1,913
Views
117
CrossRef citations to date
0
Altmetric
Review Article

How eukaryotic genes are transcribed

&
Pages 117-141 | Received 30 Jan 2009, Accepted 02 Mar 2009, Published online: 20 Apr 2009

References

  • Ahn SH, Kim M and Buratowski S. 2004. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3’ end processing. Mol Cell 13:67–76.
  • Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC and Pugh BF. 2007. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446:572–576.
  • Almer A and Horz W. 1986. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. Embo J 5:2681–2687.
  • Anderson JD and Widom J. 2001. Poly(dA-dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites. Mol Cell Biol 21:3830–3839.
  • Angus-Hill ML, Schlichter A, Roberts D, Erdjument-Bromage H, Tempst P and Cairns BR. 2001. A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. Mol Cell 7:741–751.
  • Auble DT, Hansen KE, Mueller CG, Lane WS, Thorner J and Hahn S. 1994. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev 8:1920–1934.
  • Badis G, Chan ET, van Bakel H, Pena-Castillo L, Tillo D, Tsui K, Carlson CD, Gossett AJ, Hasinoff MJ, Warren CL, Gebbia M, Talukder S, Yang A, Mnaimneh S, Terterov D, Coburn D, Li Yeo A, Yeo ZX, Clarke ND, Lieb JD, Ansari AZ, Nislow C, and Hughes, 2008. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol Cell 32:878–887.
  • Bannister AJ and Kouzarides T. 2005. Reversing histone methylation. Nature 436:1103–1106.
  • Bao Y and Shen X. 2007a. INO80 subfamily of chromatin remodeling complexes. Mutat Res 618:18–29.
  • Bao Y and Shen X. 2007b. SnapShot: chromatin remodeling complexes. Cell 129:632.
  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I and Zhao K. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129:823–837.
  • Basehoar AD, Zanton SJ and Pugh BF. 2004. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116:699–709.
  • Baskaran R, Dahmus ME and Wang JY. 1993. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. Proc Natl Acad Sci USA 90:11167–11171.
  • Berger SL. 2000. Gene regulation. Local or global? Nature 408:412–413, 415.
  • Berger SL. 2007. The complex language of chromatin regulation during transcription. Nature 447:407–412.
  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, and Lander ES. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326.
  • Bibikova M, Laurent LC, Ren B, Loring JF and Fan JB. 2008. Unraveling epigenetic regulation in embryonic stem cells. Cell Stem Cell 2:123–134.
  • Biddick R and Young ET. 2005. Yeast mediator and its role in transcriptional regulation. C R Biol 328:773–782.
  • Biswas D, Dutta-Biswas R and Stillman DJ. 2007. Chd1 and yFACT act in opposition in regulating transcription. Mol Cell Biol 27:6279–6287.
  • Black JC, Choi JE, Lombardo SR and Carey M. 2006. A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell 23:809–818.
  • Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS and Crawford GE. 2008. High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322.
  • Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD and Strahl BD. 2002. Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418:498.
  • Brown CE, Howe L, Sousa K, Alley SC, Carrozza MJ, Tan S and Workman JL. 2001. Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292:2333–2337.
  • Buck MJ and Lieb JD. 2006. A chromatin-mediated mechanism for specification of conditional transcription factor targets. Nat Genet 38:1446–1451.
  • Buratowski S. 2003. The CTD code. Nat Struct Biol 10:679–680.
  • Buratowski S, Hahn S, Guarente L and Sharp PA. 1989. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56:549–561.
  • Bushnell DA, Westover KD, Davis RE and Kornberg RD. 2004. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 303:983–988.
  • Cairns BR. 2007. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol 14:989–996.
  • Cairns BR, Lorch Y, Li Y, Zhang M, Lacomis L, Erdjument-Bromage H, Tempst P, Du J, Laurent B and Kornberg RD. 1996. RSC, an essential, abundant chromatin-remodeling complex. Cell 87:1249–1260.
  • Camblong J, Iglesias N, Fickentscher C, Dieppois G and Stutz F. 2007. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131:706–717.
  • Carey M, Li B and Workman JL. 2006. RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell 24:481–487.
  • Carroll KL, Pradhan DA, Granek JA, Clarke ND and Corden JL. 2004. Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Mol Cell Biol 24:6241–6252.
  • Carrozza, MJ, Li, B, Florens, L, Suganuma, T, Swanson, SK, Lee, KK, Shia, WJ, Anderson, S, Yates, J, Washburn, MP, and Workman, JL 2005. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell. 123: 581–592.
  • Chung WH, Craighead JL, Chang WH, Ezeokonkwo C, Bareket-Samish A, Kornberg RD and Asturias FJ. 2003. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex. Mol Cell 12:1003–1013.
  • Core LJ and Lis JT. 2008. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science 319:1791–1792.
