180
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Hemoglobin wonders: a fascinating gas transporter dive into molluscs

, , , & ORCID Icon
Pages 132-157 | Received 22 Aug 2023, Accepted 21 Dec 2023, Published online: 08 Jan 2024

References

  • Abele-Oeschger D, Oeschger R. 1995. Hypoxia-induced autoxidation of haemoglobin in the benthic invertebrates Arenicola marina (Polychaeta) and Astarte borealis (Bivalvia) and the possible effects of sulphide. J Exp Mar Biol Ecol. 187(1):63–80. doi: 10.1016/0022-0981(94)00172-A.
  • Adema CM, Hillier LW, Jones CS, Loker ES, Knight M, Minx P, Oliveira G, Raghavan N, Shedlock A, do Amaral LR, et al. 2017. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat Commun. 8(1):15451. doi: 10.1038/ncomms15451.
  • Almeida AP, Neves AG. 1974. The hemoglobin of Biomphalaria glabrata: chemical composition and some physicochemical properties. Biochim Biophys Acta. 371(1):140–146. doi: 10.1016/0005-2795(74)90162-7.
  • Alyakrinskaya I. 2003. Tissue hemoglobins in Bivalvia (Mollusca). Biol Bull Russ Acad Sci. 30(6):617–626. doi: 10.1023/B:BIBU.0000007720.97534.69.
  • Anderson AE, Childress JJ, Favuzzi JA. 1987. Net uptake of CO2 driven by sulphide and thiosulphate oxidation in the bacterial symbiont-containing clam Solemya reidi. J Exp Biol. 133(1):1–31. doi: 10.1242/jeb.133.1.1.
  • Angelini E, Salvato B, Di Muro P, Beltramini M. 1998. Respiratory pigments of Yoldia eightsi, an Antarctic bivalve. Mar Biol. 131(1):15–23. doi: 10.1007/s002270050291.
  • Ansell AD, Nair NB. 1968. Occurrence of haemocoelic erythrocytes containing haemoglobin in a wood boring mollusc. Nature. 217(5126):357–357. doi: 10.1038/217357a0.
  • Antommattei-Pérez FM, Rosado-Ruiz T, Cadilla CL, López-Garriga J. 1999. The cDNA-derived amino acid sequence of hemoglobin I from Lucina pectinata. J Protein Chem. 18(8):831–836. doi: 10.1023/a:1020623011363.
  • Arndt MHL, de Oliveira CLP, Régis WCB, Torriani IL, Santoro MM. 2003. Small angle X-ray scattering of the hemoglobin from Biomphalaria glabrata. Biopolymers. 69(4):470–479. doi: 10.1002/bip.10367.
  • Arndt MH, Nascimento DG, Javier LP, Santoro MM. 1998. The myoglobin and the hemoglobin of Biomphalaria glabrata, an evidence of gene duplications. Mem Inst Oswaldo Cruz. 93(suppl 1):171–172. doi: 10.1590/s0074-02761998000700026.
  • Arndt MH, Santoro MM. 1998. Structure of the extracellular hemoglobin of Biomphalaria glabrata. Comp Biochem Physiol B: biochem Mol Biol. 119(4):667–675. doi: 10.1016/S0305-0491(98)00042-X.
  • Bai CM, Xin LS, Rosani U, Wu B, Wang QC, Duan XK, Liu ZH, Wang CM. 2019. Chromosomal-level assembly of the blood clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C. Gigascience. 8(7):1–8. doi: 10.1093/gigascience/giz067.
  • Bao YB, Li PF, Dong YH, Xiang RH, Gu LL, Yao HH, Wang Q, Lin ZH. 2013. Polymorphism of the multiple hemoglobins in blood clam Tegillarca granosa and its association with disease resistance to Vibrio parahaemolyticus. Fish Shellfish Immunol. 34(5):1320–1324. doi: 10.1016/j.fsi.2013.02.022.
  • Bao YB, Wang JJ, Li CH, Li PF, Wang SF, Lin ZH. 2016. A preliminary study on the antibacterial mechanism of Tegillarca granosa hemoglobin by derived peptides and peroxidase activity. Fish Shellfish Immunol. 51:9–16. doi: 10.1016/j.fsi.2016.02.004.
  • Bao YB, Wang Q, Guo XM, Lin ZH. 2013. Structure and immune expression analysis of hemoglobin genes from the blood clam Tegillarca granosa. Genet Mol Res. 12(3):3110–3123. doi: 10.4238/2013.February.28.5.
  • Bao YB, Wang Q, Lin ZH. 2011. Hemoglobin of the bloody clam Tegillarca granosa (Tg-HbI) is involved in the immune response against bacterial infection. Fish Shellfish Immunol. 31(4):517–523. doi: 10.1016/j.fsi.2011.05.029.
  • Bao YB, Zeng QF, Wang J, Zhang ZL, Zhang Y, Wang SF, Wong N-K, Yuan WB, Huang YY, Zhang WF, et al. 2021. Genomic insights into the origin and evolution of molluscan red-bloodedness in the blood clam Tegillarca granosa. Mol Biol Evol. 38(6):2351–2365. doi: 10.1093/molbev/msab030.
  • Boffi A, Rizzi M, Monacelli F, Ascenzi P. 2000. Determination of H2S solubility via the reaction with ferric hemoglobin I from the bivalve mollusc Lucina pectinata. Biochim Biophys Acta. 1523(2-3):206–208. doi: 10.1016/s0304-4165(00)00123-9.
  • Bolognesi M, Bordo D, Rizzi M, Tarricone C, Ascenzi P. 1997. Nonvertebrate hemoglobins: structural bases for reactivity. Prog Biophys Mol Biol. 68(1):29–68. doi: 10.1016/s0079-6107(97)00017-5.
