915
Views
69
CrossRef citations to date
0
Altmetric
Review Article

Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut

&
Pages 45-56 | Received 04 Aug 2016, Accepted 28 Sep 2016, Published online: 13 Nov 2016

References

  • Ambort D, Johansson MEV, Gustafsson JK, et al. (2012). Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. Proc Natl Acad Sci USA 109:5645–50.
  • Asker N, Axelsson MAB, Olofsson SO, Hansson GC. (1998). Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J Biol Chem 273:18857–63.
  • Ayabe T, Satchell DP, Wilson CL, et al. (2000). Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 1:113–18.
  • Bergstrom KSB, Xia L. (2013). Mucin-type O-glycans and their roles in intestinal homeostasis. Glycobiology 23:1026–37.
  • Bevins CL, Salzman NH. (2011). Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9:356–68.
  • Broekaert WF, Terras FRG, Cammue BPA, Osborn RW. (1995). Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–8.
  • Cash HL, Whitham CV, Behrendt CL, Hooper LV. (2006). Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313:1126–30.
  • Cerovic V, Bain CC, Mowat AM, Milling SWF. (2014). Intestinal macrophages and dendritic cells: what's the difference? Trends Immunol 35:270–7.
  • Chairatana P, Chu H, Castillo PA, et al. (2016). Proteolysis triggers self-assembly and unmasks innate immune function of a human α-defensin peptide. Chem Sci 7:1738–52.
  • Chairatana P, Nolan EM. (2014). Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens. J Am Chem Soc 136:13267–76.
  • Cheng H. (1974a). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. II. Mucous cells. Am J Anat 141:481–501.
  • Cheng H. (1974b). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. IV. Paneth cells. Am J Anat 141:521–35.
  • Cheng H, Leblond CP. (1974a). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat 141:461–79.
  • Cheng H, Leblond CP. (1974b). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am J Anat 141:503–19.
  • Chileveru HR, Lim SA, Chairatana P, et al. (2015). Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. Biochemistry 54:1767–77.
  • Choi SM, McAleer J, Zheng M, et al. (2013). Innate Stat3-mediated induction of the antimicrobial protein Reg3γ is required for host defense against MRSA pneumonia. J Exp Med 210:551–61.
  • Christa L, Carnot F, Simon MT, et al. (1996). HIP/PAP is an adhesive protein expressed in hepatocarcinoma, normal Paneth, and pancreatic cells. Am J Physiol 271:G993–1002.
  • Chu H, Pazgier M, Jung G, et al. (2012). Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337:477–81.
  • Clevers HC, Bevins CL. (2013). Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol 75:289–311.
  • Conibear AC, Rosengren KJ, Harvey PJ, Craik DJ. (2012). Structural characterization of the cyclic cystine ladder motif of θ-defensins. Biochemistry 51:9718–26.
  • Corfield AP. (2015). Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta 1850:236–52.
  • Costello EK, Lauber CL, Hamady M, et al. (2009). Bacterial community variation in human body habitats across space and time. Science 326:1694–7.
  • Cunliffe RN, Rose FRAJ, Keyte J, et al. (2001). Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some villous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 48:176–85.
  • Destoumieux D, Bulet P, Loew D, et al. (1997). Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (decapoda). J Biol Chem 272:28398–406.
  • Dommett R, Zilbauer M, George JT, Bajaj-Elliott M. (2005). Innate immune defence in the human gastrointestinal tract. Mol Immunol 42:903–12.
  • Ericksen B, Wu Z, Lu W, Lehrer RI. (2005). Antibacterial activity and specificity of the six human α-defensins. Antimicrob Agents Chemother 49:269–75.
  • Evans EW, Beach GG, Wunderlich J, Harmon BG. (1994). Isolation of antimicrobial peptides from avian heterophils. J Leukoc Biol 56:661–5.
  • Forbes SJ, Bumpus T, McCarthy EA, et al. (2011). Transient suppression of Shigella flexneri type 3 secretion by a protective O-antigen-specific monoclonal IgA. mBio 2:e00042–11.
  • Furci L, Baldan R, Bianchini V, et al. (2015). New role for human α-defensin 5 in the fight against hypervirulent Clostridium difficile strains. Infect Immun 83:986–95.
