. -M., Bullock A. N., Welford R. W., Elkins J. M., Oldham N. J., Bhattacharya S., Gleadle J. M., Ratcliffe P. J., Pugh C. W., Schofield C. J. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 2002; 277: 26351–26355, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hintner J. P., Lechner C., Riegert U., Kuhm A. E., Storm T., Reemtsma T., Stolz A. Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans. J Bacteriol 2001; 183: 6936–6942, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hopper D. J., Taylor D. G. Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida. J Bacteriol 1975; 122: 1–6, [INFOTRIEVE], [CSA]
  • Hori K., Hashimoto T., Nozaki M. Kinetic studies on the reaction mechanism of dioxygenases. J Biochem 1973; 74: 375–384, [INFOTRIEVE], [CSA]
  • Horinouchi M., Yamamoto T., Taguchi K., Arai H., Kudo T. Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441. Microbiology 2001; 147: 3367–3375, [INFOTRIEVE], [CSA]
  • Horsman G. P., Jirasek A., Vaillancourt F. H., Barbosa C. J., Jarzecki A. A., Xu C., Mekmouche Y., Spiro T. G., Lipscomb J. D., Blades M. W., Turner R. F., Eltis L. D. Spectroscopic studies of the anaerobic enzyme-substrate complex of catechol 1,2-dioxygenase. J Am Chem Soc 2005; 127: 16882–16891, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hughes E. J., Bayly R. C. Control of catechol meta-cleavage pathway in Alcaligenes eutrophus. J Bacteriol 1983; 154: 1363–1370, [INFOTRIEVE], [CSA]
  • Hugo N., Meyer C., Armengaud J., Gaillard J., Timmis K. N., Jouanneau Y. Characterization of three XylT-like [2Fe-2S] ferredoxins associated with catabolism of cresols or naphthalene: evidence for their involvement in catechol dioxygenase reactivation. J Bacteriol 2000; 182: 5580–5585, [INFOTRIEVE], [CROSSREF], [CSA]
  • Imbeault N. Y.R., Powlowski J. B., Colbert C. L., Bolin J. T., Eltis L. D. Steady-state kinetic characterization and crystallization of a polychlorinated biphenyl-transforming dioxygenase. J Biol Chem 2000; 275: 12430–12437, [INFOTRIEVE], [CROSSREF], [CSA]
  • Ishida T., Senda T., Tanaka H., Yamamoto A., Horiike K. Single-turnover kinetics of 2,3-dihydroxybiphenyl 1,2-dioxygenase reacting with 3-formylcatechol. Biochem Biophys Res Commun 2005; 338: 223–229, [INFOTRIEVE], [CROSSREF], [CSA]
  • Iwabuchi T., Harayama S. Biochemical and molecular characterization of 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7. J Biol Chem 1998; 273: 8332–8336, [INFOTRIEVE], [CROSSREF], [CSA]
  • Jain R. K., Dreisbach J. H., Spain J. C. Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl Environ Microbiol 1994; 60: 3030–3032, [INFOTRIEVE], [CSA]
  • Jeffrey A. M., Yeh H. J., Jerina D. M., Patel T. R., Davey J. F., Gibson D. T. Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry 1975; 14: 575–584, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kabisch M., Fortnagel P. Nucleotide sequence of metapyrocatechase I (catechol 2,3-oxygenase I) gene mpcI from Alcaligenes eutrophus JMP222. Nucleic Acids Res 1990; 18: 3405–3406, [INFOTRIEVE], [CSA]
  • Kasai D., Masai E., Miyauchi K., Katayama Y., Fukuda M. Characterization of the gallate dioxygenase gene: three distinct ring cleavage dioxygenases are involved in syringate degradation by Sphingomonas paucimobilis SYK-6. J Bacteriol 2005; 187: 5067–5074, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kauppi B., Lee K., Carredano E., Parales R. E., Gibson D. T., Eklund H., Ramaswamy S. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure 1998; 6: 571–586, [INFOTRIEVE], [CROSSREF], [CSA]