  • Cosma MP, Tanaka T and Nasmyth K. 1999. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97:299–311.
  • Creyghton MP, Markoulaki S, Levine SS, Hanna J, Lodato MA, Sha K, Young RA, Jaenisch R and Boyer LA. 2008. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 135:649–661.
  • Damelin M, Simon I, Moy TI, Wilson B, Komili S, Tempst P, Roth FP, Young RA, Cairns BR and Silver PA. 2002. The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol Cell 9:563–573.
  • David L, Huber W, Granovskaia M, Toedling J, Palm CJ, Bofkin L, Jones T, Davis RW and Steinmetz LM. 2006. A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci USA 103:5320–5325.
  • Davis CA and Ares Jr M. 2006. Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 103:3262–3267.
  • Dichtl B, Blank D, Ohnacker M, Friedlein A, Roeder D, Langen H and Keller W. 2002a. A role for SSU72 in balancing RNA polymerase II transcription elongation and termination. Mol Cell 10:1139–1150.
  • Dichtl B, Blank D, Sadowski M, Hubner W, Weiser S and Keller W. 2002b. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination. Embo J 21:4125–4135.
  • Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N and Rando OJ. 2007. Dynamics of replication-independent histone turnover in budding yeast. Science 315:1405–1408.
  • Dover J, Schneider J, Tawiah-Boateng MA, Wood A, Dean K, Johnston M and Shilatifard A. 2002. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 277:28368–28371.
  • Dutrow N, Nix DA, Holt D, Milash B, Dalley B, Westbroek E, Parnell TJ and Cairns BR. 2008. Dynamic transcriptome of Schizosaccharomyces pombe shown by RNA-DNA hybrid mapping. Nat Genet 40:977–986.
  • Ebbert R, Birkmann A and Schuller HJ. 1999. The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol Microbiol 32:741–751.
  • Egloff S and Murphy S. 2008. Cracking the RNA polymerase II CTD code. Trends Genet 24:280–288.
  • Egloff S, O’Reilly D, Chapman RD, Taylor A, Tanzhaus K, Pitts L, Eick D and Murphy S. 2007. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318:1777–1779.
  • Esnault C, Ghavi-Helm Y, Brun S, Soutourina J, Van Berkum N, Boschiero C, Holstege F and Werner M. 2008. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol Cell 31:337–346.
  • Fazzio TG, Kooperberg C, Goldmark JP, Neal C, Basom R, Delrow J and Tsukiyama T. 2001. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 21:6450–6460.
  • Flanagan JF, Mi LZ, Chruszcz M, Cymborowski M, Clines KL, Kim Y, Minor W, Rastinejad F and Khorasanizadeh S. 2005. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438:1181–1185.
  • Flaus A and Owen-Hughes T. 2004. Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer? Curr Opin Genet Dev 14:165–173.
  • Fleming AB, Kao CF, Hillyer C, Pikaart M and Osley MA. 2008. H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell 31:57–66.
  • Garbett KA, Tripathi MK, Cencki B, Layer JH and Weil PA. 2007. Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. Mol Cell Biol 27:297–311.
  • Giaever, G, Chu, AM, Ni, L, Connelly, C, Riles, L, Veronneau, S, Dow, S, Lucau-Danila, A, Anderson, K, Andre, B, Arkin, AP, Astromoff, A, El-Bakkoury, M, Bangham, R, Benito, R, Brachat, S, Campanaro, S, Curtiss, M, Davis, K, Deutschbauer, A, Entian, KD, Flaherty, P, Foury, F, Garfinkel, DJ, Gerstein, M, Gotte, D, Guldener, U, Hegemann, JH, Hempel, S, Herman, Z, Jaramillo, DF, Kelly, DE, Kelly, SL, Kotter, P, LaBonte, D, Lamb, DC, Lan, N, Liang, H, Liao, H, Liu, L, Luo, C, Lussier, M, Mao, R, Menard, P, Ooi, SL, Revuelta, JL, Roberts, CJ, Rose, M, Ross-Macdonald, P, Scherens, B, Schimmack, G, Shafer, B, Shoemaker, DD, Sookhai-Mahadeo, S, Storms, RK, Strathern, JN, Valle, G, Voet, M, Volckaert, G, Wang, CY, Ward, TR, Wilhelmy, J, Winzeler, EA, Yang, Y, Yen, G, Youngman, E, Yu, K, Bussey, H, Boeke, JD, Snyder, M, Philippsen, P, Davis, RW, and Johnston, M 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 418: 387–391.
  • Goldmark JP, Fazzio TG, Estep PW, Church GM and Tsukiyama T. 2000. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103:423–433.
  • Goodrich, JA, and Kugel, JF 2009. From bacteria to humans, chromatin to elongation, and activation to repression: The expanding roles of noncoding RNAs in regulating transcription. Crit Rev Biochem Mol Biol. 44: 3–15.
