2,724
Views
185
CrossRef citations to date
0
Altmetric
Research Article

Deinococcus radiodurans: What Belongs to the Survival Kit?

, &
Pages 221-238 | Published online: 11 Oct 2008

REFERENCES

  • Agostini H. J., Carroll J. D., Minton K. W. Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. J Bacteriol 1996; 178: 6759–6765
  • Almiron M., Link A. J., Furlong D., Kolter R. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 1992; 6: 2646–2654
  • Anderson A. W., Nordan H. C., Cain R. F., Parrish G., Duggan D. Studies on a radio-resistant micrococcus I. Isolation, morphology, cultural characteristics and resistance to gamma radiation. Food Technology 1956; 575–582
  • Aravind L., Koonin E. V. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 2001; 11: 1365–1374
  • Battista J. R. Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 1997; 51: 203–224
  • Battista J. R., Earl A. M., Park M. J. Why is Deinococcus radiodurans so resistant to ionizing radiation?. Trends Microbiol 1999; 7: 362–365
  • Battista J. R., Park M. J., McLemore A. E. Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 2001; 43: 133–139
  • Battista J. R., Rainey F. A. Family I. Deinococcaceae. Bergey's Manual of Systematic Bacteriology, D. R. Boone, R. W. Castenholz. Springer-Verlag, New York 2001; 395–403
  • Bauche C., Laval J. Repair of oxidized bases in the extremely radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol 1999; 181: 262–269
  • Beam C. E., Saveson C. J., Lovett S. T. Role for radA/sms in recombination intermediate processing in Escherichia coli. J Bacteriol 2002; 184: 6836–6844
  • Belova G. I., Prasad R., Nazimov I. V., Wilson S. H., Slesarev A. I. The domain organization and properties of individual domains of DNA topoisomerase V, a type 1B topoisomerase with DNA repair activities. J Biol Chem 2002; 277: 4959–4965
  • Bentchikou E., Servant P., Coste G., Sommer S. Additive effects of SbcCD and PolX deficiencies in the in vivo repair of DNA double-strand breaks in Deinococcus radiodurans. J Bacteriol 2007; 189: 4784–4790
  • Bhattacharyya G., Grove A. The N-terminal extensions of Deinococcus radiodurans Dps-1 mediate DNA major groove interactions as well as assembly of the dodecamer. J Biol Chem 2007; 282: 11921–11930
  • Billi D., Friedmann E. I., Hofer K. G., Caiola M. G., Acampo-Friedmann R. Ionizing-radiation resistance in the dessication-tolerant cyanobacterium Chroococcidiopsis. Appl Envir Microbiol 2000; 66: 1489–1492
  • Blasius M., Buob R., Shevelev I. V., Hubscher U. Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium Deinococcus radiodurans. BMC Mol Biol 2007; 8: 69
  • Blasius M., Shevelev I., Jolivet E., Sommer S., Hubscher U. DNA polymerase X from Deinococcus radiodurans possesses a structure-modulated 3′– > 5′ exonuclease activity involved in radioresistance. Mol Microbiol 2006; 60: 165–176
  • Bonacossa de Almeida C., Coste G., Sommer S., Bailone A. Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol Genet Genomics 2002; 268: 28–41
  • Boubrik F., Rouviere-Yaniv J. Increased sensitivity to gamma irradiation in bacteria lacking protein HU. Proc Natl Acad Sci U S A 1995; 92: 3958–3962
  • Bowater R., Doherty A. J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet 2006; 2: e8
  • Bregeon D., Matic I., Radman M., Taddei F. Inefficient mismatch repair: Genetic defects and down regulation. Journal of Genetics 1999; 78: 21–28
  • Britton R. A., Lin D. C., Grossman A. D. Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev 1998; 12: 1254–1259
  • Brooks B. W., Murray R. G. E. Nomenclature for ‘Micrococcus radiodurans’ and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 1981; 353–360
  • Carbonneau M. A., Melin A. M., Perromat A., Clerc M. The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys 1989; 275: 244–251
  • Connelly J. C., de Leau E. S., Leach D. R. DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli. Nucleic Acids Res 1999; 27: 1039–1046