  • Keyser P., Pujar B. G., Eaton R. W., Ribbons D. W. Biodegradation of the phthalates and their esters by bacteria. Environ Health Perspect 1976; 18: 159–166, [INFOTRIEVE], [CSA]
  • Kikuchi M., Ohnishi K., Harayama S. Novel family shuffling methods for the in vitro evolution of enzymes. Gene 1999; 236: 159–167, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kita A., Kita S., Fujisawa I., Inaka K., Ishida T., Horiike K., Nozaki M., Miki K. An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2. Structure 1999; 7: 25–34, [INFOTRIEVE], [CROSSREF], [CSA]
  • Klages U., Markus A., Lingens F. Degradation of 4-chlorophenylacetic acid by a Pseudomonas species. J Bacteriol 1981; 146: 64–68, [INFOTRIEVE], [CSA]
  • Klecka G. M., Gibson D. T. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 1981; 41: 1159–1165, [INFOTRIEVE], [CSA]
  • Kobayashi T., Ishida T., Horiike K., Takahara Y., Numao N., Nakazawa A., Nakazawa T., Nozaki M. Overexpression of Pseudomonas putida catechol 2,3-dioxygenase with high specific activity by genetically engineered Escherichia coli. J Biochem 1995; 117: 614–622, [INFOTRIEVE], [CSA]
  • Koehntop K. D., Emerson J. P., Que L., Jr. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes. J Biol Inorg Chem 2005; 10: 87–93, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kojima Y., Itada N., Hayaishi O. Metapyrocatechase: a new catechol-cleaving enzyme. J Biol Chem 1961; 236: 2223–2228, [INFOTRIEVE], [CSA]
  • Kraulis P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 1991; 24: 945–949, [CROSSREF], [CSA]
  • Kukor J. J., Olsen R. H. Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl Environ Microbiol 1996; 62: 1728–1740, [INFOTRIEVE], [CSA]
  • La Du B. N., Zannoni V. G., Laster L., Seegmiller J. E. Nature of the defect in tyrosine metabolism in alcaptonuria. J Biol Chem 1958; 230: 251–260, [INFOTRIEVE], [CSA]
  • Lah M. S., Dixon M. M., Pattridge K. A., Stallings W. C., Fee J. A., Ludwig M. L. Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus. Biochemistry 1995; 34: 1646–1660, [INFOTRIEVE], [CROSSREF], [CSA]
  • Lendenmann U., Spain J. C. 2-aminophenol 1,6-dioxygenase: a novel aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes JS45. J Bacteriol 1996; 178: 6227–6232, [INFOTRIEVE], [CSA]
  • Lin G., Reid G., Bugg T. D.H. Extradiol oxidative cleavage of catechols by ferrous and ferric complexes of 1,4,7-triazacyclononane: insight into the mechanism of the extradiol catechol dioxygenases. J Am Chem Soc 2001; 123: 5030–5039, [INFOTRIEVE], [CSA]
  • Mabrouk P. A., Orville A. M., Lipscomb J. D., Solomon E. I. Variable-temperature variable-field magnetic circular dichroism studies of the iron(II) active site in metapyrocatechase: implications for the molecular mechanism of extradiol dioxygenases. J Am Chem Soc 1991; 113: 4053–4061, [CROSSREF], [CSA]
  • Mampel J., Providenti M. A., Cook A. M. Protocatechuate 4,5-dioxygenase from Comamonas testosteroni T-2: biochemical and molecular properties of a new subgroup within class III of extradiol dioxygenases. Arch Microbiol 2005; 183: 130–139, [INFOTRIEVE], [CROSSREF], [CSA]
  • Mars A. E., Kasberg T., Kaschabek S. R., van Agteren M. H., Janssen D. B., Reineke W. Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 1997; 179: 4530–4537, [INFOTRIEVE], [CSA]
  • Mars A. E., Kingma J., Kaschabek S. R., Reineke W., Janssen D. B. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J Bacteriol 1999; 181: 1309–1318, [INFOTRIEVE], [CSA]
