541
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 15 Dec 2023, Accepted 15 Feb 2024, Published online: 05 Mar 2024

References

  • Abba ML, Patil N, Leupold JH, Moniuszko M, Utikal J, Niklinski J, Allgayer H. 2017. MicroRNAs as novel targets and tools in cancer therapy. Cancer Lett. 387:84–94. doi: 10.1016/j.canlet.2016.03.043.
  • Agarwal P, Wicklow BA, Dart AB, Hizon NA, Sellers EAC, McGavock JM, Talbot CPJ, Fonseca MA, Xu W, Davie JR, et al. 2022. Integrative analysis reveals novel associations between DNA methylation and the serum metabolome of adolescents with type 2 diabetes: a cross-sectional study. Front Endocrinol. 13:934706. doi: 10.3389/fendo.2022.934706.
  • Agius F, Kapoor A, Zhu JK. 2006. Role of the arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci USA. 103(31):11796–11801. doi: 10.1073/pnas.0603563103.
  • Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S. 2004. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant. 121(3):472–480. doi: 10.1111/j.1399-3054.2004.00343.x.
  • Akimoto K, Katakami H, Kim H-J, Ogawa E, Sano CM, Wada Y, Sano H. 2007. Epigenetic inheritance in rice plants. Ann Bot. 100(2):205–217. doi: 10.1093/aob/mcm110.
  • Alonso C, Ramos-Cruz D, Becker C. 2019. The role of plant epigenetics in biotic interactions. New Phytol. 221(2):731–737. doi: 10.1111/nph.15408.
  • Alvarez-Dominguez JR, Donaghey J, Rasouli N, Kenty JHR, Helman A, Charlton J, Straubhaar JR, Meissner A, Melton DA.,. 2020. Circadian entrainment triggers maturation of human in vitro islets. Cell Stem Cell. 26(1):108–122.e10. doi: 10.1016/j.stem.2019.11.011.
  • Amabil A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, Lombardo A. 2016. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell. 167(1):219–232.e14. doi: 10.1016/j.cell.2016.09.006.
  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 576(7785):149–157. doi: 10.1038/s41586-019-1711-4.
  • Ariga H, Toki S, Ishibashi K. 2020. Potato virus X vector-mediated DNA-free genome editing in plants. Plant Cell Physiol. 61(11):1946–1953. doi: 10.1093/pcp/pcaa123.
  • Ashapkin VV, Kutueva LI, Aleksandrushkina NI, Vanyushin F. 2020. Epigenetic mechanisms of plant adaptation to biotic and abiotic stresses. IJMS. 21(20):7457. doi: 10.3390/ijms21207457.
  • Bashtrykov P, Kungulovski G, Jeltsch A. 2015. Correction of aberrant imprinting by allele-specific epigenome editing. Clin Pharmacol Ther. 99(5):482–484. doi: 10.1002/cpt.295.
  • Baumann V, Wiesbeck M, Breunig CT, Braun JM, Köferle A, Ninkovic J, Götz M, Stricker SH. 2019. Targeted removal of epigenetic barriers during transcriptional reprogramming. Nat Commun. 10(1):2119. doi: 10.1038/s41467-019-10146-8.
  • Beerli RR, Dreier B, Barbas CF. 2000. Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci U S A. 97(4):1495–1500. doi: 10.1073/pnas.040552697.
  • Bernstein DL, Le Lay JE, Ruano EG, Kaestner KH. 2015. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. J Clin Invest. 125(5):1998–2006. doi: 10.1172/JCI77321.
  • Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41(15):7429–7437. doi: 10.1093/nar/gkt520.
  • Bin Moon S, Lee JM, Kang JG, Lee NE, Ha, DI, Kim DY, Kim SH, Yoo K, Kim D, Ko JH, Kim YS. 2018. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3’-overhang. Nat. Commun. 9:3651. doi: 10.1038/s41467-018-06129-w.
  • Black JB, Adler AF, Wang H-G, D’Ippolito AM, Hutchinson HA, Reddy TE, Pitt GS, Leong KW, Gersbach CA. 2016. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell. 19(3):406–414.,. doi: 10.1016/j.stem.2016.07.001.
  • Braun SMG, Kirkland JG, Chory EJ, Husmann D, Calarco JP, Crabtree GR. 2017. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat Commun. 8(1):560. doi: 10.1038/s41467-017-00644-y.
  • Breiling A, Lyko F. 2015. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin. 8:24.
  • Broche J, Kungulovski G, Bashtrykov P, Rathert P, Jeltsch A. 2021. Genome-wide investigation of the dynamic changes of epigenome modifications after global DNA methylation editing. Nucleic Acids Res. 49(1):158–176. doi: 10.1093/nar/gkaa1169.
  • Brock R, Davidson J. 1994. 5-Azacytidine and gamma rays partially substitute for cold treatment in vernalizing winter wheat. Environ Exp Bot. 34(2):195–199. doi: 10.1016/0098-8472(94)90038-8.
  • Brzezinka K, Altmann S, Czesnick H, Nicolas P, Gorka M, Benke E, Kabelitz T, Jähne F, Graf A, Kappel C, et al. 2016. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. Elife. 5:e17061. doi: 10.7554/eLife.17061.
  • Cadiñanos J, Bradley A. 2007. Generation of an inducible and optimized piggyback transposon system. Nucleic Acids Res. 35(12):e87. doi: 10.1093/nar/gkm446.
  • Callaway E. 2018. CRISPR plants now subject to tough GM laws in European Union. Nature. 56016. 560(7716):16. doi: 10.1038/d41586-018-05814-6.
  • Carrol D. 2011. Genome engineering with Zinc-Finger nucleases. Genetics. 188(4):773–782.
  • Chakraborty S, Ji H, Kabad AM, Gersbach CA, Christoforou N, Leong KW. 2014. A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Reports. 3(6):940–947. doi: 10.1016/j.stemcr.2014.09.013.
  • Chan WF, Coughlan HD, Chen Y, Keenan CR, Smyth GK, Perkins AC, Johanson TM, Allan RS. 2022. Activation of stably silenced genes by recruitment of a synthetic de-methylating module. Nat Commun. 13(1):5582. doi: 10.1038/s41467-022-33181-4.
  • Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, Lin S, Kiani S, Guzman CD, Wiegand DJ, et al. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 12(4):326–328. doi: 10.1038/nmeth.3312.