  • Furness JB, Rivera LR, Cho HJ, et al. (2013). The gut as a sensory organ. Nat Rev Gastroenterol Hepatol 10:729–40.
  • Ganz T. (2003). Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–20.
  • Ghoos Y, Vantrappen G. (1971). The cytochemical localization of lysozyme in Paneth cell granules. Histochem J 3:175–8.
  • Ghosh D, Porter E, Shen B, et al. (2002). Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3:583–90.
  • Godl K, Johansson MEV, Lidell ME, et al. (2002). The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J Biol Chem 277:47248–56.
  • Harwig SSL, Swiderek KM, Kokryakov VN, et al. (1994). Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett 342:281–5.
  • Hattrup CL, Gendler SJ. (2008). Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70:431–57.
  • Hill CP, Yee J, Selsted ME, Eisenberg D. (1991). Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 251:1481–5.
  • Hooper LV, Littman DR, Macpherson AJ. (2012). Interactions between the microbiota and the immune system. Science 336:1268–73.
  • Hoover DM, Chertov O, Lubkowski J. (2001). The structure of human β-defensin-1: new insights into structural properties of β-defensins. J Biol Chem 276:39021–26.
  • Johansson MEV, Phillipson M, Petersson J, et al. (2008). The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105:15064–9.
  • Jonckheere N, Van Seuningen I. (2010). The membrane-bound mucins: from cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie 92:1–11.
  • Jones DE, Bevins CL. (1992). Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 267:23216–25.
  • Jones DE, Bevins CL. (1993). Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 315:187–92.
  • Kashyap PC, Marcobal A, Ursell LK, et al. (2013). Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proc Natl Acad Sci U S A 110:17059–64.
  • Kaur S, Kumar S, Momi N, et al. (2013). Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol 10:607–20.
  • Kavanaugh NL, Zhang AQ, Nobile CJ, et al. (2014). Mucins suppress virulence traits of Candida albicans. mBio 5:e01911–14.
  • Kim JJ, Khan WI. (2013). Goblet cells and mucins: role in innate defense in enteric infections. Pathogens 2:55–70.
  • Kiyohara H, Egami H, Shibata Y, et al. (1992). Light microscopic immunohistochemical analysis of the distribution of group II phospholipase A2 in human digestive organs. J Histochem Cytochem 40:1659–64.
  • Kudryashova E, Quintyn R, Seveau S, et al. (2014). Human defensins facilitate local unfolding of thermodynamically unstable regions of bacterial protein toxins. Immunity 41:709–21.
  • Lasserre C, Colnot C, Bréchot C, Poirier F. (1999). HIP/PAP gene, encoding a C-type lectin overexpressed in primary liver cancer, is expressed in nervous system as well as in intestine and pancreas of the postimplantation mouse embryo. Am J Pathol 154:1601–10.
  • Lehotzky RE, Partch CL, Mukherjee S, et al. (2010). Molecular basis for peptidoglycan recognition by a bactericidal lectin. Proc Natl Acad Sci U S A 107:7722–7.
  • Lehrer RI, Ganz T. (1999). Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11:23–7.
  • Lehrer RI, Jung G, Ruchala P, et al. (2009). Multivalent binding of carbohydrates by the human alpha-defensin, HD5. J Immunol 183:480–90.
  • Lehrer RI, Lu W. (2012). α-Defensins in human innate immunity. Immunol. Rev 245:84–112.
  • Linden SK, Sutton P, Karlsson NG, et al. (2008). Mucins in the mucosal barrier to infection. Mucosal Immunol 1:183–97.
  • Lindner C, Wahl B, Föhse L, et al. (2012). Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J Exp Med 209:365–77.
  • Linzmeier R, Ho CH, Hoang BV, Ganz T. (1999). A 450-kb contig of defensin genes on human chromosome 8p23. Gene 233:205–11.
  • Litman GW, Rast JP, Fugmann SD. (2010). The origins of vertebrate adaptive immunity. Nat Rev Immunol 10:543–53.
  • Loonen LMP, Stolte EH, Jaklofsky MTJ, et al. (2014). REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunol 7:939–47.