  • Martin V. J., Mohn W. W. Genetic investigation of the catabolic pathway for degradation of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. J Bacteriol 2000; 182: 3784–3793, [INFOTRIEVE], [CROSSREF], [CSA]
  • Mashetty S. B., Manohar S., Karegoudar T. B. Degradation of 3-hydroxybenzoic acid by a Bacillus species. Indian J Biochem Biophys 1996; 33: 145–148, [INFOTRIEVE], [CSA]
  • Mason J. R., Cammack R. The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 1992; 46: 277–305, [INFOTRIEVE], [CROSSREF], [CSA]
  • Mattevi A., Fraaije M. W., Mozzarelli A., Olivi L., Coda A., van Berkel W. J. Crystal structures and inhibitor binding in the octameric flavoenzyme vanillyl-alcohol oxidase: the shape of the active-site cavity controls substrate specificity. Structure 1997; 5: 907–920, [INFOTRIEVE], [CROSSREF], [CSA]
  • May S. W., Phillips R. S., Oldham C. D. Interaction of protocatechuate-3,4-dioxygenase with fluoro-substituted hydroxybenzoic acids and related compounds. Biochemistry 1978; 17: 1853–1860, [INFOTRIEVE], [CROSSREF], [CSA]
  • McCarthy A. A., Baker H. M., Shewry S. C., Patchett M. L., Baker E. N. Crystal structure of methylmalonyl-coenzyme A epimerase from P. shermanii: a novel enzymatic function on an ancient metal binding scaffold. Structure 2001; 9: 637–646, [INFOTRIEVE], [CROSSREF], [CSA]
  • McLeod M. P., Warren R. L., Araki N., Hsiao W. W.L., Myhre M., Fernandes C., Miyazawa D., Wong W., Lillquist A. L., Wang D., Dosanjh M., Hara H., Petrescu A., Morin R. D., Yang G., Stott J. M., Schein J. E., Shin H., Smailus D., Siddiqui A. S., Marra M. A., Jones S. J.M., Holt R., Brinkman F. S.L., Miyauchi K., Fukuda M., Davies J. E., Mohn W. W., Eltis L. D. The complete genome of Rhodococcus sp. RHA1: insights into a catabolic powerhouse. Proc Natl Acad Sci USA 2006, (submitted)[CSA]
  • McMurry J. E. Organic Chemistry, 6th ed. Brooks/Cole, Pacific Grove, CA 2004, Chapter 15
  • Mendel S., Arndt A., Bugg T. D. Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB). Biochemistry 2004; 43: 13390–13396, [INFOTRIEVE], [CSA]
  • Merritt E. A., Bacon D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol 1997; 277: 505–524, [CSA]
  • Minor W., Steczko J., Stec B., Otwinowski Z., Bolin J. T., Walter R., Axelrod B. Crystal structure of soybean lipoxygenase L-1 at 1.4 Å resolution. Biochemistry 1996; 35: 10687–10701, [INFOTRIEVE], [CROSSREF], [CSA]
  • Mitchell R. A., Kang H. H., Henderson L. M. Inactivation during functioning of 3-hydroxyanthranilate oxidase resulting from oxidation of bound ferrous iron. J Biol Chem 1963; 238: 1151–1155, [CSA]
  • Miyauchi K., Adachi Y., Nagata Y., Takagi M. Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis. J Bacteriol 1999; 181: 6712–6719, [INFOTRIEVE], [CSA]
  • Miyazawa D., Mukerjee-Dhar G., Shimura M., Hatta T., Kimbara K. Genes for Mn(II)-dependent NahC and Fe(II)-dependent NahH located in close proximity in the thermophilic naphthalene and PCB degrader, Bacillus sp. JF8: cloning and characterization. Microbiology 2004; 150: 993–1004, [INFOTRIEVE], [CROSSREF], [CSA]
  • Mohamed M. E., Zaar A., Ebenau-Jehle C., Fuchs G. Reinvestigation of a new type of aerobic benzoate metabolism in the proteobacterium Azoarcus evansii. J Bacteriol 2001; 183: 1899–1908, [INFOTRIEVE], [CROSSREF], [CSA]
  • Muraki T., Taki M., Hasegawa Y., Iwaki H., Lau P. C. Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl Environ Microbiol 2003; 69: 1564–1572, [INFOTRIEVE], [CROSSREF], [CSA]