  • Cox M. M., Battista J. R. Deinococcus radiodurans—the consummate survivor. Nat Rev Microbiol 2005; 3: 882–892
  • Cromie G. A., Leach D. R. Recombinational repair of chromosomal DNA double-strand breaks generated by a restriction endonuclease. Mol Microbiol 2001; 41: 873–883
  • Cuypers M. G., Mitchell E. P., Romao C. V., McSweeney S. M. The crystal structure of the Dps2 from Deinococcus radiodurans reveals an unusual pore profile with a non-specific metal binding site. J Mol Biol 2007; 371: 787–799
  • d'Adda di Fagagna F., Weller G. R., Doherty A. J., Jackson S. P. The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep 2003; 4: 47–52
  • Daly M. J., Gaidamakova E. K., Matrosova V. Y., Vasilenko A., Zhai M., Leapman R. D., Lai B., Ravel B., Li S. M., Kemner K. M., Fredrickson J. K. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 2007; 5: e92
  • Daly M. J., Gaidamakova E. K., Matrosova V. Y., Vasilenko A., Zhai M., Venkateswaran A., Hess M., Omelchenko M. V., Kostandarithes H. M., Makarova K. S., Wackett L. P., et al. Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 2004; 306: 1025–1028
  • Daly M. J., Minton K. W. An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 1996; 178: 4461–4471
  • Dame R. T., Goosen N. HU: promoting or counteracting DNA compaction?. FEBS Lett 2002; 529: 151–156
  • de Groot A., Chapon V., Servant P., Christen R., Saux M. F., Sommer S., Heulin T. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 2005; 55: 2441–2446
  • Dennis R. J., Micossi E., McCarthy J., Moe E., Gordon E. J., Kozielski-Stuhrmann S., Leonard G. A., McSweeney S. Structure of the manganese superoxide dismutase from Deinococcus radiodurans in two crystal forms. Acta Crystallograph Sect F Struct Biol Cryst Commun 2006; 62: 325–329
  • Dervyn E., Noirot-Gros M. F., Mervelet P., McGovern S., Ehrlich S. D., Polard P., Noirot P. The bacterial condensin/cohesin-like protein complex acts in DNA repair and regulation of gene expression. Mol Microbiol 2004; 51: 1629–1640
  • Dorman C. J., Deighan P. Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Genet Dev 2003; 13: 179–184
  • Dose K., Bieger-Dose A., Kerz O., Gill M. DNA-strand breaks limit survival in extreme dryness. Origins Life Evol Biosphere 1991; 21: 177–187
  • Dose K., Bieger-Dose A., Labusch M., Gill M. Survival in extreme dryness and DNA-single-strand breaks. Adv Space Res 1992; 12: 221–229
  • Earl A. M., Mohundro M. M., Mian I. S., Battista J. R. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J Bacteriol 2002a; 184: 6216–6224
  • Earl A. M., Rankin S. K., Kim K. P., Lamendola O. N., Battista J. R. Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease. J Bacteriol 2002b; 184: 1003–1009
  • Eggington J. M., Haruta N., Wood E. A., Cox M. M. The single stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol 2004; 4: 2
  • Eggington J. M., Kozlov A. G., Cox M. M., Lohman T. M. Polar destabilization of DNA duplexes with single-stranded overhangs by the Deinococcus radiodurans SSB protein. Biochemistry 2006; 45: 14490–14502
  • Eltsov M., Dubochet J. Fine structure of the Deinococcus radiodurans nucleoid revealed by cryoelectron microscopy of vitreous sections. J Bacteriol 2005; 187: 8047–8054
  • Eltsov M., Dubochet J. Study of the Deinococcus radiodurans nucleoid by cryoelectron microscopy of vitreous sections: Supplementary comments. J Bacteriol 2006; 188: 6053–6058, discussion 6059
  • Englander J., Klein E., Brumfeld V., Sharma A. K., Doherty A. J., Minsky A. DNA toroids: framework for DNA repair in Deinococcus radiodurans and in germinating bacterial spores. J Bacteriol 2004; 186: 5973–5977
  • Evans D. M., Moseley B. E. Identification and initial characterisation of a pyrimidine dimer UV endonuclease (UV endonuclease beta) from Deinococcus radiodurans; a DNA-repair enzyme that requires manganese ions. Mutat Res 1985; 145: 119–128