  • Green MR. 2005. Eukaryotic transcription activation: right on target. Mol Cell 18:399–402.
  • Grewal SI and Elgin SC. 2007. Transcription and RNA interference in the formation of heterochromatin. Nature 447:399–406.
  • Guenther MG, Levine SS, Boyer LA, Jaenisch R and Young RA. 2007. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88.
  • Guillemette B, Bataille AR, Gevry N, Adam M, Blanchette M, Robert F and Gaudreau L. 2005. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3:e384.
  • Hampsey M and Reinberg D. 2003. Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 113:429–432.
  • Han M and Grunstein M. 1988. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55:1137–1145.
  • Hani J, Schelbert B, Bernhardt A, Domdey H, Fischer G, Wiebauer K and Rahfeld JU. 1999. Mutations in a peptidylprolyl-cis/trans-isomerase gene lead to a defect in 3’-end formation of a pre-mRNA in Saccharomyces cerevisiae. J Biol Chem 274:108–116.
  • Harbison, CT, Gordon, DB, Lee, TI, Rinaldi, NJ, Macisaac, KD, Danford, TW, Hannett, NM, Tagne, JB, Reynolds, DB, Yoo, J, Jennings, EG, Zeitlinger, J, Pokholok, DK, Kellis, M, Rolfe, PA, Takusagawa, KT, Lander, ES, Gifford, DK, Fraenkel, E, and Young, RA 2004. Transcriptional regulatory code of a eukaryotic genome. Nature. 431: 99–104.
  • Hassan AH, Neely KE and Workman JL. 2001. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104:817–827.
  • Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ and Workman JL. 2002. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111:369–379.
  • Hausmann S, Koiwa H, Krishnamurthy S, Hampsey M and Shuman S. 2005. Different strategies for carboxyl-terminal domain (CTD) recognition by serine 5-specific CTD phosphatases. J Biol Chem 280:37681–37688.
  • Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA and Berger SL. 2003. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:2648–2663.
  • Hewish DR and Burgoyne LA. 1973. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun 52:504–510.
  • Hirschhorn JN, Brown SA, Clark CD and Winston F. 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6:2288–2298.
  • Houseley J, LaCava J and Tollervey D. 2006. RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7:529–539.
  • Houseley J, Rubbi L, Grunstein M, Tollervey D and Vogelauer M. 2008. A ncRNA Modulates Histone Modification and mRNA Induction in the Yeast GAL Gene Cluster. Mol Cell 32:685–695.
  • Iberg AN, Espejo A, ChengD, Kim D, Michaud-Levesque J, Richard S and Bedford MT. 2008. Arginine methylation of the histone H3 tail impedes effector binding. J Biol Chem 283:3006–3010.
  • Inostroza JA, Mermelstein FH, Ha I, Lane WS and Reinberg D. 1992. Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70:477–489.
  • Iyer V and Struhl K. 1995. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. Embo J 14:2570–2579.
  • Jiang, C, and Pugh, BF 2009. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet. 10: 161–172.
  • Johnson SM, Tan FJ, McCullough HL, Riordan DP and Fire AZ. 2006. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res 16:1505–1516.
  • Jothi R, Cuddapah S, Barski A, Cui K and Zhao K. 2008. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res 36:5221–5231.
  • Kao CF, Hillyer C, Tsukuda T, Henry K, Berger S and Osley MA. 2004. Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev 18:184–195.
  • Kapranov, P, Cheng, J, Dike, S, Nix, DA, Duttagupta, R, Willingham, AT, Stadler, PF, Hertel, J, Hackermuller, J, Hofacker, IL, Bell, I, Cheung, E, Drenkow, J, Dumais, E, Patel, S, Helt, G, Ganesh, M, Ghosh, S, Piccolboni, A, Sementchenko, V, Tammana, H, and Gingeras, TR 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 316: 1484–1488.
  • Kayne PS, Kim UJ, Han M, Mullen JR, Yoshizaki F and Grunstein M. 1988. Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 55:27–39.
  • Keogh, MC, Mennella, TA, Sawa, C, Berthelet, S, Krogan, NJ, Wolek, A, Podolny, V, Carpenter, LR, Greenblatt, JF, Baetz, K, and Buratowski, S 2006. The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes Dev. 20: 660–665.
  • Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF and Buratowski S. 2004. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432:517–522.
  • Kim TH and Ren B. 2006. Genome-wide analysis of protein-DNA interactions. Annu Rev Genomics Hum Genet 7:81–102.
  • Kim YJ, Bjorklund S, Li Y, Sayre MH and Kornberg RD. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608.
  • Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, Vermeulen M, Mann M, Bahler J, Green RD and Kouzarides T. 2007. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449:928–932.
  • Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL and Strahl BD. 2005. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25:3305–3316.
  • Klose RJ and Zhang Y. 2007. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8:307–318.
  • Komarnitsky P, Cho EJ and Buratowski S. 2000. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14:2452–2460.
  • Kopcewicz KA, O’Rourke TW and Reines D. 2007. Metabolic regulation of IMD2 transcription and an unusual DNA element that generates short transcripts. Mol Cell Biol 27:2821–2829.
  • Kornberg RD. 2005. Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30:235–239.
  • Kouzarides T. 2007. Chromatin modifications and their function. Cell 128:693–705.
  • Krishnamurthy S, He X, Reyes-Reyes M, Moore C and Hampsey M. 2004. Ssu72 Is an RNA polymerase II CTD phosphatase. Mol Cell 14:387–394.
  • Krogan, NJ, Baetz, K, Keogh, MC, Datta, N, Sawa, C, Kwok, TC, Thompson, NJ, Davey, MG, Pootoolal, J, Hughes, TR, Emili, A, Buratowski, S, Hieter, P, and Greenblatt, JF 2004. Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proc Natl Acad Sci U S A. 101: 13513–13518.
  • Kuehner JN and Brow DA. 2008. Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol Cell 31:201–211.
  • Lacoste N, Utley RT, Hunter JM, Poirier GG and Cote J. 2002. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277:30421–30424.
  • Laribee RN, Krogan NJ, Xiao T, Shibata Y, Hughes TR, Greenblatt JF and Strahl BD. 2005. BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr Biol 15:1487–1493.
  • Larschan E and Winston F. 2001. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev 15:1946–1956.
  • Lee C, Li X, Hechmer A, Eisen M, Biggin MD, Venters BJ, Jiang C, Li J, Pugh BF and Gilmour DS. 2008. NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol Cell Biol 28:3290–3300.
  • Lee JM and Greenleaf AL. 1997. Modulation of RNA polymerase II elongation efficiency by C-terminal heptapeptide repeat domain kinase I. J Biol Chem 272:10990–10993.
  • Lee JS and Shilatifard A. 2007. A site to remember: H3K36 methylation a mark for histone deacetylation. Mutat Res 618:130–134.
  • Lee TI and Young RA. 1998. Regulation of gene expression by TBP-associated proteins. Genes Dev 12:1398–1408.
  • Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, and Young RA. 2002. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 298:799–804.
  • Levine SS, King IF and Kingston RE. 2004. Division of labor in polycomb group repression. Trends Biochem Sci 29:478–485.
  • Li B and Reese JC. 2001. Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence. J Biol Chem 276:33788–33797.
  • Li B, Howe L, Anderson S, Yates 3rd JR and Workman JL. 2003. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 278:8897–8903.
  • Li B, Pattenden SG, Lee D, Gutierrez J, Chen J, Seidel C, Gerton J and Workman JL. 2005. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad Sci USA 102:18385–18390.
  • Li B, Carey M and Workman JL. 2007a. The role of chromatin during transcription. Cell 128:707–719.
  • Li B, Gogol M, Carey M, Lee D, Seidel C and Workman JL. 2007b. Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316:1050–1054.
  • Li B, Gogol M, Carey M, Pattenden SG, Seidel C and Workman JL. 2007c. Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev 21:1422–1430.
  • Li, B, Jackson, J, Simon, MD, Fleharty, B, Gogol, M, Seidel, C, Workman, JL, and Shilatifard, A 2009. Histone H3 Lysine 36 Dimethylation (H3K36me2) Is Sufficient to Recruit the Rpd3s Histone Deacetylase Complex and to Repress Spurious Transcription. J Biol Chem. 284: 7970–7976.
  • Li J, Moazed D and Gygi SP. 2002. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J Biol Chem 277:49383–49388.
  • Licatalosi DD, Geiger G, Minet M, Schroeder S, Cilli K, McNeil JB and Bentley DL. 2002. Functional interaction of yeast pre-mRNA 3’ end processing factors with RNA polymerase II. Mol Cell 9:1101–1111.
  • Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N and Rando OJ. 2005. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3:e328.
  • Lohr D. 1997. Nucleosome transactions on the promoters of the yeast GAL and PHO genes. J Biol Chem 272:26795–26798.
  • Lorch Y, LaPointe JW and Kornberg RD. 1987. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49:203–210.
  • Lorch Y, Maier-Davis B and Kornberg RD. 2006. Chromatin remodeling by nucleosome disassembly in vitro. Proc Natl Acad Sci USA 103:3090–3093.
  • Luger K, Mader AW, Richmond RK, Sargent DF and Richmond TJ. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260.
  • Lunyak VV and Rosenfeld MG. 2008. Epigenetic regulation of stem cell fate. Hum Mol Genet 17:R28–36.