  • Murray K., Duggleby C. J., Sala-Trepat J. M., Williams P. A. The metabolism of benzoate and methylbenzoates via the meta-cleavage pathway by Pseudomonas arvilla mt-2. Eur J Biochem 1972; 28: 301–310, [INFOTRIEVE], [CROSSREF], [CSA]
  • Navarro-Llorens J. M., Patrauchan M. A., Stewart G. R., Davies J., Eltis L. D., Mohn W. W. The catabolism of phenylacetic acid in Rhodococcus RHA1. J Bacteriol 2005; 187: 4497–4504, [INFOTRIEVE], [CROSSREF], [CSA]
  • Neau D. B. Structural studies of the 1,2-dihydroxynaphthalene dioxygenase, DoxG, reveal features that permit the cleavage of 4-substituted catechols. Ph.D. thesis, Purdue University. 2004
  • Nogales J., Canales A., Jimenez-Barbero J., Garcia J. L., Diaz E. Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. J Biol Chem 2005; 280: 35382–35390, [INFOTRIEVE], [CROSSREF], [CSA]
  • Nordin K., Unell M., Jansson J. K. Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 2005; 71: 6538–6544, [INFOTRIEVE], [CROSSREF], [CSA]
  • Novotna J., Honzatko A., Bednar P., Kopecky J., Janata J., Spizek J. L-3,4-Dihydroxyphenyl alanine-extradiol cleavage is followed by intramolecular cyclization in lincomycin biosynthesis. Eur J Biochem 2004; 271: 3678–3683, [INFOTRIEVE], [CROSSREF], [CSA]
  • Nozaki M., Kagamiyama H., Hayaishi O. Metapyrocatechase. I. Purification, crystallization, and some properties. Biochem Z 1963; 338: 582–590, [INFOTRIEVE], [CSA]
  • Nozaki M., Katsushiko K., Nakazawa T., Kotani S., Hayaishi O. Metapyrocatechase II. The role of iron and sulfhydryl groups. J Biol Chem 1968; 243: 2682–2690, [INFOTRIEVE], [CSA]
  • Ohlendorf D. H., Vetting M. W. Protocatechuate 3,4-dioxygenase. Handbook of Metalloproteins, A. Messerschmidt, R. Huber, T. Poulos, K. Wieghardt. John Wiley & Sons, Chichester, UK 2001; 622–631
  • Ohlendorf D. H., Lipscomb J. D., Weber P. C. Structure and assembly of protocatechuate 3,4-dioxygenase. Nature 1988; 336: 403–405, [INFOTRIEVE], [CROSSREF], [CSA]
  • Ohlendorf D. H., Orville A. M., Lipscomb J. D. Structure of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa at 2.15 Å resolution. J Mol Biol 1994; 244: 586–608, [INFOTRIEVE], [CROSSREF], [CSA]
  • Ohnishi K., Okuta A., Ju J., Hamada T., Misono H., Harayama S. Molecular breeding of 2,3-dihydroxybiphenyl 1,2-dioxygenase for enhanced resistance to 3-chlorocatechol. J Biochem (Tokyo) 2004; 135: 305–317, [CSA]
  • Okuta A., Ohnishi K., Harayama S. PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene 1998; 212: 221–228, [INFOTRIEVE], [CROSSREF], [CSA]
  • Okuta A., Ohnishi K., Harayama S. Construction of chimeric catechol 2,3-dioxygenase exhibiting improved activity against the suicide inhibitor 4-methylcatechol. Appl Environ Microbiol 2004; 70: 1804–1810, [INFOTRIEVE], [CROSSREF], [CSA]
  • Ono K., Nozaki M., Hayaishi O. Purification and some properties of protocatechuate 4,5-dioxygenase. Biochim Biophys Acta 1970; 220: 224–238, [INFOTRIEVE], [CSA]
  • Orville A. M., Lipscomb J. D. Cyanide and nitric oxide binding to reduced protocatechuate 3,4-dioxygenase: insight into the basis for order-dependent ligand binding by intradiol catecholic dioxygenases. Biochemistry 1997; 36: 14044–14055, [INFOTRIEVE], [CROSSREF], [CSA]
  • Orville A. M., Lipscomb J. D., Ohlendorf D. H. Crystal structures of substrate and substrate analog complexes of protocatechuate 3,4-dioxygenase: endogenous Fe3+ ligand displacement in response to substrate binding. Biochemistry 1997; 36: 10052–10066, [INFOTRIEVE], [CROSSREF], [CSA]