  • Bonaventura C, Bonaventura J. 1983. Chapter 1, Respiratory pigments: structure and function. In: hochachka PW, editor. The Mollusca. New York: Academic Press; p. 1–50.
  • Bugge J, Weber RE. 1999. Oxygen binding and its allosteric control in hemoglobin of the pulmonate snail, Biomphalaria glabrata. Am J Physiol. 276(2):R347–356. doi: 10.1152/ajpregu.1999.276.2.R347.
  • Chiancone E, Vecchini P, Verzili D, Ascoli F, Antonini E. 1981. Dimeric and tetrameric hemoglobins from the mollusc Scapharca inaequivalvis: structural and functional properties. J Mol Biol. 152(3):577–592. doi: 10.1016/0022-2836(81)90270-9.
  • Childress JJ, Fisher CR, Favuzzi JA, Arp AJ, Oros DR. 1993. The role of a zinc-based, serum-borne sulphide-binding component in the uptake and transport of dissolved sulphide by the chemoautotrophic symbiont-containing clam Calyptogena elongata. J Exp Biol. 179(1):131–158. doi: 10.1242/jeb.179.1.131.
  • Coletta M, Gambacurta A, Clementi ME, Erba F, Polizio F, Falconi M, Ascoli F. 1999. Functional modulation of the Thr72→Ile mutant from Scapharca inaequivalvis homodimeric hemoglobin. J Biol Inorg Chem. 4(6):678–683. doi: 10.1007/s007750050339.
  • Collett LC, O’gower AK. 1972. Molluscan hemoglobins with unusual temperature-dependent characteristics. Comp Biochem Physiol A Comp Physiol. 41(4):843–850. doi: 10.1016/0300-9629(72)90346-5.
  • Como PF, Thompson EOP. 1980. Multiple haemoglobins of the bivalve mollusc Anadara trapezia. Aust Jnl of Bio Sci. 33(6):643–652. doi: 10.1071/BI9800643.
  • Dando PR, Southward AJ, Southward EC, Terwilliger NB, Terwilliger RC. 1985. Sulphur-oxidising bacteria and haemoglobin in gills of the bivalve mollusc Myrtea spinifera. Mar Ecol Prog Ser. 23:85–98. doi: 10.3354/meps023085.
  • Decker C, Zorn N, Le Bruchec J, Caprais JC, Potier N, Leize-Wagner E, Lallier FH, Olu K, Andersen AC. 2017. Can the hemoglobin characteristics of vesicomyid clam species influence their distribution in deep-sea sulfide-rich sediments? A case study in the Angola Basin. Deep Sea Res Part II. 142:219–232. doi: 10.1016/j.dsr2.2016.11.009.
  • Decker C, Zorn N, Potier N, Leize-Wagner E, Lallier F, Olu K, Andersen A. 2014. Globin’s structure and function in vesicomyid bivalves from the Gulf of Guinea cold seeps as an adaptation to life in reduced sediments. Physiol Biochem Zool. 87(6):855–869. doi: 10.1086/678131.
  • Della Longa S, Gambacurta A, Ascone I, Bertollini A, Girasole M, Congiu Castellano A, Ascoli F. 1999. Fe-heme structure and dynamics in Thr72 Ile mutant Scapharca inaequivalvis hemoglobin by X-ray absorption spectroscopy. J Synchrotron Radiat. 6(Pt 3):392–393. doi: 10.1107/S0909049598016306.
  • Della Longa S, Gambacurta A, Bertollini A, Girasole M, Castellano AC, Ascoli F. 2001. Structure of the Fe-heme in the hemodimeric hemoglobin from Scapharca inaequivalvis and in the T72I mutant: an X-ray absorption spectroscopic study at low temperature. Eur Biophys J. 29(8):559–568. doi: 10.1007/s002490000102.
  • Dewilde S, Angelini E, Kiger L, Marden MC, Beltramini M, Salvato B, Moens L. 2003. Structure and function of the globin and globin gene from the Antarctic mollusc Yoldia eightsi. Biochem J. 370(Pt 1):245–253. doi: 10.1042/BJ20020727.
  • Dixon B, Pohajdak B. 1992. Did the ancestral globin gene of plants and animals contain only two introns? Trends Biochem Sci. 17(12):486–488. doi: 10.1016/0968-0004(92)90334-6.
  • Djangham JS, Gabbott PA, Wood EJ. 1978. Physico-chemical characteristics and oxygen-binding properties of the multiple haemoglobins of the West African blood clam Anadara senilis (L.). Comp Biochem Physiol B: comp Biochem. 60(3):245–250. doi: 10.1016/0305-0491(78)90095-0.
  • Doeller JE, Kraus DW, Colacino JM, Wittenberg JB. 1988. Gill hemoglobin may deliver sulfide to bacterial symbionts of Solemya velum (Bivalvia, Mollusca). Biol Bull. 175(3):388–396. doi: 10.2307/1541730.
  • Doyle MA, Vitali J, Wittenberg JB, Vinogradov SN, Walz DA, Edwards BFP, Martin PD. 1994. Crystallization of hemoglobins II and III of the symbiont-harboring clam Lucina pectinata. Acta Crystallogr D Biol Crystallogr. 50(Pt 5):757–759. doi: 10.1107/S0907444994002556.
  • Figuerdo EA, Gomez MV, Heneine IF, Santos IO, Hargreaves FB. 1973. Isolation and physicochemical properties of the hemoglobin of Biomphalaria glabrata (Mollusca, Planorbidae). Comp Biochem Physiol B: comp Biochem. 44(2):481–491. doi: 10.1016/0305-0491(73)90022-9.
  • Fisher WK, Gilbert AT, Thompson EOP. 1984. Amino acid sequence of the globin IIB chain of the dimeric haemoglobin of the bivalve mollusc Andara trapezia. Aust Jnl of Bio Sci. 37(4):191–204. doi: 10.1071/BI9840191.