  • Margaritis T and Holstege FC. 2008. Poised RNA polymerase II gives pause for thought. Cell 133:581–584.
  • Margulies, M, Egholm, M, Altman, WE, Attiya, S, Bader, JS, Bemben, LA, Berka, J, Braverman, MS, Chen, YJ, Chen, Z, Dewell, SB, Du, L, Fierro, JM, Gomes, XV, Godwin, BC, He, W, Helgesen, S, Ho, CH, Irzyk, GP, Jando, SC, Alenquer, ML, Jarvie, TP, Jirage, KB, Kim, JB, Knight, JR, Lanza, JR, Leamon, JH, Lefkowitz, SM, Lei, M, Li, J, Lohman, KL, Lu, H, Makhijani, VB, McDade, KE, McKenna, MP, Myers, EW, Nickerson, E, Nobile, JR, Plant, R, Puc, BP, Ronan, MT, Roth, GT, Sarkis, GJ, Simons, JF, Simpson, JW, Srinivasan, M, Tartaro, KR, Tomasz, A, Vogt, KA, Volkmer, GA, Wang, SH, Wang, Y, Weiner, MP, Yu, P, Begley, RF, and Rothberg, JM 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 437: 376–380.
  • Marshall NF, Peng J, Xie Z and Price DH. 1996. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 271:27176–27183.
  • Martens C, Krett B and Laybourn PJ. 2001. RNA polymerase II and TBP occupy the repressed CYC1 promoter. Mol Microbiol 40:1009–1019.
  • Martens JA, Laprade L and Winston F. 2004. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429:571–574.
  • Martens JA, Wu PY and Winston F. 2005. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev 19:2695–2704.
  • Martinez-Campa C, Politis P, Moreau JL, Kent N, Goodall J, Mellor J and Goding CR. 2004. Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Mol Cell 15:69–81.
  • Matsui T, Segall J, Weil PA and Roeder RG. 1980. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J Biol Chem 255:11992–11996.
  • Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I and Pugh BF. 2008a. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18:1073–1083.
  • Mavrich, TN, Jiang, C, Ioshikhes, IP, Li, X, Venters, BJ, Zanton, SJ, Tomsho, LP, Qi, J, Glaser, RL, Schuster, SC, Gilmour, DS, Albert, I, and Pugh, BF 2008b. Nucleosome organization in the Drosophila genome. Nature. 453: 358–362.
  • Megee PC, Morgan BA, Mittman BA and Smith MM. 1990. Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Science 247:841–845.
  • Meinhart A, Kamenski T, Hoeppner S, Baumli S and Cramer P. 2005. A structural perspective of CTD function. Genes Dev 19:1401–1415.
  • Mencia M, Moqtaderi Z, Geisberg JV, Kuras L and Struhl K. 2002. Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mol Cell 9:823–833.
  • Millar CB and Grunstein M. 2006. Genome-wide patterns of histone modifications in yeast. Nat Rev Mol Cell Biol 7:657–666.
  • Morgan BA, Mittman BA and Smith MM. 1991. The highly conserved N-terminal domains of histones H3 and H4 are required for normal cell cycle progression. Mol Cell Biol 11:4111–4120.
  • Mortazavi A, Williams BA, McCue K, Schaeffer L and Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628.
  • Motamedi MR, Hong EJ, Li X, Gerber S, Denison C, Gygi S and Moazed D. 2008. HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol Cell 32:778–790.
  • Muldrow TA, Campbell AM, Weil PA and Auble DT. 1999. MOT1 can activate basal transcription in vitro by regulating the distribution of TATA binding protein between promoter and nonpromoter sites. Mol Cell Biol 19:2835–2845.
  • Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J and Adelman K. 2007. RNA polymerase is poised for activation across the genome. Nat Genet 39:1507–1511.
  • Myers LC, Gustafsson CM, Bushnell DA, Lui M, Erdjument-Bromage H, Tempst P and Kornberg RD. 1998. The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev 12:45–54.
  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M and Snyder M. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349.
  • Nakanishi S, Sanderson BW, Delventhal KM, Bradford WD, Staehling-Hampton K and Shilatifard A. 2008. A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nat Struct Mol Biol 15:881–888.
  • Natarajan K, Jackson BM, Zhou H, Winston F and Hinnebusch AG. 1999. Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator. Mol Cell 4:657–664.
  • Neely KE, Hassan AH, Brown CE, Howe L and Workman JL. 2002. Transcription activator interactions with multiple SWI/SNF subunits. Mol Cell Biol 22:1615–1625.
  • Neigeborn L and Carlson M. 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845–858.
  • Neil H, Malabat C, d’Aubenton-Carafa Y, Xu Z, Steinmetz LM and Jacquier A. 2009. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457:1038–1042.
  • Nelson CJ, Santos-Rosa H and Kouzarides T. 2006. Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126:905–916.