  • Parli C. J., Krieter P., Schmidt B. Metabolism of 6-chlorotryptophan to 4-chloro-3-hydroxyanthranilic acid: a potent inhibitor of 3-hydroxyanthranilic acid oxidase. Arch Biochem Biophys 1980; 203: 161–166, [INFOTRIEVE], [CROSSREF], [CSA]
  • Pascal R. A., Huang D. -S. Mechanism-based inactivation of catechol 2,3-dioxygenase by 3-[(methylthio)methyl]catechol. J Am Chem Soc 1987; 109: 2854–2855, [CROSSREF], [CSA]
  • Pochapsky T. C., Pochapsky S. S., Ju T., Mo H., Al-Mjeni F., Maroney M. J. Modeling and experiment yields the structure of acireductone dioxygenase from Klebsiella pneumoniae. Nat Struct Biol 2002; 9: 966–972, [INFOTRIEVE], [CROSSREF], [CSA]
  • Polissi A., Harayama S. In vivo reactivation of catechol 2,3-dioxygenase mediated by a chloroplast-type ferredoxin: a bacterial strategy to expand the substrate specificity of aromatic degradative pathways. EMBO J 1993; 12: 3339–3347, [INFOTRIEVE], [CSA]
  • Priefert H., Rabenhorst J., Steinbuchel A. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J Bacteriol 1997; 179: 2595–2607, [INFOTRIEVE], [CSA]
  • Que L., Jr., Epstein R. M. Resonance Raman studies on protocatechuate 3,4-dioxygenase-inhibitor complexes. Biochemistry 1981; 20: 2545–2549, [INFOTRIEVE], [CROSSREF], [CSA]
  • Que L., Jr., Ho R. Y.N. Dioxygen activation by enzymes with mononuclear non-heme iron active sites. Chem Rev 1996; 96: 2607–2624, [INFOTRIEVE], [CROSSREF], [CSA]
  • Que L., Jr., Reynolds M. F. Manganese(II)-dependent extradiol-cleaving catechol dioxygenases. Met Ions Biol Syst 2000; 37: 505–525, [INFOTRIEVE], [CSA]
  • Que L., Jr., Lipscomb J. D., Münck E., Wood J. M. Protocatechuate 3,4-dioxygenase. Inhibitor studies and mechanistic implications. Biochim Biophys Acta 1977; 485: 60–74, [INFOTRIEVE], [CSA]
  • Riegert U., Heiss G., Fischer P., Stolz A. Distal cleavage of 3-chlorocatechol by an extradiol dioxygenase to 3-chloro-2-hydroxymuconic semialdehyde. J Bacteriol 1998; 180: 2849–2853, [INFOTRIEVE], [CSA]
  • Roach P. L., Clifton I. J., Hensgens C. M., Shibata N., Schofield C. J., Hajdu J., Baldwin J. E. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 1997; 387: 827–830, [INFOTRIEVE], [CROSSREF], [CSA]
  • Rojo F., Pieper D. H., Engesser K. H., Knackmuss H. -J., Timmis K. N. Assemblage of ortho cleavage route for simultaneous degradation of chloro-and methylaromatics. Science 1987; 238: 1395–1398, [INFOTRIEVE], [CSA]
  • Roper D. I., Cooper R. A. Subcloning and nucleotide sequence of the 3,4-dihydroxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase gene from Escherichia coli C. FEBS Lett 1990; 275: 53–57, [INFOTRIEVE], [CROSSREF], [CSA]
  • Sanvoisin J., Langley G. J., Bugg T. D.H. Mechanism of extradiol catechol dioxygenases: evidence for a lactone intermediate in the 2,3-dihydroxyphenylpropionate 1,2-dioxygenase reaction. J Am Chem Soc 1995; 117: 7836–7837, [CROSSREF], [CSA]
  • Sato N., Uragami Y., Nishizaki T., Takahashi Y., Sazaki G., Sugimoto K., Nonaka T., Masai E., Fukuda M., Senda T. Crystal structures of the reaction intermediate and its homologue of an extradiol-cleaving catecholic dioxygenase. J Mol Biol 2002; 321: 621–636, [INFOTRIEVE], [CROSSREF], [CSA]
  • Schwarcz R., Okuno E., White R. J., Bird E. D., Whetsell W. O., Jr. 3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims. Proc Natl Acad Sci USA 1988; 85: 4079–4081, [INFOTRIEVE], [CSA]
  • Siegbahn P. E., Haeffner F. Mechanism for catechol ring-cleavage by non-heme iron extradiol dioxygenases. J Am Chem Soc 2004; 126: 8919–8932, [INFOTRIEVE], [CSA]