  • Freadman M, Mangum C. 1976. The function of hemoglobin in the arcid clam Noetia ponderosa - I oxygenation in vitro and in vivo. Comp Biochem Physiol A Comp Physiol. 53(2):173–179. doi: 10.1016/s0300-9629(76)80051-5.
  • Frenkiel L, Gros O, Mouëza M. 1996. Gill structure in Lucina pectinata (Bivalvia: lucinidae) with reference to hemoglobin in bivalves with symbiotic sulphur-oxidizing bacteria. Mar Biol. 125(3):511–524. doi: 10.1007/BF00353264.
  • Furuta H, Ohe M, Kajita A. 1977. Subunit structure of hemoglobins from erythrocytes of the blood clam, Anadara broughtonii. J Biochem. 82(6):1723–1730. doi: 10.1093/oxfordjournals.jbchem.a131870.
  • Furuta H, Ohe M, Kajita A. 1980. Ligand-dependent allosteric transformation of hemoglobins from the blood clam, Anadara broughtonii. Biochim Biophys Acta. 625(2):318–327. doi: 10.1016/0005-2795(80)90296-2.
  • Gambacurta A, Basili P, Ascoli F. 2000. Scapharca inaequivalvis A and B miniglobin genes: promoter activity of the 5’ flanking regions and in vivo transcription. Gene. 255(1):75–81. doi: 10.1016/s0378-1119(00)00321-8.
  • Gambacurta A, Piro MC, Ascoli F. 1998. Scapharca inæquivalvis tetrameric hemoglobin A and B genes: evidence for a minigene. J Mol Evol. 47(2):167–171. doi: 10.1007/pl00006373.
  • Gambacurta A, Piro MC, Coletta M, Clementi ME, Polizio F, Desideri A, Santucci R, Ascoli F. 1995. A single mutation (Thr72→Ile) at the subunit interface is crucial for the functional properties of the homodimeric co-operative haemoglobin from Scapharca inaequivalvis. J Mol Biol. 248(5):910–917. doi: 10.1006/jmbi.1995.0271.
  • Gattoni M, Verzili D, Chiancone E, Antonini E. 1983. Subunit interactions in the dimeric and tetrameric hemoglobins from the mollusc Scapharca inaequivalvis. Biochim Biophys Acta, Protein Struct. 743(1):180–185. doi: 10.1016/0167-4838(83)90432-6.
  • Gavira JA, Camara-Artigas A, De Jesús-Bonilla W, López-Garriga J, Lewis A, Pietri R, Yeh S-R, Cadilla CL, García-Ruiz JM. 2008. Structure and ligand selection of hemoglobin II from Lucina pectinata. J Biol Chem. 283(14):9414–9423. doi: 10.1074/jbc.M705026200.
  • Gavira JA, de Jesus W, Camara-Artigas A, López-Garriga J, García-Ruiz JM. 2006. Capillary crystallization and molecular-replacement solution of haemoglobin II from the clam Lucina pectinata. Acta Crystallogr Sect F Struct Biol Cryst Commun. 62(Pt 3):196–199. doi: 10.1107/S1744309106002648.
  • Gilbert AT, Thompson E. 1985. Amino acid sequence of the β-chain of the tetrameric haemoglobin of the bivalve mollusc, Anadara trapezia. Aust J Biol Sci. 38(3):221–236. doi: 10.1071/bi9850221.
  • Gō M. 1981. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature. 291(5810):90–92. doi: 10.1038/291090a0.
  • Goodman M, Pedwaydon J, Czelusniak J, Suzuki T, Gotoh T, Moens L, Shishikura F, Walz D, N VS. 1988. An evolutionary tree for invertebrate globin sequences. J Mol Evol. 27(3):236–249. doi: 10.1007/BF02100080.
  • Goto R, Fukumori H, Kano Y, Kato M. 2018. Evolutionary gain of red blood cells in a commensal bivalve (Galeommatoidea) as an adaptation to a hypoxic shrimp burrow. Biol J Linn Soc. 125(2):368–376. doi: 10.1093/biolinnean/bly104.
  • Griesbach H. 1891. Beiträge zur histologie des blutes. Archiv f Mikrosk Anat. 37(1):22–98. doi: 10.1007/BF02954291.
  • Grinich NP, Terwilliger RC. 1980. The quarternary structure of an unusual high-molecular-weight intracellular haemoglobin from the bivalve mollusc Barbatia reeveana. Biochem J. 189(1):1–8. doi: 10.1042/bj1890001.
  • Grinich NP, Terwilliger RC, Terwilliger NB. 1986. Oxygen equilibria and structural characteristics of the tetrameric and polymeric intracellular hemoglobins from the bivalve mollusc Barbatia reeveana. J Comp Physiol B. 156(5):675–682. doi: 10.1007/BF00692745.
  • Harry HW. 1966. Studies on bivalve molluscs of the genus Crassinella in the Northwestern Gulf of Mexico: anatomy, ecology and systematics. Publ Instit Mar Sci Univ Texas. 11:65–89.
  • Herskovits TT, Hamilton MG. 1990. The hemoglobin of the aquatic snail, Planorbella duryi (Wetherby). Comp Biochem Physiol B. 95(2):321–326. doi: 10.1016/0305-0491(90)90083-6.
  • Herskovits TT, Hamilton MG. 1994. The molecular weight and subunit organization of Helisoma trivolvis (Say) hemoglobin: light-scattering and scanning transmission electron microscopic studies. Comp Biochem Physiol Biochem Mol Biol. 107(3):433–441. doi: 10.1016/0305-0491(94)90208-9.
  • Herskovits TT, Hamilton MG, Cousins CJ, Wall JS. 1990. Light-scattering and scanning transmission electron microscopic investigation of the hemocyanin of the bivalve, Yoldia limatula (Say). Comp Biochem Physiol B. 96(3):497–503. doi: 10.1016/0305-0491(90)90047-w.