  • Evans D. M., Moseley B. E. Deinococcus radiodurans UV endonuclease beta DNA incisions do not generate photoreversible thymine residues. Mutat Res 1988; 207: 117–119
  • Featherstone C., Jackson S. P. DNA double-strand break repair. Curr Biol 1999; 9: R759–761
  • Filipkowski P., Duraj-Thatte A., Kur J. Identification, cloning, expression, and characterization of a highly thermostable single-stranded-DNA-binding protein (SSB) from Deinococcus murrayi. Protein Expr Purif 2007; 53: 201–208
  • Fredrickson J. K., Li S. M., Gaidamakova E. K., Matrosova V. Y., Zhai M., Sulloway H. M., Scholten J. C., Brown M. G., Balkwill D. L., Daly M. J. Protein oxidation: key to bacterial desiccation resistance?. ISME J 2008; 2: 393–403
  • Frees D., Ingmer H. ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol 1999; 31: 79–87
  • Funayama T., Narumi I., Kikuchi M., Kitayama S., Watanabe H., Yamamoto K. Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Mutat Res 1999; 435: 151–161
  • Galperin M. Y., Moroz O. V., Wilson K. S., Murzin A. G. House cleaning, a part of good housekeeping. Mol Microbiol 2006; 59: 5–19
  • Gao G., Tian B., Liu L., Shen B., Hua Y. Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli. DNA Repair 2003; 2: 1419–1427
  • Gerard E., Jolivet E., Prieur D., Forterre P. DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol Genet Genomics 2001; 266: 72–78
  • Ghosh S., Grove A. Histone-like protein HU from Deinococcus radiodurans binds preferentially to four-way DNA junctions. J Mol Biol 2004; 337: 561–571
  • Ghosh S., Grove A. The Deinococcus radiodurans-encoded HU protein has two DNA-binding domains. Biochemistry 2006; 45: 1723–1733
  • Grimaud R., Ezraty B., Mitchell J. K., Lafitte D., Briand C., Derrick P. J., Barras F. Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J Biol Chem 2001; 276: 48915–48920
  • Grove A., Wilkinson S. P. Differential DNA binding and protection by dimeric and dodecameric forms of the ferritin homolog Dps from Deinococcus radiodurans. J Mol Biol 2005; 347: 495–508
  • Gutman P. D., Carroll J. D., Masters C. I., Minton K. W. Sequencing, targeted mutagenesis and expression of a recA gene required for the extreme radioresistance of Deinococcus radiodurans. Gene 1994a; 141: 31–37
  • Gutman P. D., Fuchs P., Minton K. W. Restoration of the DNA damage resistance of Deinococcus radiodurans DNA polymerase mutants by Escherichia coli DNA polymerase I and Klenow fragment. Mutat Res 1994b; 314: 87–97
  • Gutman P. D., Fuchs P., Ouyang L., Minton K. W. Identification, sequencing, and targeted mutagenesis of a DNA polymerase gene required for the extreme radioresistance of Deinococcus radiodurans. J Bacteriol 1993; 175: 3581–3590
  • Hansen M. T. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol 1978; 134: 71–75
  • Harris D. R., Tanaka M., Saveliev S. V., Jolivet E., Earl A. M., Cox M. M., Battista J. R. Preserving genome integrity: the DdrA protein of Deinococcus radiodurans R1. PLoS Biol 2004; 2: e304
  • Harsojo, Kitayama S., Matsuyama A. Genome multiplicity and radiation resistance in Micrococcus radiodurans. J Biochem (Tokyo) 1981; 90: 877–880
  • Hashimoto M., Imhoff B., Ali M. M., Kow Y. W. HU protein of Escherichia coli has a role in the repair of closely opposed lesions in DNA. J Biol Chem 2003; 278: 28501–28507
  • Hefferin M. L., Tomkinson A. E. Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst) 2005; 4: 639–648
  • Heinz K., Marx A. Lesion bypass activity of DNA polymerase A from the extremely radioresistant organism Deinococcus radiodurans. J Biol Chem 2007; 282: 10908–10914
  • Henne A., Bruggemann H., Raasch C., Wiezer A., Hartsch T., Liesegang H., Johann A., Lienard T., Gohl O., Martinez-Arias R., Jacobi C., et al. The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 2004; 22: 547–553