  • Senda T., Sugiyama K., Narita H., Yamamoto T., Kimbara K., Fukuda M., Sato M., Yano K., Mitsui Y. Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. J Mol Biol 1996; 255: 735–752, [INFOTRIEVE], [CROSSREF], [CSA]
  • Serre L., Sailland A., Sy D., Boudec P., Rolland A., Pebay-Peyroula E., Cohen-Addad C. Crystal structure of Pseudomonas fluorescens 4-hydroxyphenylpyruvate dioxygenase: an enzyme involved in the tyrosine degradation pathway. Structure 1999; 7: 977–988, [INFOTRIEVE], [CROSSREF], [CSA]
  • Shu L., Chiou Y. -M., Orville A. M., Miller M. A., Lipscomb J. D., Que L., Jr. X-ray absorption spectroscopic studies of the Fe(II) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism. Biochemistry 1995; 34: 6649–6659, [INFOTRIEVE], [CROSSREF], [CSA]
  • Solomon E. I., Brunold T. C., Davis M. I., Kemsley J. N., Lee S. -K., Lehnert N., Neese F., Skulan A. J., Yang Y. -S., Zhou J. Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev 2000; 100: 235–349, [INFOTRIEVE], [CROSSREF], [CSA]
  • Spence E. L., Kawamukai M., Sanvoisin J., Braven H., Bugg T. D.H. Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (MpcI): sequence analysis and biochemical properties of a third family of extradiol dioxygenases. J Bacteriol 1996a; 178: 5249–5256, [INFOTRIEVE], [CSA]
  • Spence E. L., Langley G. J., Bugg T. D.H. Cis-Trans isomerization of a cyclopropyl radical trap catalyzed by extradiol catechol dioxygenases: evidence for a semiquinone intermediate. J Am Chem Soc 1996b; 118: 8336–8343, [CROSSREF], [CSA]
  • Stanier R. Y., Ingraham J. L. Protocatechuic acid oxidase. J Biol Chem 1954; 210: 799–808, [INFOTRIEVE], [CSA]
  • Stolz A., Nortemann B., Knackmuss H. -J. Bacterial metabolism of 5-aminosalicylic acid. Initial ring cleavage. Biochem J 1992; 282: 675–680, [INFOTRIEVE], [CSA]
  • Sugimoto K., Senda T., Aoshima H., Masai E., Fukuda M., Mitsui Y. Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. Structure 1999; 7: 953–965, [INFOTRIEVE], [CROSSREF], [CSA]
  • Takenaka S., Murakami S., Shinke R., Hatakeyama K., Yukawa H., Aoki K. Novel genes encoding 2-aminophenol 1,6-dioxygenase from Pseudomonas species AP-3 growing on 2-aminophenol and catalytic properties of the purified enzyme. J Biol Chem 1997; 272: 14727–14732, [INFOTRIEVE], [CROSSREF], [CSA]
  • Timmis K. N., Steffan R. J., Unterman R. Designing microorganisms for the treatment of toxic wastes. Annu Rev Microbiol 1994; 48: 525–557, [INFOTRIEVE], [CROSSREF], [CSA]
  • Titus G. P., Mueller H. A., Burgner J., Rodriguez de Cordoba S., Penalva M. A., Timm D. E. Crystal structure of human homogentisate dioxygenase. Nat Struct Biol 2000; 7: 542–546, [INFOTRIEVE], [CROSSREF], [CSA]
  • Tropel D., Meyer C., Armengaud J., Jouanneau Y. Ferredoxin-mediated reactivation of the chlorocatechol 2,3-dioxygenase from Pseudomonas putida GJ31. Arch Microbiol 2002; 177: 345–351, [INFOTRIEVE], [CROSSREF], [CSA]
  • True A. E., Orville A. M., Pearce L. L., Lipscomb J. D., Que L., Jr. An EXAFS study of the interaction of substrate with the ferric active site of protocatechuate 3,4-dioxygenase. Biochemistry 1990; 29: 10847–10854, [INFOTRIEVE], [CROSSREF], [CSA]
  • Tyson C. A. 4-Nitrocatechol as a colorimetric probe for non-heme iron dioxygenases. J Biol Chem 1975; 250: 1765–1770, [INFOTRIEVE], [CSA]