  • Ng HH, Robert F, Young RA and Struhl K. 2002. Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev 16:806–819.
  • Ng HH, Dole S and Struhl K. 2003a. The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J Biol Chem 278:33625–33628.
  • Ng HH, Robert F, Young RA and Struhl K. 2003b. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11:709–719.
  • Nielsen, R, Pedersen, TA, Hagenbeek, D, Moulos, P, Siersbaek, R, Megens, E, Denissov, S, Borgesen, M, Francoijs, KJ, Mandrup, S, and Stunnenberg, HG 2008. Genome-wide profiling of PPAR{gamma}:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev. 22: 2953–2967.
  • Nikolov DB, Chen H, Halay ED, Usheva AA, Hisatake K, Lee DK, Roeder RG and Burley SK. 1995. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377:119–128.
  • Nourani A, Utley RT, Allard S and Cote J. 2004. Recruitment of the NuA4 complex poises the PHO5 promoter for chromatin remodeling and activation. Embo J 23:2597–2607.
  • Olins AL and Olins DE. 1974. Spheroid chromatin units (v bodies). Science 183:330–332.
  • Orlando V, Strutt H and Paro R. 1997. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11:205–214.
  • Orphanides G and Reinberg D. 2002. A unified theory of gene expression. Cell 108:439–451.
  • Panne D. 2008. The enhanceosome. Curr Opin Struct Biol 18:236–242.
  • Park JM, Kim HS, Han SJ, Hwang MS, Lee YC and Kim YJ. 2000. In vivo requirement of activator-specific binding targets of mediator. Mol Cell Biol 20:8709–8719.
  • Parnell TJ, Huff JT and Cairns BR. 2008. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. Embo J 27:100–110.
  • Parthun MR, Widom J and Gottschling DE. 1996. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87:85–94.
  • Perez-Ortin JE, Estruch F, Matallana E and Franco L. 1987. Fine analysis of the chromatin structure of the yeast SUC2 gene and of its changes upon derepression. Comparison between the chromosomal and plasmid-inserted genes. Nucleic Acids Res 15:6937–6956.
  • Perocchi F, Xu Z, Clauder-Munster S and Steinmetz LM. 2007. Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Res 35:e128.
  • Peterlin BM and Price DH. 2006. Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23:297–305.
  • Phatnani HP and Greenleaf AL. 2006. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20:2922–2936.
  • Phatnani HP, Jones JC and Greenleaf AL. 2004. Expanding the functional repertoire of CTD kinase I and RNA polymerase II: novel phosphoCTD-associating proteins in the yeast proteome. Biochemistry 43:15702–15719.
  • Pokholok, DK, Harbison, CT, Levine, S, Cole, M, Hannett, NM, Lee, TI, Bell, GW, Walker, K, Rolfe, PA, Herbolsheimer, E, Zeitlinger, J, Lewitter, F, Gifford, DK, and Young, RA 2005. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell. 122: 517–527.
  • Pray-Grant MG, Daniel JA, Schieltz D, Yates 3rd JR and Grant PA. 2005. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433:434–438.
  • Price DH. 2008. Poised polymerases: on your mark ... get set ... go! Mol Cell 30:7–10.
  • Ptashne, M, and Gann, A 1997. Transcriptional activation by recruitment. Nature. 386: 569–577.
  • Pugh BF. 2000. Control of gene expression through regulation of the TATA-binding protein. Gene 255:1–14.
  • Pugh BF and Gilmour DS. 2001. Genome-wide analysis of protein-DNA interactions in living cells. Genome Biol 2: REVIEWS1013.
  • Pugh BF and Tjian R. 1990. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61:1187–1197.
  • Radonjic M, Andrau JC, Lijnzaad P, Kemmeren P, Kockelkorn TT, van Leenen D, van Berkum NL and Holstege FC. 2005. Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. Mol Cell 18:171–183.
  • Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ and Madhani HD. 2005. Histone variant H2A.Z marks the 5’ ends of both active and inactive genes in euchromatin. Cell 123:233–248.
  • Rao B, Shibata Y, Strahl BD and Lieb JD. 2005. Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide. Mol Cell Biol 25:9447–9459.
  • Ravindra A, Weiss K and Simpson RT. 1999. High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating-type locus HMRa. Mol Cell Biol 19:7944–7950.
  • Reese JC, Apone L, Walker SS, Griffin LA and Green MR. 1994. Yeast TAFIIS in a multisubunit complex required for activated transcription. Nature 371:523–527.
  • Ren, B, Robert, F, Wyrick, JJ, Aparicio, O, Jennings, EG, Simon, I, Zeitlinger, J, Schreiber, J, Hannett, N, Kanin, E, Volkert, TL, Wilson, CJ, Bell, SP, and Young, RA 2000. Genome-wide location and function of DNA binding proteins. Science. 290: 2306–2309.