  • Hirsch P., Gallikowski C. A., Siebert J., Peissl K., Kroppenstedt R., Schumann P., Stackebrandt E., Anderson R. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 2004; 27: 636–645
  • Hua Y., Narumi I., Gao G., Tian B., Satoh K., Kitayama S., Shen B. PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun 2003; 306: 354–360
  • Huang L., Hua X., Lu H., Gao G., Tian B., Shen B., Hua Y. Three tandem HRDC domains have synergistic effect on the RecQ functions in Deinococcus radiodurans. DNA Repair (Amst) 2007; 6: 167–176
  • Huang L. F., Hua X. T., Lu H. M., Gao G. J., Tian B., Shen B. H., Hua Y. J. Functional analysis of helicase and three tandem HRDC domains of RecQ in Deinococcus radiodurans. J Zhejiang Univ Sci B 2006; 7: 373–376
  • Ilari A., Ceci P., Ferrari D., Rossi G. L., Chiancone E. Iron incorporation into Escherichia coli Dps gives rise to a ferritin-like microcrystalline core. J Biol Chem 2002; 277: 37619–37623
  • Iyer L. M., Koonin E. V., Aravind L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics 2002; 3: 80
  • Jolivet E., Lecointe F., Coste G., Satoh K., Narumi I., Bailone A., Sommer S. Limited concentration of RecA delays DNA double-strand break repair in Deinococcus radiodurans R1. Mol Microbiol 2006; 59: 338–349
  • Joshi B., Schmid R., Altendorf K., Apte S. K. Protein recycling is a major component of post-irradiation recovery in Deinococcus radiodurans strain R1. Biochem Biophys Res Commun 2004; 320: 1112–1117
  • Kantake N., Madiraju M. V., Sugiyama T., Kowalczykowski S. C. Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination. Proc Natl Acad Sci U S A 2002; 99: 15327–15332
  • Khairnar N. P., Kamble V. A., Misra H. S. RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans. DNA Repair (Amst) 2008; 7: 40–47
  • Killoran M. P., Keck J. L. Three HRDC domains differentially modulate Deinococcus radiodurans RecQ DNA helicase biochemical activity. J Biol Chem 2006; 281: 12849–12857
  • Kim J., Yoshimura S. H., Hizume K., Ohniwa R. L., Ishihama A., Takeyasu K. Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy. Nucleic Acids Res 2004; 32: 1982–1992
  • Kim J. I., Cox M. M. The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways. Proc Natl Acad Sci U S A 2002; 99: 7917–7921
  • Kim J. I., Sharma A. K., Abbott S. N., Wood E. A., Dwyer D. W., Jambura A., Minton K. W., Inman R. B., Daly M. J., Cox M. M. RecA Protein from the extremely radioresistant bacterium Deinococcus radiodurans: expression, purification, and characterization. J Bacteriol 2002; 184: 1649–1660
  • Kim S. G., Bhattacharyya G., Grove A., Lee Y. H. Crystal structure of Dps-1, a functionally distinct Dps protein from Deinococcus radiodurans. J Mol Biol 2006; 361: 105–114
  • Kitayama S., Kohoroku M., Takagi A., Itoh H. Mutation of D. radiodurans in a gene homologous to ruvB of E. coli. Mutat Res 1997; 385: 151–157
  • Kitayama S., Narumi I., Kikuchi M., Watanabe H. Mutation in recR gene of Deinococcus radiodurans and possible involvement of its product in the repair of DNA interstrand cross-links. Mutat Res 2000; 461: 179–187
  • Kobayashi I., Tamura T., Sghaier H., Narumi I., Yamaguchi S., Umeda K., Inagaki K. Characterization of monofunctional catalase KatA from radioresistant bacterium Deinococcus radiodurans. J Biosci Bioeng 2006; 101: 315–321
  • Kock H., Gerth U., Hecker M. The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis. J Bacteriol 2004; 186: 5856–5864
  • Koroleva O., Makharashvili N., Courcelle C. T., Courcelle J., Korolev S. Structural conservation of RecF and Rad50: implications for DNA recognition and RecF function. Embo J 2007; 26: 867–877
  • Kota S., Misra H. S. PprA: A protein implicated in radioresistance of Deinococcus radiodurans stimulates catalase activity in Escherichia coli. Appl Microbiol Biotechnol 2006; 72: 790–796