  • Uragami Y., Senda T., Sugimoto K., Sato N., Nagarajan V., Masai E., Fukuda M., Mitsui Y. Crystal structures of substrate free and complex forms of reactivated BphC, an extradiol type ring-cleavage dioxygenase. J Inorg Biochem 2001; 83: 269–279, [INFOTRIEVE], [CROSSREF], [CSA]
  • Vaillancourt F. H., Barbosa C. J., Spiro T. G., Bolin J. T., Blades M. W., Turner R. F.B., Eltis L. D. Definitive evidence for monoanionic binding of 2,3-dihydroxybiphenyl to 2,3-dihydroxybiphenyl 1,2-dioxygenase from UV resonance Raman spectroscopy, UV/Vis absorption spectroscopy, and crystallography. J Am Chem Soc 2002a; 124: 2485–2496, [INFOTRIEVE], [CROSSREF], [CSA]
  • Vaillancourt F. H., Fortin P. D., Labbé G., Drouin N. M., Karim Z., Agar N. Y., Eltis L. D. Molecular basis for the substrate selectivity of bicyclic and monocyclic extradiol dioxygenases. Biochem Biophys Res Commun 2005a; 338: 215–222, [INFOTRIEVE], [CROSSREF], [CSA]
  • Vaillancourt F. H., Han S., Fortin P. D., Bolin J. T., Eltis L. D. Molecular basis for the stabilization and inhibition of 2, 3-dihydroxybiphenyl 1,2-dioxygenase by t-butanol. J Biol Chem 1998; 273: 34887–34895, [INFOTRIEVE], [CROSSREF], [CSA]
  • Vaillancourt F. H., Haro M. A., Drouin N. M., Karim Z., Maaroufi H., Eltis L. D. Characterization of extradiol dioxygenases from a polychlorinated biphenyl-degrading strain that possess higher specificities for chlorinated metabolites. J Bacteriol 2003; 185: 1253–1260, [INFOTRIEVE], [CROSSREF], [CSA]
  • Vaillancourt F. H., Labbé G., Drouin N. M., Fortin P. D., Eltis L. D. The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates. J Biol Chem 2002b; 277: 2019–2027, [INFOTRIEVE], [CROSSREF], [CSA]
  • Vaillancourt F. H., Yeh E., Vosburg D. A., O'Connor S. E., Walsh C. T. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 2005b; 436: 1191–1194, [INFOTRIEVE], [CROSSREF], [CSA]
  • Valegard K., van Scheltinga A. C., Lloyd M. D., Hara T., Ramaswamy S., Perrakis A., Thompson A., Lee H. J., Baldwin J. E., Schofield C. J., Hajdu J., Andersson I. Structure of a cephalosporin synthase. Nature 1998; 394: 805–809, [INFOTRIEVE], [CROSSREF], [CSA]
  • Van der Geize R., Hessels G. I., Van Gerwen R., Van der Meijden P., Dijkhuizen L. Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9α-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis SQ1. Mol Microbiol 2002; 45: 1007–1018, [INFOTRIEVE], [CROSSREF], [CSA]
  • Vescia A., Di Prisco G. Studies on purified 3-hydroxyanthranilic acid oxidase. J Biol Chem 1962; 237: 2318–2324, [INFOTRIEVE], [CSA]
  • Vetting M. W., Ohlendorf D. H. The 1.8 Å crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker. Structure 2000; 8: 429–440, [INFOTRIEVE], [CROSSREF], [CSA]
  • Vetting M. W., D'Argenio D. A., Ornston L. N., Ohlendorf D. H. Structure of Acinetobacter strain ADP1 protocatechuate 3, 4-dioxygenase at 2.2 Å resolution: implications for the mechanism of an intradiol dioxygenase. Biochemistry 2000; 39: 7943–7955, [INFOTRIEVE], [CROSSREF], [CSA]
  • Vetting M. W., Wackett L. P., Que L., Jr., Lipscomb J. D., Ohlendorf D. H. Crystallographic comparison of manganese-and iron-dependent homoprotocatechuate 2,3-dioxygenases. J Bacteriol 2004; 186: 1945–1958, [INFOTRIEVE], [CROSSREF], [CSA]
  • Viggiani A., Siani L., Notomista E., Birolo L., Pucci P., Di Donato A. The role of the conserved residues His-246, His-199, and Tyr-255 in the catalysis of catechol 2,3-dioxygenase from Pseudomonas stutzeri OX1. J Biol Chem 2004; 279: 48630–48639, [INFOTRIEVE], [CROSSREF], [CSA]