  • Hockenhull-Johnson JD, Stern MS, Martin P, Dass C, Desiderio DM, Wittenberg JB, Vinogradov SN, Walz DA. 1991. The amino acid sequence of hemoglobin II from the symbiont-harboring clam Lucina pectinata. J Protein Chem. 10(6):609–622. doi: 10.1007/BF01025713.
  • Hockenhull-Johnson JD, Stern MS, Wittenberg JB, Vinogradov SN, Kapp OH, Walz DA. 1993. The amino acid sequence of hemoglobin III from the symbiont-harboring clam Lucina pectinata. J Protein Chem. 12(3):261–277. doi: 10.1007/BF01028189.
  • Hoffmann FG, Vandewege MW, Storz JF, Opazo JC. 2018. Gene turnover and diversification of the α- and β-globin gene families in sauropsid vertebrates. Genome Biol Evol. 10(1):344–358. doi: 10.1093/gbe/evy001.
  • Ilan E, Hammel I, David MM, Daniel E. 1986. Erythrocruorin from the aquatic snail Helisoma trivolvis. Quaternary structure and arrangement of subunits. Biochemistry. 25(21):6551–6554. doi: 10.1021/bi00369a032.
  • Ip JC-H, Xu T, Sun J, Li R, Chen C, Lan Y, Han Z, Zhang H, Wei J, Wang H, et al. 2021. Host-endosymbiont genome integration in a deep-sea chemosymbiotic clam. Mol Biol Evol. 38(2):502–518. doi: 10.1093/molbev/msaa241.
  • Jiang N, Tan NS, Ho B, Ding JL. 2007. Respiratory protein-generated reactive oxygen species as an antimicrobial strategy. Nat Immunol. 8(10):1114–1122. doi: 10.1038/ni1501.
  • Kawamoto N. 1928. Oxygen capacity of the blood of certain invertebrates which contains hemoglobin. Sci Rep Tohoku Univ. 3:561–575.
  • Kawano K, Iwasaki N, Suzuki T. 2003. Notable diversity in hemoglobin expression patterns among species of the deep-sea clam, Calyptogena. Cell Mol Life Sci. 60(9):1952–1956. doi: 10.1007/s00018-003-3184-7.
  • Kemling N, Kraus DW, Hockenhull-Johnson JD, Wittenberg JB, N VS, Walz DA, Edwards BF, Martin P. 1991. Crystallization of a complex of hemoglobin components II and III of the symbiont-harboring clam Lucina pectinata. J Mol Biol. 222(3):463–464. doi: 10.1016/0022-2836(91)90489-s.
  • Knapp JE, Bonham MA, Gibson QH, Nichols JC, Royer WE. 2005. Residue F4 plays a key role in modulating oxygen affinity and cooperativity in Scapharca dimeric hemoglobin. Biochemistry. 44(44):14419–14430. doi: 10.1021/bi051052+.
  • Knapp JE, Royer WE. 2003. Ligand-linked structural transitions in crystals of a cooperative dimeric hemoglobin. Biochemistry. 42(16):4640–4647. doi: 10.1021/bi027136p.
  • Kraus DW, Doeller JE, Powell SC. 1996. Sulfide may directly modify cytoplasmic hemoglobin deoxygenation in Solemya reidi gills. J Exp Biol. 199(Pt 6):1343–1352. doi: 10.1242/jeb.199.6.1343.
  • Kraus DW, Wittenberg JB. 1990. Hemoglobins of the Lucina pectinata/bacteria symbiosis. I. Molecular properties, kinetics and equilibria of reactions with ligands. J Biol Chem. 265(27):16043–16053. doi: 10.1016/S0021-9258(17)46185-0.
  • Kraus DW, Wittenberg JB, Lu JF, Peisach J. 1990. Hemoglobins of the Lucina pectinata/bacteria symbiosis. II. An electron paramagnetic resonance and optical spectral study of the ferric proteins. J Biol Chem. 265(27):16054–16059. doi: 10.1016/S0021-9258(17)46186-2.
  • Kruger F. 1957. Beitrage zur physiologie des hamoglobins wirbelloser tiere. IV. Zur atmungsphysiolo-gie von Glycimeris nummaria (Linne) (Mollusca: lammellibranchiata). Zool Jahrb. 67:p. 311–322. German.
  • Krylova EM, Sahling H. 2010. Vesicomyidae (Bivalvia): current taxonomy and distribution. PLoS One. 5(4):e9957. doi: 10.1371/journal.pone.0009957.
  • Laine JM, Amat M, Morgan BR, Royer WE, Massi F. 2014. Insight into the allosteric mechanism of Scapharca dimeric hemoglobin. Biochemistry. 53(46):7199–7210. doi: 10.1021/bi500591s.
  • Li C, Zhu J, Wang Y, Chen Y, Song L, Zheng W, Li J, Yu R. 2017. Antibacterial activity of AI-hemocidin 2, a novel N-terminal peptide of hemoglobin purified from Arca inflata. Mar Drugs. 15(7):205. doi: 10.3390/md15070205.
  • Lieb B, Dimitrova K, Kang H, Braun S, Gebauer W, Martin A, Hanelt B, Saenz S, Adema C, Markl J. 2006. Red blood with blue-blood ancestry: intriguing structure of a snail hemoglobin. Proc Natl Acad Sci USA. 103(32):12011–12016. doi: 10.1073/pnas.0601861103.
  • Mangum CP, Cockey EM. 1993. A structural and functional polymorphism in the hemoglobin O2 transport system of the blood clam Noetia ponderosa. J Exp Zool. 266(4):336–339. doi: 10.1002/jez.1402660412.
  • Mangum CP, Scott JL, Miller KI, Van Holde KE, Morse MP. 1987. Bivalve hemocyanin: structural, functional, and phylogenetic relationships. Biol Bull. 173(1):205–221. doi: 10.2307/1541873.