  • Kow Y. W., Imhoff B., Weiss B., Hung D. C., Hindoyan A. A., Story R. M., Goodman S. D. Escherichia coli HU protein has a role in the repair of abasic sites in DNA. Nucleic Acids Res 2007; 35: 6672–6680
  • Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 1994; 58: 401–465
  • Krasin F., Hutchinson F. Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J Mol Biol 1977; 116: 81–98
  • Lecointe F., Coste G., Sommer S., Bailone A. Vectors for regulated gene expression in the radioresistant bacterium Deinococcus radiodurans. Gene 2004a; 336: 25–35
  • Lecointe F., Shevelev I. V., Bailone A., Sommer S., Hubscher U. Involvement of an X family DNA polymerase in double-stranded break repair in the radioresistant organism Deinococcus radiodurans. Mol Microbiol 2004b; 53: 1721–1730
  • Lee B. I., Kim K. H., Park S. J., Eom S. H., Song H. K., Suh S. W. Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair. EMBO J 2004; 23: 2029–2038
  • Leibowitz P. J., Schwartzberg L. S., Bruce A. K. The in vivo association of manganese with the chromosome of Micrococcus radiodurans. Photochem Photobiol 1976; 23: 45–50
  • Leiros I., Moe E., Smalas A. O., McSweeney S. Structure of the uracil-DNA N-glycosylase (UNG) from Deinococcus radiodurans. Acta Crystallogr D Biol Crystallogr 2005a; 61: 1049–1056
  • Leiros I., Timmins J., Hall D. R., McSweeney S. Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. EMBO J 2005b; 24: 906–918
  • Levin-Zaidman S., Englander J., Shimoni E., Sharma A. K., Minton K. W., Minsky A. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance?. Science 2003; 299: 254–256
  • Li X., Lu A. L. Molecular cloning and functional analysis of the MutY homolog of Deinococcus radiodurans. J Bacteriol 2001; 183: 6151–6158
  • Lindow J. C., Kuwano M., Moriya S., Grossman A. D. Subcellular localization of the Bacillus subtilis structural maintenance of chromosomes (SMC) protein. Mol Microbiol 2002; 46: 997–1009
  • Liu Y., Zhou J., Omelchenko M. V., Beliaev A. S., Venkateswaran A., Stair J., Wu L., Thompson D. K., Xu D., Rogozin I. B., Gaidamakova E. K., et al. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci U S A 2003; 100: 4191–4196
  • Losada A., Hirano T. Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 2005; 19: 1269–1287
  • Lovett S. T., Clark A. J. Genetic analysis of the recJ gene of Escherichia coli K12. J Bacteriol 1984; 157: 190–196
  • Makarova K. S., Aravind L., Daly M. J., Koonin E. V. Specific expansion of protein families in the radioresistant bacterium Deinococcus radiodurans. Genetica 2000; 108: 25–34
  • Makarova K. S., Aravind L., Wolf Y. I., Tatusov R. L., Minton K. W., Koonin E. V., Daly M. J. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 2001; 65: 44–79
  • Makarova K. S., Omelchenko M. V., Gaidamakova E. K., Matrosova V. Y., Vasilenko A., Zhai M., Lapidus A., Copeland A., Kim E., Land M., Mavrommatis K., et al. Deinococcus geothermalis: The pool of extreme radiation resistance genes shrinks. PLoS ONE 2007; 2: e955
  • Makarova K. S., Wolf Y. I., White O., Minton K., Daly M. J. Short repeats and IS elements in the extremely radiation-resistant bacterium Deinococcus radiodurans and comparison to other bacterial species. Res Microbiol 1999; 150: 711–724
  • Markillie L. M., Varnum S. M., Hradecky P., Wong K. K. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxyde dismutase (sodA) mutants. J Bacteriol 1999; 181: 666–669
  • Mascarenhas J., Sanchez H., Tadesse S., Kidane D., Krisnamurthy M., Alonso J. C., Graumann P. L. Bacillus subtilis SbcC protein plays an important role in DNA inter-strand cross-link repair. BMC Mol Biol 2006; 7: 20
  • Matic I., Taddei F., Radman M. Survival versus maintenance of genetic stability: a conflict of priorities during stress. Res Microbiol 2004; 155: 337–341
  • Mattimore V., Battista J. R. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 1996; 178: 633–637