  • Walsh J. L., Wu H. -Q., Ungerstedt U., Schwarcz R. 4-Chloro-3-hydroxyanthranilate inhibits quinolinate production in the rat hippocampus in vivo. Brain Res Bull 1994; 33: 513–516, [INFOTRIEVE], [CROSSREF], [CSA]
  • Walsh T. A., Ballou D. P., Mayer R., Que L., Jr. Rapid reaction studies on the oxygenation reactions of catechol dioxygenase. J Biol Chem 1983; 258: 14422–14427, [INFOTRIEVE], [CSA]
  • Wang Y. Z., Lipscomb J. D. Cloning, overexpression, and mutagenesis of the gene for homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum. Protein Expr Purif 1997; 10: 1–9, [INFOTRIEVE], [CROSSREF], [CSA]
  • Wasinger E. C., Davis M. I., Pau M. Y.M., Orville A. M., Zaleski J. M., Hedman B., Lipscomb J. D., Hodgson K. O., Solomon E. I. Spectroscopic studies of the effect of ligand donor strength on the Fe-NO bond intradiol dioxygenases. Inorg Chem 2003; 42: 365–376, [INFOTRIEVE], [CROSSREF], [CSA]
  • Wasserfallen A. Biochemical and genetical study of the specificity of catechol 2,3-dioxygenase from Pseudomonas putida. Ph.D. thesis, University of Geneva. 1989
  • Whiting A. K., Boldt Y. R., Hendrich M. P., Wackett L. P., Que L., Jr. Manganese(II)-dependent extradiol-cleaving catechol dioxygenase from Arthrobacter globiformis CM-2. Biochemistry 1996; 35: 160–170, [INFOTRIEVE], [CROSSREF], [CSA]
  • Winfield C. J., Al-Mahrizy Z., Gravestock M., Bugg T. D.H. Elucidation of the catalytic mechanisms of the non-haem iron-dependent catechol dioxygenases: synthesis of carba-analogues for hydroperoxide reaction intermediates. J Chem Soc Perkin Trans 1 2000; 2000: 3277–3289, [CROSSREF], [CSA]
  • Wolgel S. A., Lipscomb J. D. Protocatechuate 2,3-dioxygenase from Bacillus macerans. Methods Enzymol 1990; 188: 95–101, [INFOTRIEVE], [CSA]
  • Woo E. J., Dunwell J. M., Goodenough P. W., Marvier A. C., Pickersgill R. W. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat Struct Biol 2000; 7: 1036–1040, [INFOTRIEVE], [CROSSREF], [CSA]
  • Xu L., Resing K., Lawson S. L., Babbitt P. C., Copley S. D. Evidence that pcpA encodes 2,6-dichlorohydroquinone dioxygenase, the ring cleavage enzyme required for pentachlorophenol degradation in Sphingomonas chlorophenolica strain ATCC 39723. Biochemistry 1999; 38: 7659–7669, [INFOTRIEVE], [CROSSREF], [CSA]
  • Yamaguchi K., Hosokawa Y., Kohashi N., Kori Y., Sakakibara S., Ueda I. Rat liver cysteine dioxygenase (cysteine oxidase). Further purification, characterization, and analysis of the activation and inactivation. J Biochem 1978; 83: 479–491, [INFOTRIEVE], [CSA]
  • Zaar A., Eisenreich W., Bacher A., Fuchs G. A novel pathway of aerobic benzoate catabolism in the bacteria Azoarcus evansii and Bacillus stearothermophilus. J Biol Chem 2001; 276: 24997–25004, [INFOTRIEVE], [CROSSREF], [CSA]
  • Zaborina O., Latus M., Eberspacher J., Golovleva L. A., Lingens F. Purification and characterization of 6-chlorohydroxyquinol 1,2-dioxygenase from Streptomyces rochei 303: comparison with an analogous enzyme from Azotobacter sp. strain GP1. J Bacteriol 1995; 177: 229–234, [INFOTRIEVE], [CSA]
  • Zhang Z., Ren J., Stammers D. K., Baldwin J. E., Harlos K., Schofield C. J. Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase. Nat Struct Biol 2000; 7: 127–133, [INFOTRIEVE], [CROSSREF], [CSA]
  • Zhao G., Xia T., Song J., Jensen R. A. Pseudomonas aeruginosa possesses homologues of mammalian phenylalanine hydroxylase and 4 alpha-carbinolamine dehydratase/DCoH as part of a three-component gene cluster. Proc Natl Acad Sci USA 1994; 91: 1366–1370, [INFOTRIEVE], [CROSSREF], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.