  • Chen H, Kazemier HG, de Groote ML, Ruiter MH, Xu GL, Rots MG. 2014. Induced DNA demethylation by targeting ten-eleven translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res. 42(3):1563–1574. doi: 10.1093/nar/gkt1019.
  • Chen R, Li M, Zhang HY, Duan LJ, Sun XJ, Jiang QY, Zhang H, Hu Z. 2019. Continuous salt stress-induced long non-coding RNAs and DNA methylation patterns in soybeanroots. BMC Genom. 20:730.
  • Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H. 2016. Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Res. 26(2):254–257. doi: 10.1038/cr.2016.3.
  • Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23(10):1163–1171. doi: 10.1038/cr.2013.122.
  • Cheng JF, Niu QF, Zhang B, Chen KS, Yang RH, Zhu JK, Zhang YJ, Lang ZB. 2018. Downregulation of RdDM during strawberry fruit ripening. Genome Biol. 19(1):212. doi: 10.1186/s13059-018-1587-x.
  • Cherblanc F, Chapman-Rothe N, Brown R, Fuchter M. 2012. Current limitations and future opportunities for epigenetic therapies. Future Med Chem. 4(4):425–446. doi: 10.4155/fmc.12.7.
  • Cho SW, Kim S, Kim JM, Kim JS. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 31(3):230–232. doi: 10.1038/nbt.2507.
  • Choi CS, Sano H. 2007. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics. 277(5):589–600. doi: 10.1007/s00438-007-0209-1.
  • Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J. 2016. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget. 7(29):46545–46556. doi: 10.18632/oncotarget.10234.
  • Ci D, Song YP, Tian M, Zhang DQ. 2015. Methylation of miRNA genes in the response to temperature stress in Populus simonii. Front Plant Sci. 6:921. doi: 10.3389/fpls.2015.00921.
  • Ciuffreda L, Di Sanza C, Cesta Incani U, Eramo A, Desideri M, Biagioni F, Passeri D, Falcone I, Sette G, Bergamo P, et al. 2012. The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms. J Mol Med. 90(6):667–679. doi: 10.1007/s00109-011-0844-1.
  • Conde D, Le Gac A-L, Perales M, Dervinis C, Kirst M, Maury S, González-Melendi P, Allona I. 2017. Chilling-responsive DEMETER-LIKE DNA demethylase mediates in poplar bud break. Plant Cell Environ. 40(10):2236–2249.,. doi: 10.1111/pce.13019.
  • Cong W, Miao Y, Xu L, Zhang Y, Yuan C, Wang J, Zhuang T, Lin X, Jiang L, Wang N, et al. 2019. Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.). BMC Plant Biol. 19(1):282. doi: 10.1186/s12870-019-1887-7.
  • Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F. 2017. RNA editing with CRISPR-Cas13. Science. 358(6366):1019–1027. doi: 10.1126/science.aaq0180.
  • Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ. 2016. Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv. 2(2):e1501340. doi: 10.1126/sciadv.1501340.
  • Cui X, Zhang C, Xu Z, Wang S, Li X, Stringer-Reasor E, Bae S, Zeng L, Zhao D, Liu R, et al. 2022. Dual CRISPR interference and activation for targeted reactivation of X-linked endogenous FOXP3 in human breast cancer cells. Mol Cancer. 21(1):38. doi: 10.1186/s12943-021-01472-x.
  • David EP, Stephanie L, Tenzin W, Danny FX, Patrick WL, Sarah JH, et al. 2019. Diversifying the structure of zinc finger nucleases for high-precision genome editing. Nat Commun. 10:1133.
  • De Almeida BP, Apolónio JD, Binnie A, Castelo-Branco P. 2019. Roadmap of DNA methylation in breast cancer identifies novel prognostic biomarkers. BMC Cancer. 19(1):219. doi: 10.1186/s12885-019-5403-0.
  • De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L, Eaton ML, Keenan BT, Ernst J, McCabe C, et al. 2014. Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci. 17(9):1156–1163. doi: 10.1038/nn.3786.
  • de Mello VDF, Pulkkinen L, Lalli M, Kolehmainen M, Pihlajamäki J, Uusitupa M. 2014. DNA methylation in obesity and type 2 diabetes. Ann Med. 46(3):103–113. doi: 10.3109/07853890.2013.857259.
  • de Melo BP, Lourenço-Tessutti IT, Paixão JFR, Noriega DD, Silva MCM, de Almeida-Engler J, Fontes EPB, Grossi-de-Sa MF. 2020. Transcriptional modulation of AREB-1 by CRISPRa improves plant physiological performance under severe water deficit. Sci Rep. 10(1):16231. doi: 10.1038/s41598-020-72464-y.
  • de Mendoza A, Nguyen TV, Ford E, Poppe D, Buckberry S, Pflueger J, Grimmer MR, Stolzenburg S, Bogdanovic O, Oshlack A, et al. 2022. Large-scale manipulation of promoter DNA methylation reveals context-specific transcriptional responses and stability. Genome Biol. 23(1):163. doi: 10.1186/s13059-022-02728-5.
  • Demirkiran A, Marakli S, Temel A, Gozukirmizi N. 2013. Genetic and epigenetic effects of salinity on in vitro growth of barley. Genet Mol Biol. 36(4):566–570. doi: 10.1590/S1415-47572013000400016.
  • Deng P, Carter S, Fink K. 2019. Design, construction, and application of transcription activation-like effectors. In Manfredsson FP, Benskey, MJ, editors. Viral vectors for gene therapy: methods and Protocols. New York: Springer; p. 47–58.
  • Dennis ES, Peacock WJ. 2007. Epigenetic regulation of flowering. Curr Opin Plant Biol. 10(5):520–527. doi: 10.1016/j.pbi.2007.06.009.
  • Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, Adame A, Rockenstein E, Masliah E. 2011. Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem. 286(11):9031–9037.,. doi: 10.1074/jbc.C110.212589.
  • Dhawan S, Natarajan R. 2019. Epigenetics and type 2 diabetes risk. Curr Diabetes Rep. 19(8):47.
  • Dominguez A, Lim W, Qi L. 2016. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol. 17(1):5–15. doi: 10.1038/nrm.2015.2.
  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR. 2012. Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A. 109(32):E2183–E2191. doi: 10.1073/pnas.1209329109.
  • Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, VanDyk JK, Bogdanove AJ. 2012. TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 40:W117–W122. doi: 10.1093/nar/gks608.