  • Mann RG, Fisher WK, Gilbert AT, Thompson EOP. 1986. Genetic variation of the dimeric haemoglobin of the bivalve mollusc Anadara trapezia. Aust Jnl of Bio Sci. 39(2):109–116. doi: 10.1071/BI9860109.
  • Manwell C. 1963. The chemistry and biology of hemoglobin in some marine clams - I. Distribution of the pigment and properties of the oxygen equilibrium. Comp Biochem Physiol. 9(3):209–218. doi: 10.1016/0010-406x(63)90125-7.
  • Marchany-Rivera D, Estremera-Andújar RA, Nieves-Marrero C, Ruiz-Martínez CR, Bauer W, López-Garriga J. 2021. SAXS structure of homodimeric oxyhemoglobin III from bivalve Lucina pectinata. Biopolymers. 112(6):e23427. doi: 10.1002/bip.23427.
  • Marchany-Rivera D, Smith CA, Rodriguez-Perez JD, López-Garriga J. 2020. Lucina pectinata oxyhemoglobin (II-III) heterodimer pH susceptibility. J Inorg Biochem. 207:111055. doi: 10.1016/j.jinorgbio.2020.111055.
  • Miyata M, Gillemans N, Hockman D, Demmers JAA, Cheng J-F, Hou J, Salminen M, Fisher CA, Taylor S, Gibbons RJ, et al. 2020. An evolutionarily ancient mechanism for regulation of hemoglobin expression in vertebrate red cells. Blood. 136(3):269–278. doi: 10.1182/blood.2020004826.
  • Montes-Rodríguez IM, Cadilla CL, López-Garriga J, González-Méndez R. 2022. Bioinformatic characterization and molecular evolution of the Lucina pectinata hemoglobins. Genes (Basel). 13(11):2041. doi: 10.3390/genes13112041.
  • Morse PM, Meyhöfer E, Otto JJ, Kuzirian AM. 1986. Hemocyanin respiratory pigment in bivalve mollusks. Science. 231(4743):1302–1304. doi: 10.1126/science.3945826.
  • Nagel RL, Shi Y, Le N, Nieves E, Tang X, Hirsch RE, Angeletti RH. 2000. Primary structure of Noetia ponderosa hemoglobins: functional correlates. Blood Cells Mol Dis. 26(5):437–444. doi: 10.1006/bcmd.2000.0323.
  • Naito Y, RiGGs CK, Vandergon TL, Riggs AF. 1991. Origin of a" bridge" intron in the gene for a two-domain globin. Proc Natl Acad Sci U S A. 88(15):6672–6676. doi: 10.1073/pnas.88.15.6672.
  • Nascimento MCS, Daniel JP, Heneine IF. 1982. The hemoglobin of the snail Biomphalaria glabrata. The absence of sulfhydryl groups (SH), presence of disulfide bonds (SS), and their relation to ligand properties. Comp Biochem Physiol B: comp Biochem. 73(2):251–256. doi: 10.1016/0305-0491(82)90280-2.
  • Nassif NT, Glenn WK, Mackinlay AG. 1994. The organization of the β-globin gene of the bivalve mollusc Anadara trapezia and its evolutionary relationship to other invertebrate and vertebrate globin genes. J Mol Evol. 39(1):47–55. doi: 10.1007/BF00178248.
  • Navarro AM, Maldonado M, González-Lagoa J, López-Mejía R, López-Garriga J, Colón JL. 1996. Control of carbon monoxide binding states and dynamics in hemoglobin I of Lucina pectinata by nearby aromatic residues. Inorg Chim Acta. 243(1-2):161–166. doi: 10.1016/0020-1693(95)04903-7.
  • Nicol PI, O’Gower AK. 1967. Haemoglobin variation in Anadara trapezia. Nature. 216(5116):684–684. doi: 10.1038/216684a0.
  • O’gower AK, Nicol PI. 1968. A latitudinal cline of haemoglobins in a bivalve mollusc. Heredity. 23(4):485–491. doi: 10.1038/hdy.1968.68.
  • Ochiai T, Enoki Y, Usuki I. 1989. Physicochemical properties of the extracellular hemoglobin from the planorbid snail, Indoplanorbis exustus. Comp Biochem Physiol B: comp Biochem. 93(4):935–940. doi: 10.1016/0305-0491(89)90069-2.
  • Onoki S, Mitomi Y, Hata R, Satake K. 1973. Heterogeneity of hemoglobin from Arca (Anadara satowi) molecular weights and oxygen equilibria of Arca Hb I and II. J Biochem. 73(4):717–725. doi: 10.1093/oxfordjournals.jbchem.a130134.
  • Opazo JC, Butts GT, Nery MF, Storz JF, Hoffmann FG. 2013. Whole-genome duplication and the functional diversification of teleost fish hemoglobins. Mol Biol Evol. 30(1):140–153. doi: 10.1093/molbev/mss212.
  • Opazo JC, Hoffmann FG, Natarajan C, Witt CC, Berenbrink M, Storz JF. 2015. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression. Mol Biol Evol. 32(4):871–887. doi: 10.1093/molbev/msu341.
  • Pardanani A, Gambacurta A, Ascoli F, Royer WE. 1998. Mutational destabilization of the critical interface water cluster in Scapharca dimeric hemoglobin: structural basis for altered allosteric activity. J Mol Biol. 284(3):729–739. doi: 10.1006/jmbi.1998.2195.
  • Pardanani A, Gibson QH, Colotti G, Royer WE. 1997. Mutation of residue Phe(97) to Leu disrupts the central allosteric pathway in Scapharca dimeric hemoglobin. J Biol Chem. 272(20):13171–13179. doi: 10.1074/jbc.272.20.13171.