  • Macpherson AJ, Geuking MB, McCoy KD. (2012). Homeland security: IgA immunity at the frontiers of the body. Trends Immunol 33:160–7.
  • Mantis NJ, Rol N, Corthésy B. (2011). Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4:603–11.
  • McGuckin MA, Lindén SK, Sutton P, Florin TH. (2011). Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9:265–78.
  • Moser S, Chileveru HR, Tomaras J, Nolan EM. (2014). A bacterial mutant library as a tool to study the attack of a defensin peptide. ChemBioChem 15:2684–8.
  • Mukherjee S, Zheng H, Derebe MG, et al. (2014). Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505:103–7.
  • Ouellette AJ, Darmoul D, Tran D, et al. (1999). Peptide localization and gene structure of cryptdin 4, a differentially expressed mouse Paneth cell α-defensin. Infect Immun 67:6643–51.
  • Pabst O, Cerovic V, Hornef M. (2016). Secretory IgA in the coordination of establishment and maintenance of the microbiota. Trends Immunol 37:287–96.
  • Parkin J, Cohen B. (2001). An overview of the immune system. Lancet 357:1777–89.
  • Pazgier M, Wei G, Ericksen B, et al. (2012). Sometimes it takes two to tango: contributions of dimerization to functions of human α-defensin HNP1 peptide. J Biol Chem 287:8944–53.
  • Perez-Vilar J, Mabolo R, Mcvaugh CT, et al. (2006). Mucin granule intraluminal organization in living mucous/goblet cells: roles of protein post-translational modifications and secretion. J Biol Chem 281:4844–55.
  • Perlroth J, Choi B, Spellberg B. (2007). Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 45:321–46.
  • Peterson LW, Artis D. (2014). Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–53.
  • Png CW, Lindén SK, Gilshenan KS, et al. (2010). Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105:2420–8.
  • Porter EM, Bevins CL, Ghosh D, Ganz T. (2002). The multifaceted Paneth cell. Cell Mol Life Sci 59:156–70.
  • Porter EM, Liu L, Oren A, et al. (1997a). Localization of human intestinal defensin 5 in Paneth cell granules. Infect Immun 65:2389–95.
  • Porter EM, van Dam E, Valore EV, Ganz T. (1997b). Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infect Immun 65:2396–401.
  • Qin J, Li R, Raes J, et al. (2010). A human gut microbial gene catalog established by metagenomic sequencing. Nature 464:59–65.
  • Quayle AJ, Porter EM, Nussbaum AA, et al. (1998). Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol 152:1247–58.
  • Rajabi M, Ericksen B, Wu X, et al. (2012). Functional determinants of human enteric α-defensin HD5: a crucial role for hydrophobicity at dimer interface. J Biol Chem 287:21615–27.
  • Robinson JK, Blanchard TG, Levine AD, et al. (2001). A mucosal IgA-mediated excretory immune system in vivo. J Immunol 166:3688–92.
  • Salzman NH, Ghosh D, Huttner KM, et al. (2003). Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 442:522–6.
  • Salzman NH, Hung K, Haribhai D, et al. (2010). Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11:76–83.
  • Sansonetti PJ. (2011). To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol 4:8–14.
  • Santaolalla R, Fukata M, Abreu MT. (2011). Innate immunity in the small intestine. Curr Opin Gastroenterol 27:125–31.
  • Sardi JCO, Scorzoni L, Bernardi T, et al. (2013). Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62:10–24.
  • Satoh Y, Habara Y, Ono K, Kanno T. (1995). Carbamylcholine-and catecholamine-induced intracellular calcium dynamics of epithelial cells in mouse ileal crypts. Gastroenterology 108:1345–56.
  • Snoeck V, Goddeeris B, Cox E. (2005). The role of enterocytes in the intestinal barrier function and antigen uptake. Microbes Infect 7:997–1004.
  • Sommer F, Adam N, Johansson MEV, et al. (2014). Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture. PLoS One 9:e85254.
  • Sonnenburg JL, Xu J, Leip DD, et al. (2005). Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307:1955–9.