  • D’Souza W, Saranath D. 2015. Clinical implications of epigenetic regulation in oral cancer. Oral Oncol. 51(12):1061–1068. doi: 10.1016/j.oraloncology.2015.09.006.
  • Dubrovina AS, Kiselev KV. 2019. Exogenous RNAs for gene regulation and plant resistance. Int J Mol Sci. 20(9):2282. doi: 10.3390/ijms20092282.
  • Duke CG, Bach SV, Revanna JS, Sultan FA, Southern NT, Davis MN, Carullo NVN, Bauman AJ, Phillips RA, Day JJ. 2020. An improved CRISPR/dCas9 interference tool for neuronal gene suppression. Front Genome Ed. 2:9. doi: 10.3389/fgeed.2020.00009.
  • Eckerstorfer MF, Engelhard M, Heissenberger A, Simon S, Teichmann H. 2019. Plants developed by new genetic modification techniques—comparison of existing regulatory frameworks in the EU and non-EU countries. Front in Bioeng Biotechnol. 7:26.
  • Edwards JR, Yarychkivska O, Boulard M, Bestor TH. 2017. DNA methylation and DNA methyltransferases. Epigenet Chromatn. 10:23.
  • Eggermann T, Perez de Nanclares G, Maher ER, Temple IK, Tümer Z, Monk D, Mackay DJG, Grønskov K, Riccio A, Linglart A, et al. 2015. Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin Epigenetics. 7(1):123. doi: 10.1186/s13148-015-0143-8.
  • Ehrlich M. 2009. DNA hypomethylation in cancer cells. Epigenomics. 1(2):239–259. doi: 10.2217/epi.09.33.
  • El-Sharkawy I, Liang D, Xu K. 2015. Transcriptome analysis of an apple (Malus domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. J Exp Bot. 66(22):7359–7376. doi: 10.1093/jxb/erv433.
  • Eriksson MC, Szukala A, Tian B, Paun O. 2020. Current research frontiers in plant epigenetics: an introduction to a virtual issue. New Phytol. 226(2):285–288. doi: 10.1111/nph.16493.
  • Erturk FA, Agar G, Arslan E, Nardemir G, Sahin Z. 2014. Determination of genomic instability and DNA methylation effects of Cr on maize (Zea mays L.) using RAPD and CRED-RA analysis. Acta Physiol Plant. 36(6):1529–1537. doi: 10.1007/s11738-014-1529-5.
  • Erturk FA, Agar G, Arslan E, Nardemir G. 2015. Analysis of genetic and epigenetic effects of maize seeds in response to heavy metal (Zn) stress. Environ Sci Pollut Res Int. 22(13):10291–10297. doi: 10.1007/s11356-014-3886-4.
  • Farhang N, Brunger JM, Stover JD, Thakore PI, Lawrence B, Guilak F, Gersbach CA, Setton LA, Bowles RD. 2017. CRISPR-based epigenome editing of cytokine receptors for the promotion of cell survival and tissue deposition in inflammatory environments. Tissue Eng Part A. 23(15–16):738–749. doi: 10.1089/ten.TEA.2016.0441.
  • Fieldes MA, Schaeffer SM, Krech MJ, Brown JCL. 2005. DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theor Appl Genet. 111(1):136–149. doi: 10.1007/s00122-005-2005-9.
  • Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A. 2008. The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol. 165(8):833–844. doi: 10.1016/j.jplph.2007.06.006.
  • Fu Y, Rocha PP, Luo VM, Raviram R, Deng Y, Mazzoni EO, Skok JA. 2016. CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat Commun. 7(1):11707. doi: 10.1038/ncomms11707.
  • Gallego-Bartolomé J, Gardiner J, Liu W, Papikian A, Ghoshal B, Kuo HY, Zhao JM-C, Segal DJ, Jacobsen SE. 2018. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Natl Acad Sci U S A. 115(9):E2125–E2134. doi: 10.1073/pnas.1716945115.
  • Gallego-Bartolomé J, Liu W, Kuo PH, Feng S, Ghoshal B, Gardiner J, Zhao JM-C, Park SY, Chory J, Jacobsen SE, et al. 2019. Co-targeting RNA polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis. Cell. 176(5):1068–1082.e19. doi: 10.1016/j.cell.2019.01.029.
  • Gallois JL, Nora FR, Mizukami Y, Sablowski R. 2004. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev. 18(4):375–380. doi: 10.1101/gad.291204.
  • Gallusci P, Dai Z, Génard M, Gauffretau A, Leblanc-Fournier N, Richard-Molard C, Vile D, Brunel-Muguet S. 2017. Epigenetics for plant improvement: current knowledge and modeling avenues. Trends Plant Sci. 22(7):610–623. doi: 10.1016/j.tplants.2017.04.009.
  • Gal-Yam EN, Egger G, Iniguez L, Holster H, Einarsson S, Zhang X, Lin JC, Liang G, Jones PA, Tanay A, et al. 2008. Frequent switching of polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci U S A. 105(35):12979–12984. doi: 10.1073/pnas.0806437105.
  • Gao GZ, Li J, Li H, Li F, Xu K, Yan GX, Chen BY, Qiao JW, Wu XM. 2014a. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed Sci. 64(2):125–133. doi: 10.1270/jsbbs.64.125.
  • Garcia Ruiz MT, Knapp AN, Garcia-Ruiz H. 2018. Profile of genetically modified plants authorized in Mexico. GM Crops Food. 9:52–168.
  • Garg R, Narayana Chevala V, Shankar R, Jain M. 2015. Divergent DNA methylationpatterns associated with gene expression in rice cultivars with contrasting drought andsalinity stress response. Sci Rep. 5(1):14922. doi: 10.1038/srep14922.
  • Gáspár B, Bossdorf O, Durka W. 2019. Structure, stability and ecological significance ofnatural epigenetic variation: a large-scale survey in Plantago lanceolata. New Phytol. 221(3):1585–1596. doi: 10.1111/nph.15487.
  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. 2017. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 551(7681):464–471. doi: 10.1038/nature24644.
  • Gayacharan A, Joel AJ. 2013. Epigenetic responses to drought stress in rice (Oryza sativa L.). Physiol Mol Biol Plants. 19:379–387. doi: 10.1007/s12298-013-0176-4.
  • Gehring M, Henikoff S. 2008. DNA methylation and demethylation in Arabidopsis. Arabidopsis Book. 6:e0102. doi: 10.1199/tab.0102.
  • Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL. 2006. DEMETER DNA glyco-sylase establishes MEDEA polycomb gene self- imprinting by allele- specific demethylation. Cell. 124(3):495–506. doi: 10.1016/j.cell.2005.12.034.
  • Ghasemi S. 2020. Cancer’s epigenetic drugs: where are they in the cancer medicines? Pharmacogenomics J. 20(3):367–379. doi: 10.1038/s41397-019-0138-5.
  • Ghoshal B, Picard CL, Vong B, Feng S, Jacobsen SE. 2021. CRISPR-based targeting of DNA methylation, in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase. Proc Natl Acad Sci USA. 118(23):e2125016118. doi: 10.1073/pnas.2125016118.
  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 154(2):442–451. doi: 10.1016/j.cell.2013.06.044.
  • Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM. 2007. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development. 134(19):3539–3548. doi: 10.1242/dev.010298.
  • Grayson K, Gregory E, Khan G, Guinn BA. 2019. Urine biomarkers for the early Detection of ovarian cancer- are we there yet? Biomark Cancer. 11:1179299X1983097. doi: 10.1177/1179299X19830977.
  • Gregory DJ, Mikhaylova L, Fedulov AV. 2013. Selective DNA demethylation by fusion of TDG with a sequence-specific DNA-binding domain. Epigenetics. 7(4):344–349. doi: 10.4161/epi.19509.
  • Grosselin K, Durand A, Marsolier J, Poitou A, Marangoni E, Nemati F, Dahmani A, Lameiras S, Reyal F, Frenoy O, et al. 2019. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat Genet. 51(6):1060–1066. doi: 10.1038/s41588-019-0424-9.
  • Grzybkowska D, Morończyk J, Wójcikowska B, Gaj MD. 2018. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis. Plant Growth Regul. 85(2):243–256. doi: 10.1007/s10725-018-0389-1.
  • Guillaumet-Adkins A, Richter J, Odero MD, Sandoval J, Agirre X, Catala A, Esteller M, Prósper F, Calasanz M, Buño I, et al. 2014. Hypermethylation of the alternative AWT1 promoter in hematological malignancies is a highly specific marker for acute myeloid leukemias despite high expression levels. J Hematol Oncol. 7(1):4. doi: 10.1186/1756-8722-7-4.
  • Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y. 2009. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 24(4):652–657. doi: 10.1111/j.1440-1746.2008.05666.x.
  • Hammoud SS, Low DHP, Yi C, Carrell DT, Guccione E, Cairns BR. 2014. Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell. 15(2):239–253. doi: 10.1016/j.stem.2014.04.006.
  • Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA. 2018. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 362(6416):839–842. doi: 10.1126/science.aav4294.
  • Hatzig SV, Nuppenau J-N, Snowdon RJ, Schießl SV. 2018. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L). BMC Plant Biol. 18(1):297. doi: 10.1186/s12870-018-1531-y.
  • He C, Zhang H-Y, Zhang Y-X, Fu P, You L-L, Xiao W-B, Wang Z-H, Song H-Y, Huang Y-J, Liao J-L. 2020. Cytosine methylations in the promoter regions of genes involved in the cellular oxidation equilibrium pathways affect rice heat tolerance. BMC Genomics. 21(1):560. doi: 10.1186/s12864-020-06975-3.
  • Heller EA, Cates HM, Peña CJ, Sun H, Shao N, Feng J, Golden SA, Herman JP, Walsh JJ, Mazei-Robison M, et al. 2014. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci. 17(12):1720–1727. doi: 10.1038/nn.3871.
  • Heller EA, Hamilton P J, Burek DD, Lombroso SI, Peña CJ, Neve RL, Nestler EJ. 2017. Targeted epigenetic remodeling of the cdk5 gene in nucleus accumbens regulates cocaine- and stress-evoked behavior. J Neurosci. 36(17): 4690–4697. doi: 10.1523/JNEUROSCI.0013-16.2016.
  • Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA. 2015. Epigenome editing by a CRISPR-Cas9-Based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 33(5):510–517. doi: 10.1038/nbt.3199.
  • Hirunagi T, Sahashi K, Meilleur KG, Katsuno M. 2022. Nucleic acid-based therapeutic approach for spinal and bulbar muscular atrophy and related neurological disorders. Genes. 13(1):109. doi: 10.3390/genes13010109.
  • Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A, Cathomen T, Gonçalves MAFV. 2013. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 41(5):e63–e63. doi: 10.1093/nar/gks1446.
  • Hontelez S, van Kruijsbergen I, Georgiou G, van Heeringen SJ, Bogdanovic O, Lister R, Veenstra GJC. 2015. Embryonic transcription is controlled by maternally defined chromatin state. Nat Commun. 6(1):10148. doi: 10.1038/ncomms10148.
  • Hossain MS, Kawakatsu T, Kim KD, Zhang N, Nguyen CT, Khan SM, Batek JM, Joshi T, Schmutz J, Grimwood J, et al. 2017. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. New Phytol. 214(2):808–819. doi: 10.1111/nph.14421.
  • Hsu FM, Gohain M, Allishe A, Huang YJ, Liao JL, Kuang LY, Chen PY. 2018. Dynamics of the methylome and transcriptome during the regeneration of rice. Epigenomes. 2(3):14. doi: 10.3390/epigenomes2030014.
  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, et al. 2018. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 556(7699):57–63. doi: 10.1038/nature26155.
  • Huang H, Liu RE, Niu QF, Tang K, Zhang B, Zhang H, Chen KS, Zhu JK, Lang ZB. 2019. Global increase in DNA methylation during orange fruit development and ripening. PNAS USA. 116:430–1436.
  • Hussain S, Tulsyan S, Dar SA, Sisodiya S, Abiha U, Kumar R, Mishra BN, Haque S. 2022. Role of epigenetics in carcinogenesis: recent advancements in anticancer therapy. Semin Cancer Biol. 83:441–451. doi: 10.1016/j.semcancer.2021.06.023.
  • Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr ARW, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, Bird AP, et al. 2010. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLOS Genet. 6(9):e1001134. doi: 10.1371/journal.pgen.1001134.
  • Inbar-Feigenberg M, Choufani S, Butcher DT, Roifman M, Weksberg R. 2013. Basic concepts of epigenetics. Fertil Steril. 99(3):607–615. doi: 10.1016/j.fertnstert.2013.01.117.