  • Petruzzelli R, Boffi A, Barra D, Bossa F, Ascoli F, Chiancone E. 1989. Scapharca hemoglobins, type cases of a novel mode of chain assembly and heme-heme communication: amino acid sequence and subunit interactions of the tetrameric component. FEBS Lett. 259(1):133–136. doi: 10.1016/0014-5793(89)81512-1.
  • Petruzzelli R, Goffredo BM, Barra D, Bossa F, Boffi A, Verzili D, Ascoli F, Chiancone E. 1985. Amino acid sequence of the cooperative homodimeric hemoglobin from the mollusc Scapharca inaequivalvis and topology of the intersubunit contacts. FEBS Lett. 184(2):328–332. doi: 10.1016/0014-5793(85)80632-3.
  • Pillai AS, Chandler SA, Liu Y, Signore AV, Cortez-Romero CR, Benesch JLP, Laganowsky A, Storz JF, Hochberg GKA, Thornton JW. 2020. Origin of complexity in haemoglobin evolution. Nature. 581(7809):480–485. doi: 10.1038/s41586-020-2292-y.
  • Piro MC, Gambacurta A, Ascoli F. 1996. Scapharca inaequivalvis tetrameric hemoglobin A and B chains: cDNA sequencing and genomic organization. J Mol Evol. 43(6):594–601. doi: 10.1007/BF02202107.
  • Piro MC, Gambacurta A, Basili P, Ascoli F. 1998. The exon/intron organization of the globin gene of Scapharca inaequivalvis homodimeric hemoglobin: unusual intron homology with other bivalve mollusc globin genes. Gene. 221(1):45–49. doi: 10.1016/s0378-1119(98)00442-9.
  • Read KRH. 1962. The hemoglobin of the bivalved mollusc, Phacoides pectinatus Gmelin. Biol Bull. 123(3):605–617. doi: 10.2307/1539582.
  • Read KRH. 1965. The characterization of the hemoglobins of the bivalve mollusc Phacoides pectinatus (Gmelin). Comp Biochem Physiol. 15(2):137–157.
  • Read KRH. 1966. Chapter 6, Molluscan hemoglobin and myoglobin. In: Wilbur KM, Yonge CM, editors. Physiology of mollusca. New York (NY): Academic Press; p. 209–232.
  • Rivera L, López-Garriga J, Cadilla CL. 2008. Characterization of the full length mRNA coding for Lucina pectinata HbIII revealed an alternative polyadenylation site. Gene. 410(1):122–128. doi: 10.1016/j.gene.2007.12.005.
  • Rizzi M, Wittenberg JB, Coda A, Ascenzi P, Bolognesi M. 1996. Structural bases for sulfide recognition in Lucina pectinata hemoglobin I. J Mol Biol. 258(1):1–5. doi: 10.1006/jmbi.1996.0228.
  • Rizzi M, Wittenberg JB, Coda A, Fasano M, Ascenzi P, Bolognesi M. 1994. Structure of the sulfide-reactive hemoglobin from the clam Lucina pectinata: crystallographic analysis at 1.5 Å resolution. J Mol Biol. 244(1):86–99. doi: 10.1006/jmbi.1994.1706.
  • Ronda L, Bettati S, Henry ER, Kashav T, Sanders JM, Royer WE, Mozzarelli A. 2013. Tertiary and quaternary allostery in tetrameric hemoglobin from Scapharca inaequivalvis. Biochemistry. 52(12):2108–2117. doi: 10.1021/bi301620x.
  • Royer WE. 1994. High-resolution crystallographic analysis of a co-operative dimeric hemoglobin. J Mol Biol. 235(2):657–681. doi: 10.1006/jmbi.1994.1019.
  • Royer WE, Fox RA, Smith FR, Zhu D, Braswell EH. 1997. Ligand linked assembly of Scapharca dimeric hemoglobin. J Biol Chem. 272(9):5689–5694. doi: 10.1074/jbc.272.9.5689.
  • Royer WE, Heard KS, Harrington DJ, Chiancone E. 1995. The 2.0 Å crystal structure of Scapharca tetrameric hemoglobin: cooperative dimers within an allosteric tetramer. J Mol Biol. 253(1):168–186. doi: 10.1006/jmbi.1995.0543.
  • Royer WE, Hendrickson WA, Chiancone E. 1989. The 2.4-Å crystal structure of Scapharca dimeric hemoglobin: cooperativity based on directly communicating hemes at a novel subunit interface. J Biol Chem. 264(35):21052–21061. doi: 10.1016/S0021-9258(19)30044-4.
  • Royer WE, Hendrickson WA, Chiancone E. 1990. Structural transitions upon ligand binding in a cooperative dimeric hemoglobin. Science. 249(4968):518–521. doi: 10.1126/science.2382132.
  • Royer WE, Love WE, Fenderson FF. 1985. Cooperative dimeric and tetrameric clam haemoglobins are novel assemblages of myoglobin folds. Nature. 316(6025):277–280. doi: 10.1038/316277a0.
  • Royer WE, Pardanani A, Gibson QH, Peterson ES, Friedman JM. 1996. Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin. Proc Natl Acad Sci USA. 93(25):14526–14531. doi: 10.1073/pnas.93.25.14526.
  • San George RC, Nagel RL. 1985. Dimeric hemoglobins from the arcid blood clam, Noetia ponderosa. Structure and functional properties. J Biol Chem. 260(7):4331–4337. doi: 10.1016/S0021-9258(18)89268-7.
  • Sasakawa S, Satake K. 1967. On the molecular weight of hemoglobin from Anadara inflata at various pH. J Biochem. 62(1):139–140. doi: 10.1093/oxfordjournals.jbchem.a128629.
  • Sasakawa S, Walter H. 1971. Blood clam (Anadara inflata) hemoglobins. Partitions in aqueous two-polymer phase systems and alkali denaturation. Biochim Biophys Acta. 244(2):461–465. doi: 10.1016/0304-4165(71)90250-9.