  • Robertson, G, Hirst, M, Bainbridge, M, Bilenky, M, Zhao, Y, Zeng, T, Euskirchen, G, Bernier, B, Varhol, R, Delaney, A, Thiessen, N, Griffith, OL, He, A, Marra, M, Snyder, M, and Jones, S 2007. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods. 4: 651–657.
  • Robzyk K, Recht J and Osley MA. 2000. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287:501–504.
  • Ruthenburg AJ, Li H, Patel DJ and Allis CD. 2007. Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994.
  • Saha A, Wittmeyer J and Cairns BR. 2006. Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7:437–447.
  • Saurin AJ, Shao Z, Erdjument-Bromage H, Tempst P and Kingston RE. 2001. A Drosophila polycomb group complex includes Zeste and dTAFII proteins. Nature 412:655–660.
  • Sayre MH, Tschochner H and Kornberg RD. 1992. Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. J Biol Chem 267:23376–23382.
  • Schneider J, Bajwa P, Johnson FC, Bhaumik SR and Shilatifard A. 2006. Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II. J Biol Chem 281:37270–37274.
  • Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G and Zhao K. 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898.
  • Schuster SC. 2008. Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18.
  • Schwabish MA and Struhl K. 2007. The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol 27:6987–6995.
  • Sekinger EA and Gross DS. 2001. Silenced chromatin is permissive to activator binding and PIC recruitment. Cell 105:403–414.
  • Sermwittayawong D and Tan S. 2006. SAGA binds TBP via its Spt8 subunit in competition with DNA: implications for TBP recruitment. Embo J 25:3791–3800.
  • Shen X, Mizuguchi G, Hamiche A and Wu C. 2000. A chromatin remodelling complex involved in transcription and DNA processing. Nature 406:541–544.
  • Shi Y and Whetstine JR. 2007. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25:1–14.
  • Shilatifard A. 2008. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20:341–348.
  • Shimada K, Oma Y, Schleker T, Kugou K, Ohta K, Harata M and Gasser SM. 2008. Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr Biol 18:566–575.
  • Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M and Iyer VR. 2008. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol 6:e65.
  • Shukla A, Stanojevic N, Duan Z, Sen P and Bhaumik SR. 2006. Ubp8p, a histone deubiquitinase whose association with SAGA is mediated by Sgf11p, differentially regulates lysine 4 methylation of histone H3 in vivo. Mol Cell Biol 26:3339–3352.
  • Smale ST and Kadonaga JT. 2003. The RNA polymerase II core promoter. Annu Rev Biochem 72:449–479.
  • Solomon MJ and Varshavsky A. 1985. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci USA 82:6470–6474.
  • Sprouse RO, Karpova TS, Mueller F, Dasgupta A, McNally JG and Auble DT. 2008a. Regulation of TATA-binding protein dynamics in living yeast cells. Proc Natl Acad Sci USA 105:13304–13308.
  • Sprouse, RO, Wells, MN, and Auble, DT 2009. TATA-binding protein variants that bypass the requirement for Mot1 in vivo. J Biol Chem. 284: 4525–4535.
  • Steinmetz EJ, Warren CL, Kuehner JN, Panbehi B, Ansari AZ and Brow DA. 2006. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 24:735–746.
  • Stern M, Jensen R and Herskowitz I. 1984. Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 178:853–868.
  • Sterner DE and Berger SL. 2000. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459.
  • Sterner DE, Lee JM, Hardin SE and Greenleaf AL. 1995. The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex. Mol Cell Biol 15:5716–5724.
  • Struhl K. 2007. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14:103–105.
  • Struhl K, Kadosh D, Keaveney M, Kuras L and Moqtaderi Z. 1998. Activation and repression mechanisms in yeast. Cold Spring Harb Symp Quant Biol 63:413–421.
  • Sudarsanam P, Iyer VR, Brown PO and Winston F. 2000. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:3364–3369.
  • Sultan, M, Schulz, MH, Richard, H, Magen, A, Klingenhoff, A, Scherf, M, Seifert, M, Borodina, T, Soldatov, A, Parkhomchuk, D, Schmidt, D, O'Keeffe, S, Haas, S, Vingron, M, Lehrach, H, and Yaspo, ML 2008. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science. 321: 956–960.
  • Sun ZW and Allis CD. 2002. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418:104–108.
  • Tan S, HunzikerY, Sargent DF and Richmond TJ. 1996. Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381:127–151.
  • Thiebaut M, Colin J, Neil H, Jacquier A, Seraphin B, Lacroute F and Libri D. 2008. Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Mol Cell 31:671–682.
  • Thomas MC and Chiang CM. 2006. The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41:105–178.
  • Toth J and Biggin MD. 2000. The specificity of protein-DNA crosslinking by formaldehyde: in vitro and in Drosophila embryos. Nucleic Acids Res 28:e4.