  • Ivanov M, Barragan I, Ingelman-Sundberg M. 2014. Epigenetic mechanisms of importance for drug treatment. Trends Pharmacol Sci. 35(8):384–396. doi: 10.1016/j.tips.2014.05.004.
  • Jakovcevski M, Akbarian S. 2012. Epigenetic mechanisms in neurological disease. Nat Med. 18(8):1194–1204. doi: 10.1038/nm.2828.
  • Johnson LM, Du J, Hale CJ, Bischof S, Feng S, Chodavarapu RK, Zhong X, Marson G, Pellegrini M, Segal DJ, et al. 2014. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature. 507(7490):124–128. doi: 10.1038/nature12931.
  • Jones PA, Ohtani H, Chakravarthy A, De Carvalho DD. 2019. Epigenetic therapy in immune-oncology. Nat Rev Cancer. 19(3):151–161. doi: 10.1038/s41568-019-0109-9.
  • Jones PA. 2012. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 13(7):484–492. doi: 10.1038/nrg3230.
  • Kapazoglou A, Tani E, Avramidou EV, Abraham EM, Gerakari M, Megariti S, Doupis G, Doulis AG. 2020. Epigenetic changes and transcriptional reprogramming upon woody plant grafting for crop sustainability in a changing environment. Front Plant Sci. 11:613004. doi: 10.3389/fpls.2020.613004.
  • Karan R, DeLeon T, Biradar H, Subudhi PK. 2012. Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLOS One. 7(6):e40203. doi: 10.1371/journal.pone.0040203.
  • Kaur G, Rathod SSS, Ghoneim MM, Alshehri S, Ahmad J, Mishra A, Alhakamy NA. 2022. DNA methylation: a promising approach in management of Alzheimer’s disease and other neurodegenerative disorders. Biology. 11(1):90. doi: 10.3390/biology11010090.
  • Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, Maehr R. 2015. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods. 12(5):401–403. doi: 10.1038/nmeth.3325.
  • Kedhari Sundaram M, Hussain A, Haque S, Raina R, Afroze N. 2019. Quercetin modifies 5′ CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J Cell Biochem. 120(10):18357–18369. doi: 10.1002/jcb.29147.
  • Khan AQ, Ahmed EI, Elareer NR, Junejo K, Steinhoff M, Uddin S. 2019. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells. 8(8):840. doi: 10.3390/cells8080840.
  • Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, Qian J, Pruitt BW, Beal J, Vora S, et al. 2015. Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods. 12(11):1051–1054. doi: 10.1038/nmeth.3580.
  • Kim MS, Kini AG. 2017. Engineering and application of zinc finger proteins and TALEs for biomedical research. Mol Cells. 40(8):533–541. doi: 10.14348/molcells.2017.0139.
  • Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales APW, Li Z, Peterson RT, Yeh J-RJ, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 523(7561):481–485. doi: 10.1038/nature14592.
  • Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi-Addo B, et al. 2008. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet. 40(6):741–750. doi: 10.1038/ng.159.
  • Kondrashov A, Karpova E. 2021. Notes on functional modules in the assembly of crispr/cas9-mediated epigenetic modifiers. Methods Mol Biol. 2198:401–428. doi: 10.1007/978-1-0716-0876-0_30.
  • Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR/Cas9 complex. Nature. 517(7536):583–588. doi: 10.1038/nature14136.
  • Kraan CM, Godler DE, Amor DJ. 2019. Epigenetics of fragile X syndrome and fragile X-related disorders. Dev Med Child Neurol. 61(2):121–127. doi: 10.1111/dmcn.13985.
  • Kumar S, Beena AS, Awana M, Singh A. 2017a. Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front Plant Sci. 8:1151. doi: 10.3389/fpls.2017.01151.
  • Kumar S, Beena AS, Awana M, Singh A. 2017b. Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting wheat (Triticum aestivum L.) genotypes. DNA Cell Biol. 36(4):283–294. doi: 10.1089/dna.2016.3505.
  • Kumar S, Chinnusamy V, Mohapatra T. 2018. Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front Genet. 9:640. doi: 10.3389/fgene.2018.00640.
  • Kumar S, Kaur S, Seem K, Kumar S, Mohapatra T. 2021. Understanding 3D genome organization and its effect on transcriptional gene regulation under environmental stress in plant: a chromatin perspective. Front Cell Dev Biol. 9:774719. doi: 10.3389/fcell.2021.774719.
  • Kumar S, Mohapatra T. 2021a. Dynamics of DNA methylation and its functions in plant growth and development. Front Plant Sci. 12:596236. doi: 10.3389/fpls.2021.596236.
  • Kumar S, Mohapatra T. 2021b. Deciphering Epitranscriptome: modification of mRNA bases provides a new perspective for post-transcriptional regulation of gene expression. Front Cell Dev Biol. 9:628415. doi: 10.3389/fcell.2021.628415.
  • Kumar S, Seem K, Kumar S, Singh A, Krishnan SG, Mohapatra T. 2024. DNA methylome analysis provides insights into gene regulatory mechanism for better performance of rice under fluctuating environmental conditions: epigenomics of adaptive plasticity. Planta. 259(1):4. doi: 10.1007/s00425-023-04272-3.
  • Kumar S, Seem K, Kumar S, Vinod KK, Chinnusamy V, Mohapatra T. 2022. Pup1 QTL regulates gene expression through epigenetic modification of DNA under phosphate starvation stress in rice. Front Plant Sci. 13:871890. doi: 10.3389/fpls.2022.871890.
  • Kumar S, Seem K, Mohapatra T. 2023. Biochemical and epigenetic modulations under drought: remembering the stress tolerance mechanism in rice. Life. 13(5):1156. doi: 10.3390/life13051156.
  • Kumar S. 2018. Epigenetic memory of stress responses in plants. J Phytochem Biochem. 2:e102.
  • Kumar S. 2019. Genome editing to epigenome editing: towards unravelling the enigmas in developmental biology. Trends Develop Biol. 12:32–38.
  • Lai Y-S, Zhang X, Zhang W, Shen D, Wang H, Xia Y, Qiu Y, Song J, Wang C, Li X, et al. 2017. The association of changes in DNA methylation with temperature-dependent sex determination in cucumber. J Exp Bot. 68(11):2899–2912. doi: 10.1093/jxb/erx144.