  • Specian RD, Oliver MG. (1991). Functional biology of intestinal goblet cells. Am J Physiol 260:C183–93.
  • Spencer JD, Hains DS, Porter E, et al. (2012). Human alpha defensin 5 expression in the human kidney and urinary tract. PLoS One 7:e31712.
  • Stokes CR, Soothill JF, Turner MW. (1975). Immune exclusion is a function of IgA. Nature 255:745–6.
  • Szyk A, Wu Z, Tucker K, et al. (2006). Crystal structures of human α-defensins HNP4, HD5, and HD6. Protein Sci 15:2749–60.
  • Tang YQ, Yuan J, Ösapay G, et al. (1999). A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286:498–502.
  • Thomassin JL, Lee MJ, Brannon JR, et al. (2013). Both group 4 capsule and lipopolysaccharide O-antigen contribute to enteropathogenic Escherichia coli resistance to human α-defensin 5. PLoS One 8:e82475.
  • Thomsen T, Schlosser A, Holmskov U, Sorensen GL. (2011). Ficolins and FIBCD1: soluble and membrane bound pattern recognition molecules with acetyl group selectivity. Mol Immunol 48:369–81.
  • Thornton DJ, Rousseau K, McGuckin MA. (2008). Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol 70:459–86.
  • Trabi M, Schirra HJ, Craik DJ. (2001). Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from Rhesus macaque leukocytes. Biochemistry 40:4211–21.
  • Tsuji S, Uehori J, Matsumoto M, et al. (2001). Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem 276:23456–63.
  • Vaerman JP, Derijck-Langendries A, Rits M, Delacroix D. (1985). Neutralization of cholera toxin by rat bile secretory IgA antibodies. Immunology 54:601–3.
  • Verdugo P. (2012). Supramolecular dynamics of mucus. Cold Spring Harb Perspect Med 2:a009597.
  • Voehringer D, Stanley SA, Cox JS, et al. (2007). Nippostrongylus brasiliensis: identification of intelectin-1 and -2 as Stat6-dependent genes expressed in lung and intestine during infection. Exp Parasitol 116:458–66.
  • Wanniarachchi YA, Kaczmarek P, Wan A, Nolan EM. (2011). Human defensin 5 disulfide array mutants: disulfide bond deletion attenuates antibacterial activity against Staphylococcus aureus. Biochemistry 50:8005–17.
  • Wehkamp J, Chu H, Shen B, et al. (2006). Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580:5344–50.
  • Wehkamp J, Stange EF. (2010). Paneth's disease. J Crohns Colitis 4:523–31.
  • Wei G, de Leeuw E, Pazgier M, et al. (2009). Through the looking glass, mechanistic insights from enantiomeric human defensins. J Biol Chem 284:29180–92.
  • Weis WI, Taylor ME, Drickamer K. (1998). The C-type lectin superfamily in the immune system. Immunol Rev 163:19–34.
  • Wesener DA, Wangkanont K, McBride R, et al. (2015). Recognition of microbial glycans by human intelectin-1. Nat Struct Mol Biol 22:603–10.
  • Wommack AJ, Robson SA, Wanniarachchi YA, et al. (2012). NMR solution structure and condition-dependent oligomerization of the antimicrobial peptide human defensin 5. Biochemistry 51:9624–37.
  • Wommack AJ, Ziarek JJ, Tomaras J, et al. (2014). Discovery and characterization of a disulfide-locked C(2)-symmetric defensin peptide. J Am Chem Soc 136:13494–7.
  • Woof JM, Russell MW. (2011). Structure and function relationships in IgA. Mucosal Immunol 4:590–7.
  • Zhao L, Ericksen B, Wu X, et al. (2012). Invariant Gly residue is important for α-defensin folding, dimerization, and function: a case study of the human neutrophil α-defensin HNP1. J Biol Chem 287:18900–12.
  • Zhao L, Lu W. (2014). Defensins in innate immunity. Curr Opin Hematol 21:37–42.
  • Zhu S. (2008). Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSαβ defensins. Mol Immunol 45:828–38.
  • Zou J, Mercier C, Koussounadis A, Secombes C. (2007). Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol 44:638–47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.