  • Tran HG, Steger DJ, Iyer VR and Johnson AD. 2000. The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. Embo J 19:2323–2331.
  • Trojer P, Zhang J, Yonezawa M, Schmidt A, Zheng H, Jenuwein T and Reinberg D. 2009. Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9A/KMT1C and the jumonji domain containing JMJD2/KDM4 proteins. J Biol Chem 284: 8395–8405.
  • Tsukiyama T. 2002. The in vivo functions of ATP-dependent chromatin-remodelling factors. Nat Rev Mol Cell Biol 3:422–429.
  • Uhler JP, Hertel C and Svejstrup JQ. 2007. A role for noncoding transcription in activation of the yeast PHO5 gene. Proc Natl Acad Sci USA 104:8011–8016.
  • Valay JG, Simon M, Dubois MF, Bensaude O, Facca C and Faye G. 1995. The KIN28 gene is required both for RNA polymerase II mediated transcription and phosphorylation of the Rpb1p CTD. J Mol Biol 249:535–544.
  • Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKernan K, Sidow A, Fire A, and Johnson SM 2008. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051–1063.
  • Vasiljeva L, Kim M, Mutschler H, Buratowski S and Meinhart A. 2008. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol 15:795–804.
  • Venters BJ and Pugh F. 2009. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res 19: 360–371.
  • Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, van Schaik FM, Varier RA, Baltissen MP, Stunnenberg HG, Mann M and Timmers HT. 2007. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131:58–69.
  • Wade JT and Struhl K. 2008. The transition from transcriptional initiation to elongation. Curr Opin Genet Dev 18:130–136.
  • Wang W, Carey M and Gralla JD. 1992. Polymerase II promoter activation: closed complex formation and ATP-driven start site opening. Science 255:450–453.
  • Weake VM and Workman JL. 2008. Histone ubiquitination: triggering gene activity. Mol Cell 29:653–663.
  • Whitehouse I, Rando OJ, Delrow J and Tsukiyama T. 2007. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450:1031–1035.
  • Wilcox CB, Rossettini A and Hanes SD. 2004. Genetic interactions with C-terminal domain (CTD) kinases and the CTD of RNA Pol II suggest a role for ESS1 in transcription initiation and elongation in Saccharomyces cerevisiae. Genetics 167:93–105.
  • Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J and Bahler J. 2008. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243.
  • Wood A, Schneider J, Dover J, Johnston M and Shilatifard A. 2003. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem 278:34739–34742.
  • Wood A, Schneider J, Dover J, Johnston M and Shilatifard A. 2005. The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. Mol Cell 20:589–599.
  • Wyce A, Xiao T, Whelan KA, Kosman C, Walter W, Eick D, Hughes TR, Krogan NJ, Strahl BD and Berger SL. 2007. H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex. Mol Cell 27:275–288.
  • Wyrick JJ, Holstege FC, Jennings EG, Causton HC, Shore D, Grunstein M, Lander ES and Young RA. 1999. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402:418–421.
  • Xiao T, Hall H, Kizer KO, Shibata Y, Hall MC, Borchers CH and Strahl BD. 2003. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 17:654–663.
  • Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W and Steinmetz LM. 2009. Bidirectional promoters generate pervasive transcription in yeast. Nature 457:1033–1037.
  • Yeo M, Lin PS, Dahmus ME and Gill GN. 2003. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J Biol Chem 278:26078–26085.
  • Yoh SM, Cho H, Pickle L, Evans RM and Jones KA. 2007. The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev. 21:160–174.
  • Yokomori K, Verrijzer CP and Tjian R. 1998. An interplay between TATA box-binding protein and transcription factors IIE and IIA modulates DNA binding and transcription. Proc Natl Acad Sci USA 95:6722–6727.
  • Yu H and Gerstein M. 2006. Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci USA 103:14724–14731.
  • Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ and Rando OJ. 2005. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630.
  • Yudkovsky N, Logie C, Hahn S and Peterson CL. 1999. Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes Dev 13:2369–2374.
  • Zanton SJ and Pugh BF. 2006. Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock. Genes Dev 20:2250–2265.
  • Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, Levine M and Young RA. 2007. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39:1512–1516.
  • Zhang H, Roberts DN and Cairns BR. 2005. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123:219–231.
  • Zhang J and Corden JL. 1991. Identification of phosphorylation sites in the repetitive carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J Biol Chem 266:2290–2296.
  • Zhang L, Fletcher AG, Cheung V, Winston F and Stargell LA. 2008. Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II. Mol Cell Biol 28:1393–1403.
  • Zhang Z and Gilmour DS. 2006. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol Cell 21:65–74.
  • Zhang Z and Reese JC. 2004. Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. Embo J 23:2246–2257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.