  • Mattimore V., Udupa K. S., Berne G. A., Battista J. R. Genetic characterization of forty ionizing radiation-sensitive strains of Deinococcus radiodurans: linkage information from transformation. J Bacteriol 1995; 177: 5232–5237
  • Meima R., Lidstrom M. E. Characterization of the minimal replicon of a cryptic Deinococcus radiodurans SARK plasmid and development of versatile Escherichia coli-D. radiodurans shuttle vectors. Appl Environ Microbiol 2000; 66: 3856–3867
  • Melkonyan H. S., Chang W. C., Shapiro J. P., Mahadevappa M., Fitzpatrick P. A., Kiefer M. C., Tomei L. D., Umansky S. R. SARPs: a family of secreted apoptosis-related proteins. Proc Natl Acad Sci USA 1997; 94: 13636–13641
  • Mennecier S., Coste G., Servant P., Bailone A., Sommer S. Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans. Mol Genet Genomics 2004; 272: 460–469
  • Mennecier S., Servant P., Coste G., Bailone A., Sommer S. Mutagenesis via IS transposition in Deinococcus radiodurans. Mol Microbiol 2006; 59: 317–325
  • Mijakovic I., Petranovic D., Macek B., Cepo T., Mann M., Davies J., Jensen P. R., Vujaklija D. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 2006; 34: 1588–1596
  • Minsky A. Structural aspects of DNA repair: the role of restricted diffusion. Mol Microbiol 2003; 50: 367–376
  • Minton K. W. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 1994; 13: 9–15
  • Minton K. W., Daly M. J. A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans. Bioessays 1995; 17: 457–464
  • Misra H. S., Khairnar N. P., Kota S., Shrivastava S., Joshi V. P., Apte S. K. An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance. Mol Microbiol 2006; 59: 1308–1316
  • Missiakas D., Betton J. M., Raina S. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 1996; 21: 871–884
  • Moe E., Leiros I., Smalas A. O., McSweeney S. The crystal structure of mismatch-specific uracil-DNA glycosylase (MUG) from Deinococcus radiodurans reveals a novel catalytic residue and broad substrate specificity. J Biol Chem 2006; 281: 569–577
  • Morgan G. J., Hatfull G. F., Casjens S., Hendrix R. W. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus and Neisseria and Deinococcus. J Mol Biol 2002; 317: 337–359
  • Mortensen U. H., Bendixen C., Sunjevaric I., Rothstein R. DNA strand annealing is promoted by the yeast Rad52 protein. Proc Natl Acad Sci U S A 1996; 93: 10729–10734
  • Moseley B. E., Evans D. M. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA: evidence for two excision pathways. J Gen Microbiol 1983; 129: 2437–2445
  • Moseley B. E., Mattingly A. Repair of irradiation transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans. J Bacteriol 1971; 105: 976–983
  • Murakami M., Narumi I., Satoh K., Furukawa A., Hayata I. Analysis of interaction between DNA and Deinococcus radiodurans PprA protein by atomic force microscopy. Biochim Biophys Acta 2006; 1764: 20–23
  • Narumi I., Cherdchu K., Kitayama S., Watanabe H. The Deinococcus radiodurans uvrA gene: identification of mutation sites in two mitomycin-sensitive strains and the first discovery of insertion sequence element from deinobacteria. Gene 1997; 198: 115–126
  • Narumi I., Satoh K., Cui S., Funayama T., Kitayama S., Watanabe H. PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 2004; 54: 278–285
  • Narumi I., Satoh K., Kikuchi M., Funayama T., Yanagisawa T., Kobayashi Y., Watanabe H., Yamamoto K. The LexA protein from Deinococcus radiodurans is not involved in RecA induction following gamma irradiation. J Bacteriol 2001; 183: 6951–6956
  • Nelson K. E., Clayton R. A., Gill S. R., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D., Nelson W. C., Ketchum K. A., McDonald L., et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 1999; 399: 323–329
  • Omelchenko M. V., Wolf Y. I., Gaidamakova E. K., Matrosova V. Y., Vasilenko A., Zhai M., Daly M. J., Koonin E. V., Makarova K. S. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evol Biol 2005; 5: 57