  • Song DL, Lin ZH, Li CH, Bao YB. 2017. Hemoglobin from the blood clam Tegillarca granosa (Tg-HbIIA, Tg-HbIIB): expression and antibacterial activity of recombinant proteins. Invert Surviv J. 14(1):149–156. doi: 10.25431/1824-307X/isj.v14i1.149-156.
  • Southward EC. 1986. Gill symbionts in thyasirids and other bivalve molluscs. J Mar Biol Ass. 66(4):889–914. doi: 10.1017/S0025315400048517.
  • Sumita N, Kajita A, Kaziro K. 1964. Some properties of hemoglobin of Anadara inflata. J Biochem. 55:148–153.
  • Suzuki T, Arita T. 1995. Two-domain hemoglobin from the blood clam, Barbatia lima. The cDNA-derived amino acid sequence. J Protein Chem. 14(7):499–502. doi: 10.1007/BF01886875.
  • Suzuki T, Arita T, Kawasaki Y. 1995. The cDNA-derived amino acid sequence of chain II of the heterodimeric hemoglobin from the blood clam Barbatia virescens. Zoolog Sci. 12(4):453–455. doi: 10.2108/zsj.12.453.
  • Suzuki T, Kawamichi H, Ohtsuki R, Iwai M, Fujikura K. 2000. Isolation and cDNA-derived amino acid sequences of hemoglobin and myoglobin from the deep-sea clam Calyptogena kaikoi. Biochim Biophys Acta, Protein Struct. 1478(1):152–158. doi: 10.1016/S0167-4838(99)00210-1.
  • Suzuki T, Kawasaki Y, Arita T, Nakamura A. 1996. Two-domain haemoglobin of the blood clam Barbatia lima resulted from the recent gene duplication of the single-domain delta chain. Biochem J. 313 (Pt 2)(Pt 2):561–566. doi: 10.1042/bj3130561.
  • Suzuki T, Ohta S. 2000. The hemoglobin gene of the deep-sea clam Calyptogena soyoae has a novel intron in A-helix. Int J Biochem Cell Biol. 32(11-12):1205–1211. doi: 10.1016/s1357-2725(00)00054-6.
  • Suzuki T, Shiba M, Furukohri T, Kobayashi M. 1989. Hemoglobins from the two closely related clams Barbatia lima and Barbatia virescenes. Comparison of their subunit structures and N-terminal sequence of the unusual two-domain chain. Zool Sci. 6(2):269–281.
  • Suzuki T, Takagi T, Ohta S. 1989a. Amino acid sequence of the dimeric hemoglobin (Hb I) from the deep-sea cold-seep clam Calyptogena soyoae and the phylogenetic relationship with other molluscan globins. Biochim Biophys Acta. 999(3):254–259. doi: 10.1016/0167-4838(89)90006-x.
  • Suzuki T, Takagi T, Ohta S. 1989b. Primary structure of a dimeric haemoglobin from the deep-sea cold-seep clam Calyptogena soyoae. Biochem J. 260(1):177–182. doi: 10.1042/bj2600177.
  • Svedberg T, Eriksson-Quensel I-B. 1934. The molecular weight of erythrocruorin. II. J Am Chem Soc. 56(8):1700–1706. doi: 10.1021/ja01323a016.
  • Taylor JD, Glover EA, Williams ST, Wells F, Walker D. 2005. Another bloody bivalve: anatomy and relationships of Eucrassatella donacina from south western Australia (Mollusca: Bivalvia: crassatellidae). In: wells FE, Walker DI, Kendrick GA, editors. The Marine Flora and Fauna of Esperance, Western Australia. Perth: western Australian Museum; p. 261–288.
  • Teng W, Xie X, Nie H, Sun Y, Liu X, Yu Z, Zheng J, Liu H, Li D, Zhang M, et al. 2021. Chromosome-level genome assembly of Scapharca kagoshimensis reveals the expanded molecular basis of heme biosynthesis in ark shells. Mol Ecol Resour. 22(1):295–306. doi: 10.1111/1755-0998.13460.
  • Terwilliger NB. 1998. Functional adaptations of oxygen-transport proteins. J Exp Biol. 201(Pt 8):1085–1098. doi: 10.1242/jeb.201.8.1085.
  • Terwilliger NB, Terwilliger RC. 1978. Oxygen binding domains of a clam (Cardita borealis) extracellular hemoglobin. Biochim Biophys Acta. 537(1):77–85. doi: 10.1016/0005-2795(78)90604-9.
  • Terwilliger NB, Terwilliger RC, Schabtach E. 1976. The quaternary structure of a molluscan (Helisoma trivolvis) extracellular hemoglobin. Biochim Biophys Acta. 453(1):101–110. doi: 10.1016/0005-2795(76)90254-3.
  • Terwilliger RC, Terwilliger NB. 1977. The hemoglobins of the mollusc Helisoma trivolvis: comparison of the radular muscle myoglobin and vascular hemoglobin subunit structures. Comp Biochem Physiol B: comp Biochem. 58(3):283–289. doi: 10.1016/0305-0491(77)90203-6.
  • Terwilliger RC, Terwilliger NB, Arp A. 1983. Thermal vent clam (Calyptogena magnifica) hemoglobin. Science. 219(4587):981–983. doi: 10.1126/science.219.4587.981.
  • Terwilliger RC, Terwilliger NB, Bonaventura C, Bonaventura J. 1977. Oxygen binding domains of Helisoma trivolvis hemoglobin. Biochim Biophys Acta. 494(2):416–425. doi: 10.1016/0005-2795(77)90171-4.
  • Terwilliger RC, Terwilliger NB, Schabtach E. 1978. Extracellular hemoglobin of the clam, Cardita borealis (Conrad): an unusual polymeric hemoglobin. Comp Biochem Physiol B: comp Biochem. 59(1):9–14. doi: 10.1016/0305-0491(78)90262-6.