  • Lambeth LS, Smith CA. 2013. Short hairpin RNA-mediated gene silencing. Methods Mol Biol. 942:205–232. doi: 10.1007/978-1-62703-119-6_12.
  • Lang Z, Wang Y, Tang K, Tang D, Datsenka T, Cheng J, Zhang Y, Handa AK, Zhu J-K. 2017. Critical roles of DNA demethylation in the activation of ripening- induced genes and inhibition of ripening- repressed genes in tomato fruit. Proc Natl Acad Sci U S A. 114(22):E4511–E4519.,. doi: 10.1073/pnas.1705233114.
  • LaSalle JM. 2015. Epigenetic mechanisms in Rett syndrome. In: Chadwick BP, editor. Epigenetics: current research and emerging trends. Poole: Caister Academic Press: p. 199–216.
  • Laufer BI, Singh SM. 2015. Strategies for precision modulation of gene expression by epigenome editing: an overview. Epigenet Chromatin. 8:34.
  • Law JA, Jacobsen SE. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 11(3):204–220. doi: 10.1038/nrg2719.
  • Lei Y, Huang YH, Goodell MA. 2018. DNA methylation and de-methylation using hybrid site-targeting proteins. Genome Biol. 19(1):187. doi: 10.1186/s13059-018-1566-2.
  • Lei Y, Zhang X, Su J, Jeong M, Gundry MC, Huang YH, Zhou Y, Li W, Goodell MA. 2017. Targeted DNA methylation in vivo using an engineered dCas9-MQ1fusion protein. Nat Commun. 8(1):16026. doi: 10.1038/ncomms16026.
  • Li J, Huang Q, Sun MX, Zhang TY, Li H, Chen BY, Xu K, Gao GZ, Li F, Yan GX, et al. 2016. Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv. Topas. Sci Rep. 6(1):38401. doi: 10.1038/srep38401.
  • Li K, Liu Y, Cao H, Zhang Y, Gu Z, Liu X, Yu A, Kaphle P, Dickerson KE, Ni M, et al. 2020. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat Commun. 11(1):485. doi: 10.1038/s41467-020-14362-5.
  • Li W, Liu H, Cheng ZJ, Su YH, Han HN, Zhang Y, Zhang XS. 2011. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLOS Genet. 7(8):e1002243. doi: 10.1371/journal.pgen.1002243.
  • Li Y, Chen H, Hardy TM, Tollefsbol TO. 2013. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. PLOS One. 8(1):e54369. doi: 10.1371/journal.pone.0054369.
  • Li Z, Zhang D, Xiong X, Yan B, Xie W, Sheen J, Li J-F. 2017. A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants. 3(12):930–936. doi: 10.1038/s41477-017-0046-0.
  • Liang X, Hou X, Li J, Han Y, Zhang Y, Feng N, Du J, Zhan W, Zheng D, Fang S. 2019. High-resolution DNA methylome reveals that demethylation enhances adaptability to continuous cropping comprehensive stress in soybean. BMC Plant Biol. 19(1):79. doi: 10.1186/s12870-019-1670-9.
  • Liao H-K, Hatanaka F, Araoka T, Reddy P, Wu M-Z, Sui Y, Yamauchi T, Sakurai M, O’Keefe DD, Núñez-Delicado E, et al. 2017. In vivo target gene activation via crispr/cas9-mediated trans-epigenetic modulation. Cell. 171(7):1495–1507.e15. doi: 10.1016/j.cell.2017.10.025.
  • Lin L, Liu Y, Xu F, Huang J, Daugaard TF, Petersen TS, Hansen B, Ye L, Zhou Q, Fang F, et al. 2018. Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases. Gigascience. 7(3):1–19. doi: 10.1093/gigascience/giy011.
  • Liu H, Zhang H, Dong YX, Hao YJ, , Zhang XS. 2018. DNA METHYLTRANSFERASE1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis. New Phytol. 217(1):219–232. doi: 10.1111/nph.14814.
  • Liu J, Feng L, Li J, He Z. 2015a. Genetic and epigenetic control of plant heat responses. Front Plant Sci. 6:267. doi: 10.3389/fpls.2015.00267.
  • Liu R, Lan Z. 2020. The mechanism and function of active DNA demethylation in plants. J Integr Plant Biol. 62(1):148–159. doi: 10.1111/jipb.12879.
  • Liu RE, How-Kit A, Stammitti L, Teyssier E, Rolin D, Mortain-Bertrand A, Halle S, Liu MC, Kong JH, Wu CQ, et al. 2015b. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc Natl Acad Sci U S A. 112(34):10804–10809. doi: 10.1073/pnas.1503362112.
  • Liu T, Li Y, Duan W, Huang F, Hou X. 2017. Cold acclimation alters DNA methylation patterns and confers tolerance to heat and increases growth rate in Brassica rapa. J Exp Bot. 68(5):1213–1224. doi: 10.1093/jxb/erw496.
  • Liu W, Gallego-Bartolomé J, Zhou Y, Zhong Z, Wang M, Wongpalee SP, Gardiner J, Feng S, Kuo PH, Jacobsen SE. 2021. Ectopic targeting of CG DNA methylation in Arabidopsis with the bacterial SssI methyltransferase. Nat Commun. 12(1):3130. doi: 10.1038/s41467-021-23346-y.
  • Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R. 2016. Editing DNA methylation in the mammalian genome. Cell. 167(1):233–247.e17. doi: 10.1016/j.cell.2016.08.056.
  • Lo L, Choudhury SR, Irudayaraj J, Zhou FC. 2017. Epigenetic editing of Ascl1 gene in neural stem cells by optogenetics. Sci Rep. 7(1):42047. doi: 10.1038/srep42047.
  • Lodewijk I, Nunes SP, Henrique R, Jerónimo C, Dueñas M, Paramio JM. 2021. Tackling tumor microenvironment through epigenetic tools to improve cancer immunotherapy. Clin Epigenetics. 13(1):63. doi: 10.1186/s13148-021-01046-0.
  • López A, Ramírez V, García-Andrade J, Flors V, Vera P. 2011. The RNA silencing enzyme RNA polymerase V is required for plant immunity. PLOS Genet. 7(12):e1002434. doi: 10.1371/journal.pgen.1002434.
  • López ME, Roquis D, Becker C, Denoyes B, Bucher E. 2022. DNA methylation dynamics during stress response in woodland strawberry (Fragaria vesca). Hortic Res. 9:uhac174. doi: 10.1093/hr/uhac174.