  • Paques F., Haber J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63: 349–404
  • Petit C., Sancar A. Nucleotide excision repair: from E. coli to man. Biochimie 1999; 81: 15–25
  • Pitcher R. S., Wilson T. E., Doherty A. J. New insights into NHEJ repair processes in prokaryotes. Cell Cycle 2005; 4: 675–678
  • Pitcher R. S., Green A. J., Brzostek A., Korycka-Machala M., Dziadek J., Doherty A. J. NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair (Amst) 2007a; 6: 1271–1276
  • Pitcher R. S., Brissett N. C., Doherty A. J. Nonhomologous end-joining in bacteria: a microbial perspective. Annu Rev Microbiol 2007b; 61: 259–282
  • Potts M. Desiccation tolerance of prokaryotes. Microbiol Rev 1994; 58: 755–805
  • Rainey F. A., Ferreira M., Nobre M. F., Ray K., Bagaley D., Earl A. M., Battista J. R., Gomez-Silva B., McKay C. P., da Costa M. S. Deinococcus peraridilitoris sp. nov., isolated from a coastal desert. Int J Syst Evol Microbiol 2007; 57: 1408–1412
  • Rainey F. A., Nobre M. F., Schumann P., Stackebrandt E., da Costa M. S. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol 1997; 47: 510–514
  • Rainey F. A., Ray K., Ferreira M., Gatz B. Z., Nobre M. F., Bagaley D., Rash B. A., Park M. J., Earl A. M., Shank N. C., Small A. M., et al. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 2005; 71: 5225–5235
  • Rajan R., Bell C. E. Crystal structure of RecA from Deinococcus radiodurans: insights into the structural basis of extreme radioresistance. J Mol Biol 2004; 344: 951–963
  • Rocha E. P. C., Cornet E., Michel B. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 2005; 1: e15
  • Romao C. V., Mitchell E. P., McSweeney S. The crystal structure of Deinococcus radiodurans Dps protein (DR2263) reveals the presence of a novel metal centre in the N terminus. J Biol Inorg Chem 2006; 11: 891–902
  • Rothfuss H., Lara J. C., Schmid A. K., Lidstrom M. E. Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. Microbiology 2006; 152: 2779–2787
  • Russell C. B., Thaler D. S., Dahlquist F. W. Chromosomal transformation of Escherichia coli recD strains with linearized plasmids. J Bacteriol 1989; 171: 2609–2613
  • Sanchez H., Alonso J. C. Bacillus subtilis RecN binds and protects 3′-single-stranded DNA extensions in the presence of ATP. Nucleic Acids Res 2005; 33: 2343–2350
  • Sanchez H., Kidane D., Castillo Cozar M., Graumann P. L., Alonso J. C. Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence of DNA end processing. J Bacteriol 2006; 188: 353–360
  • Sandigursky M., Sandigursky S., Sonati P., Daly M. J., Franklin W. A. Multiple uracil-DNA glycosylase activities in Deinococcus radiodurans. DNA Repair (Amst) 2004; 3: 163–169
  • Sartori A. A., Lukas C., Coates J., Mistrik M., Fu S., Bartek J., Baer R., Lukas J., Jackson S. P. Human CtIP promotes DNA end resection. Nature 2007; 450: 509–514
  • Satoh K., Ohba H., Sghaier H., Narumi I. Down-regulation of radioresistance by LexA2 in Deinococcus radiodurans. Microbiology 2006; 152: 3217–3226
  • Seib K. L., Tseng H. J., McEwan A. G., Apicella M. A., Jennings M. P. Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles. J Infect Dis 2004; 190: 136–147
  • Senturker S., Bauche C., Laval J., Dizdaroglu M. Substrate specificity of Deinococcus radiodurans Fpg protein. Biochemistry 1999; 38: 9435–9439
  • Servant P., Jolivet E., Bentchikou E., Mennecier S., Bailone A., Sommer S. The ClpPX protease is required for radioresistance and regulates cell division after gamma-irradiation in Deinococcus radiodurans. Mol Microbiol 2007; 66: 1231–1239
  • Servinsky M. D., Julin D. A. Effect of a recD mutation on DNA damage resistance and transformation in Deinococcus radiodurans. J Bacteriol 2007; 189: 5101–5107
  • Sheng D., Zheng Z., Tian B., Shen B., Hua Y. LexA analog (dra0074) is a regulatory protein that is irrelevant to recA induction. J Biochem (Tokyo) 2004; 136: 787–793