  • Titchen DA, Glenn WK, Nassif N, Thompson AR, Thompson EOP. 1991. A minor globin gene of the bivalve mollusc Anadara trapezia. Biochim Biophys Acta. 1089(1):61–67. doi: 10.1016/0167-4781(91)90085-z.
  • Torres-Mercado E, Renta JY, Rodríguez Y, López-Garriga J, Cadilla CL. 2003. The cDNA-derived amino acid sequence of hemoglobin II from Lucina pectinata. J Protein Chem. 22(7-8):683–690. doi: 10.1023/b:jopc.0000008734.44356.b7.
  • Van Aardt WJ, Naude K. 1990. Effects of buffer composition, pH and temperature on oxygen binding by planorbid snail haemoglobins. Afr Zool. 25(1):18–25. doi: 10.1080/02541858.1990.11448183.
  • Vinogradov SN. 1985. The structure of invertebrate extracellular hemoglobins (erythrocruorins and chlorocruorins). Comp Biochem Physiol B. 82(1):1–15. doi: 10.1016/0305-0491(85)90120-8.
  • Vinogradov SN, Walz DA, Pohajdak B, Moens L, Kapp OH, Suzuki T, Trotman CNA. 1993. Adventitious variability? The amino acid sequences of nonvertebrate globins. Comp Biochem Physiol B. 106(1):1–26. doi: 10.1016/0305-0491(93)90002-m.
  • Wang JJ, Bao YB, Wang SF, Lin ZH. 2015. Antibacterual activity and mechanisms of heterotetramer hemoglobin derived polypeptide from Tegillarca granosa. Haiyang Xuebao. 37(12):106–115. Chinese.
  • Wang Q, Lin Z, Bao Y, Huo L, Gu H. 2012. Clone and analysis of hemoglobin gene (Tg-HbIIA) and immune expression research in Tegillarca granosa. Oceanologia et Limnologia Sinica. 43(01):88–94. Chinese.
  • Wang SF, Bao YB, Shi MJ, Zheng DN, Yang TT, Lin ZH. 2014. Purification and antibacterial activity of hemoglobin from Tegillarca granosa. Haiyang Xuebao. 36(12):67–73. Chinese.
  • Wang SF, Huang YY, Liu S, Lin ZH, Zhang Y, Bao YB. 2021. Hemoglobins from Scapharca subcrenata (Bivalvia: arcidae) likely play an bactericidal role through their peroxidase activity. Comp Biochem Physiol B Biochem Mol Biol. 253:110545. doi: 10.1016/j.cbpb.2020.110545.
  • Wang SF, Yu XP, Lin ZH, Zhang SQ, Xue LY, Xue QG, Bao YB. 2017. Hemoglobins likely function as peroxidase in blood clam Tegillarca granosa hemocytes. J Immunol Res. 2017:7125084–7125010. doi: 10.1155/2017/7125084.
  • Wittenberg JB, Stein JL. 1995. Hemoglobin in the symbiont-harboring gill of the marine gastropod Alviniconcha hessleri. Biol Bull. 188(1):5–7. doi: 10.2307/1542061.
  • Wood EJ, Mosby LJ. 1975. Physicochemical properties of Planorbis corneus erythrocruorin. Biochem J. 149(2):437–445. doi: 10.1042/bj1490437.
  • Xu B, Zhang YA, Jing Z, Fan TJ. 2017. Molecular characteristics of hemoglobins in blood clam and their immune responses to bacterial infection. Int J Biol Macromol. 99:375–383. doi: 10.1016/j.ijbiomac.2017.02.078.
  • Yager TD, Terwilliger NB, Terwilliger RC, Schabtach E, Van Holde KE. 1982. Organization and physical properties of the giant extracellular homoglobin of the clam, Astarte castanea. Biochim Biophys Acta, Protein Struct. 709(2):194–203. doi: 10.1016/0167-4838(82)90461-7.
  • Yagi Y, Mishima T, Tsujimura T, Sato K, Egami F. 1957. Studies on the hemoglobin of Anadara inflata (REEVE) I. Purification and Properties of the Crystalline Hemoglobin. J Biochem. 44(1):1–7. doi: 10.1093/oxfordjournals.jbchem.a126693.
  • Yagi Y, Tsujimura T, Sato K. 1957. Studies on the hemoglobin of Anadara inflata (REEVE) II. Terminal Amino Acid Residues. J Biochem. 44(1):11–23. doi: 10.1093/oxfordjournals.jbchem.a126694.
  • Yang S, Dong Y, Aweya JJ, Xie T, Zeng B, Zhang Y, Liu GM. 2020. Antimicrobial activity and acting mechanism of Tegillarca granosa hemoglobin-derived peptide (TGH1) against Vibrio parahaemolyticus. Microb Pathog. 147:104302. doi: 10.1016/j.micpath.2020.104302.
  • Zal F, Leize E, Oros DR, Hourdez S, Van Dorsselaer A, Childress JJ. 2000. Haemoglobin structure and biochemical characteristics of the sulphide-binding component from the deep-sea clam Calyptogena magnifica. Cah Biol Mar. 41(4):413–424.
  • Zhao X, Vyas K, Nguyen BD, Rajarathnam K, La Mar GN, Li T, Phillips GN, Eich RF, Olson JS, Ling J. 1995. A double mutant of sperm whale myoglobin mimics the structure and function of elephant myoglobin. J Biol Chem. 270(35):20763–20774. doi: 10.1074/jbc.270.35.20763.
  • Zheng XY, Yuan C, Zhang Y, Zha SJ, Mao F, Bao YB. 2022. Prediction and characterization of a novel hemoglobin-derived mutant peptide (mTgHbP7) from Tegillarca granosa. Fish Shellfish Immunol. 125:84–89. doi: 10.1016/j.fsi.2022.05.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.