  • Lu P, Yu S, Zhu N, Chen Y-R, Zhou B, Pan Y, Tzeng D, Fabi JP, Argyris J, Garcia-Mas J, et al. 2018. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat Plants. 4(10):784–791. doi: 10.1038/s41477-018-0249-z.
  • Lu Y, Chan YT, Tan HY, Li S, Wang N, Feng Y. 2020. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer. 19(1):79. doi: 10.1186/s12943-020-01197-3.
  • Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X. 2016. Targeted AID-mediated Mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods. 13(12):1029–1035. doi: 10.1038/nmeth.4027.
  • Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. 2013. CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 10(10):977–979. doi: 10.1038/nmeth.2598.
  • Malabarba J, Windels D, Xu WJ, Verdier J. 2021. Regulation of DNA (de)methylation positively impacts seed germination during seed development under heat stress. Genes. 12(3):457. doi: 10.3390/genes12030457.
  • Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB. 2006. A naturally occurring epigenetic mutation in a gene encoding an sbp-box transcription factor inhibits tomato fruit ripening. Nat Genet. 38(8):948–952. doi: 10.1038/ng1841.
  • Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE. 2013. Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol. 31(12):1133–1136. doi: 10.1038/nbt.2701.
  • Mendiola AJP, LaSalle JM. 2021. Epigenetics in Prader-Willi syndrome. Front Genet. 12:624581. doi: 10.3389/fgene.2021.624581.
  • Mladenov V, Fotopoulos V, Kaiserli E, Karalija E, Maury S, Baranek M, Segal N, Testillano PS, Vassileva V, Pinto G, et al. 2021. Deciphering the epigenetic alphabet involved in transgenerational stress memory in crops. Int J Mol Sci. 22(13):7118. doi: 10.3390/ijms22137118.
  • Moarii M, Boeva V, Vert J-P, Reyal F. 2015. Changes in correlation between promoter methylation and gene expression in cancer. BMC Genomics. 16(1):873. doi: 10.1186/s12864-015-1994-2.
  • Morales-Ruiz T, García-Ortiz MV, Devesa-Guerra I, Raya-Ruiz L, Tejedor JR, Bayón GF, Sierra MI, Fraga MF, Ariza RR, Roldán-Arjona T. 2018. DNA methylation reprogramming of human cancer cells by expression of a plant 5-methylcytosine DNA glycosylase. Epigenetics. 13(1):95–107. doi: 10.1080/15592294.2017.1414128.
  • Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marín MI, Martínez-Macías MI, Ariza RR, Roldán-Arjona T. 2006. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glyco-sylases. Proc Natl Acad Sci U S A. 103(18):6853–6858. doi: 10.1073/pnas.0601109103.
  • Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Saka A, Nakashima H, Hata K, Nakashima K, et al. 2016. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol. 34(10):1060–1065. doi: 10.1038/nbt.3658.
  • Nakade S, Yamamoto T, Sakuma T. 2018. Cancer induction and suppression with transcriptional control and epigenome editing technologies. J Hum Genet. 63(2):187–194. doi: 10.1038/s10038-017-0377-8.
  • Navarro-Sánchez L, Águeda-Gómez B, Aparicio S, Pérez-Tur J. 2018. Epigenetic study in Parkinson’s disease: a pilot analysis of DNA methylation in candidate genes in brain. Cells. 7(10):150. doi: 10.3390/cells7100150.
  • Neff KL, Argue DP, Ma AC, Lee HB, Clark KJ, Ekker SC. 2013. Mojo hand, a TALEN design tool for genome editing applications. BMC Bioinform. 14(1):1–7.
  • Niederhuth CE, Bewick AJ, Ji L, Alabady MS, Kim KD, Li Q, Rohr NA, Rambani A, Burke JM, Udall JA, et al. 2016. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17(1):194. doi: 10.1186/s13059-016-1059-0.
  • Nikolac Perkovic M, Videtic Paska A, Konjevod M, Kouter K, Svob Strac D, Nedic Erjavec G, Pivac N. 2021. Epigenetics of Alzheimer’s disease. Biomolecules. 11(2):195. doi: 10.3390/biom11020195.
  • Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, et al. 2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 353(6305):aaf8729. doi: 10.1126/science.aaf8729.
  • Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H, et al. 2018. Engineered CRISPRCas9 nuclease with expanded targeting space. Science. 361(6408):1259–1262. doi: 10.1126/science.aas9129.
  • Nunna S, Reinhardt R, Ragozin S, Jeltsch A. 2014. Targeted methylation of the epithelial cell adhesion molecule (EpCAM) promoter to silence its expression in ovarian cancer cells. PLoS One. 9(1):e87703. doi: 10.1371/journal.pone.0087703.
  • Oberkofler V, Pratx L, Bäurle I. 2021. Epigenetic regulation of abiotic stress memory: maintaining the good things while they last. Curr Opin Plant Biol. 61:102007. doi: 10.1016/j.pbi.2021.102007.
  • Ortega-Galisteo AP, Morales-Ruiz T, Ariza RR, Roldán-Arjona T. 2008. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol Biol. 67(6):671–681. doi: 10.1007/s11103-008-9346-0.
  • Ou X, Zhang Y, Xu C, Lin X, Zang Q, Zhuang T, Jiang L, von Wettstein D, Liu B. 2012. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLOS One. 7(9):e41143. doi: 10.1371/journal.pone.0041143.
  • Pan C, Wu X, Markel K, Malzahn AA, Kundagrami N, Sretenovic S, Zhang Y, Cheng Y, Shih PM, Qi Y. 2021. CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nat Plants. 7(7):942–953. doi: 10.1038/s41477-021-00953-7.
  • Papikian A, Liu W, Gallego-Bartolomé J, Jacobsen SE. 2019. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun. 10(1):729. doi: 10.1038/s41467-019-08736-7.
  • Parrilla-Doblas JT, Ariza RR, Roldán-Arjona T. 2017. Targeted DNA demethylation in human cells by fusion of a plant 5-methylcytosine DNA glycosylase to a sequence-specific DNA binding domain. Epigenetics. 12(4):296–303. doi: 10.1080/15592294.2017.1294306.
  • Pecinka A, Chevalier C, Colas I, Kalantidis K, Varotto S, Krugman T, Michailidis C, Vallés M-P, Muñoz A, Pradillo M. 2019. Chromatin dynamics during interphase and cell division: similarities and differences between model and crop plants. J Exp Bot. 71(17):5205–5222. doi: 10.1093/jxb/erz457.