  • Shuman S., Glickman M. S. Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 2007; 5: 852–861
  • Spell R. M., Jinks-Robertson S. Role of mismatch repair in the fidelity of RAD51- and RAD59-dependent recombination in Saccharomyces cerevisiae. Genetics 2003; 165: 1733–1744
  • Sugiyama T., New J. H., Kowalczykowski S. C. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci U S A 1998; 95: 6049–6054
  • Tanaka M., Earl A. M., Howell H. A., Park M. J., Eisen J. A., Peterson S. N., Battista J. R. Analysis of Deinococcus radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 2004; 168: 21–33
  • Tanaka M., Narumi I., Funayama T., Kikuchi M., Watanabe H., Matsunaga T., Nikaido O., Yamamoto K. Characterization of pathways dependent on the uvsE and uvrA1, or uvrA2 gene product for UV resistance in Deinococcus radiodurans. J Bacteriol 2005; 187: 3693–3697
  • Thomsen L. E., Olsen J. E., Foster J. W., Ingmer H. ClpP is involved in the stress response and degradation of misfolded proteins in Salmonella enterica serovar Typhimurium. Microbiology 2002; 148: 2727–2733
  • Tian B., Xu Z., Sun Z., Lin J., Hua Y. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim Biophys Acta 2007; 1770: 902–911
  • Timmins J., Leiros I., McSweeney S. Crystal structure and mutational study of RecOR provide insight into its mode of DNA binding. Embo J 2007; 26: 3260–3271
  • Wang J., Julin D. A. DNA helicase activity of the RecD protein from Deinococcus radiodurans. J Biol Chem 2004; 279: 52024–52032
  • Weller G. R., Kysela B., Roy R., Tonkin L. M., Scanlan E., Della M., Devine S. K., Day J. P., Wilkinson A., d'Adda di Fagagna F., Devine K. M., et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 2002; 297: 1686–1689
  • White O., Eisen J. A., Heidelberg J. F., Hickey E. K., Peterson J. D., Dodson R. J., Haft D. H., Gwinn M. L., Nelson W. C., Richardson D. L., Moffat K. S., et al. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 1999; 286: 1571–1577
  • Wilkinson A., Day J., Bowater R. Bacterial DNA ligases. Mol Microbiol 2001; 40: 1241–1248
  • Witte G., Urbanke C., Curth U. Single-stranded DNA-binding protein of Deinococcus radiodurans: a biophysical characterization. Nucleic Acids Res 2005; 33: 1662–1670
  • Worth L., Jr., Clark S., Radman M., Modrich P. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc Natl Acad Sci USA 1994; 91: 3238–3241
  • Xu Z., Tian B., Sun Z., Lin J., Hua Y. Identification and functional analysis of a phytoene desaturase gene from the extremely radioresistant bacterium Deinococcus radiodurans. Microbiology 2007; 153: 1642–1652
  • Xu G., Wang L., Chen H., Lu H., Ying N., Tian B., Hua Y. RecO is essential for DNA damage repair in Deinococcus radiodurans. J Bacteriol 2008, doi:10.1128/JB.01851–07
  • Yan Z. Y., Xu Z. J., Xu G. Z., Tian B., Hua Y. J. [Construction of a dps mutant and its functional analysis in Deinococcus radiodurans]. Wei Sheng Wu Xue Bao 2007; 47: 610–615
  • Zahradka K., Slade D., Bailone A., Sommer S., Averbeck D., Petranovic M., Lindner A. B., Radman M. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 2006; 443: 569–573
  • Zhang L., Yang Q., Luo X., Fang C., Zhang Q., Tang Y. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability. Arch Microbiol 2007; 188: 411–419
  • Zhao G., Ceci P., Ilari A., Giangiacomo L., Laue T. M., Chiancone E., Chasteen N. D. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem 2002; 277: 27689–27696
  • Zhou Q., Zhang X., Xu H., Xu B., Hua Y. RadA: A protein involved in DNA damage repair processes of Deinococcus radiodurans R1. Chinese Science Bulletin 2006; 51: 2993–2999
  • Zhou Q., Zhang X., Xu H., Xu B., Hua Y. A new role of Deinococcus radiodurans RecD in antioxidant pathway. FEMS Microbiol Lett 2007; 271: 118–125
  • Zimmerman J. M., Battista J. R. A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol 2005; 5: 17

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.