  • Peddle CF, Fry LE, McClements ME, MacLaren RE. 2020. CRISPR interference-potential application in retinal disease. Int J Mol Sci. 21(7):2329. doi: 10.3390/ijms21072329.
  • Penterman J, Zilberman D, Huh JH, Ballinger T, Henikoff S, Fischer RL. 2007. DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci U S A. 104(16):6752–6757. doi: 10.1073/pnas.0701861104.
  • Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, et al. 2013. RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat Methods. 10(10):973–976. doi: 10.1038/nmeth.2600.
  • Perrin A, Rousseau J, Tremblay JP. 2017. Increased expression of laminin subunit alpha 1 chain by dCas9-VP160. Mol Ther Nucleic Acids. 6:68–79. doi: 10.1016/j.omtn.2016.11.004.
  • Peters J. 2014. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet. 15(8):517–530. doi: 10.1038/nrg3766.
  • Pflueger C, Tan D, Swain T, Nguyen T, Pflueger J, Nefzger C, Polo JM, Ford E, Lister R.,. 2018. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res. 28(8):1193–1206. doi: 10.1101/gr.233049.117.
  • Pinney SE, Simmons RA. 2010. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab. 21(4):223–229. doi: 10.1016/j.tem.2009.10.002.
  • Platt RJ, Zhou Y, Slaymaker IM, Shetty AS, Weisbach NR, Kim J-A, Sharma J, Desai M, Sood S, Kempton HR, et al. 2017. Chd8 mutation leads to utistic-like behaviors and impaired striatal circuits. Cell Rep. 19(2):335–350. doi: 10.1016/j.celrep.2017.03.052.
  • Porter SN, Levine RM, Pruett-Miller SM. 2019. A practical guide to genome editing using targeted nuclease technologies. Compr Physiol. 9(2):665–714. doi: 10.1002/cphy.c180022.
  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 152(5):1173–1183. doi: 10.1016/j.cell.2013.02.022.
  • Qian Y, Hu W, Liao J, Zhang J, Ren Q. 2019. The dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Biochem. Biophys. Res. Commun. 512: 742–749. doi: 10.1016/j.bbrc.2019.03.150.
  • Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M. 2017. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun. 8(1):14725. doi: 10.1038/ncomms14725.
  • Quadrana L, Almeida J, Asís R, Duffy T, Dominguez PG, Bermúdez L, Conti G, Corrêa da Silva JV, Peralta IE, Colot V, et al. 2014. Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun. 5(1):3027. doi: 10.1038/ncomms5027.
  • Que Q, Chilton MM, Elumalai S, Zhong H, Dong S, Shi L. 2019. Repurposing macromolecule delivery tools for plant genetic modification in the era of precision genome engineering. Methods Mol Biol. 1864:3–18. doi: 10.1007/978-1-4939-8778-8_1.
  • Radzisheuskaya A, Shlyueva D, Müller I, Helin K. 2016. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Res. 44(18):e141–e141. doi: 10.1093/nar/gkw583.
  • Rajkumar MS, Gupta K, Khemka NK, Garg R, Jain M. 2020. DNA methylation reprogramming during seed development and its functional relevance in seed size/weight determination in chickpea. Commun Biol. 3(1):340. doi: 10.1038/s42003-020-1059-1.
  • Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, et al. 2015. In vivo genome editing using Staphylococcus aureusCas9. Nature. 520(7546):186–191. doi: 10.1038/nature14299.
  • Richter A, Streubel J, Boch J. 2016. TAL effector DNA-binding principles and specificity. Methods Mol Biol. 1338:9–25. doi: 10.1007/978-1-4939-2932-0_2.
  • Richter A, Streubel J, Boch J. 2016. TAL effector DNA-binding principles and specificity. In: Kühn R, Wurst W, Wefers B. (Eds.). TALENs. Methods in molecular biology. vol 1338. New York (NY): Humana Press.
  • Rivenbark AG, Stolzenburg S, Beltran AS, Yuan X, Rots MG, Strah BD, Blancafort P. 2012. Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics. 7(4):350–360. doi: 10.4161/epi.19507.
  • Robertson KD, Jone PA. 2000. DNA methylation: past, present and future directions. Carcinogenesis. 21(3):461–467. doi: 10.1093/carcin/21.3.461.
  • Roca Paixão JF, Gillet F-X, Ribeiro TP, Bournaud C, Lourenço-Tessutti IT, Noriega DD, Melo BPd, de Almeida-Engler J, Grossi-de-Sa MF. 2019. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a histone acetyltransferase. Sci Rep. 9(1):8080. doi: 10.1038/s41598-019-44571-y.
  • Römer P, Recht S, Lahaye T. 2009. Single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proc Natl Acad Sci U S A. 106(48):20526–20531. doi: 10.1073/pnas.0908812106.
  • Rountree M, Bachman K, Herman J, Baylin SB. 2001. DNA methylation, chromatin inheritance, and cancer. Oncogene. 20(24):3156–3165. doi: 10.1038/sj.onc.1204339.
  • Sallam A, Alqudah AM, Dawood M, Baenziger PS, Börner A. 2019. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J Mol Sci. 20(13):3137. doi: 10.3390/ijms20133137.
  • Sanaei M, Kavoosi F, Esmi Z. 2020. The Effect of 5-Aza-2’-Deoxycytidine in combination to and in comparison, with vorinostat on DNA methyltransferases, histone deacetylase 1, glutathione s-transferase 1 and suppressor of cytokine signaling 1 genes expression, cell growth inhibition and apoptotic induction in hepatocellular lcl-pi 11 cell line. Int J Hematol Oncol Stem Cell Res. 14(1):45–55.
  • Sapozhnikov DM, Szyf M. 2021. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nat Commun. 12(1):5711. doi: 10.1038/s41467-021-25991-9.
  • Sarda S, Das A, Vinson C, Hannenhalli S. 2017. Distal CpG islands can serve as alternative promoters to transcribe genes with silenced proximal promoters. Genome Res. 27(4):553–566. doi: 10.1101/gr.212050.116.
  • Sarno F, Benincasa G, List M, Barabasi A-L, Baumbach J, Ciardiello F, Filetti S, Glass K, Loscalzo J, Marchese C, et al. 2021. Clinical epigenetics settings for cancer and cardiovascular diseases: real-life applications of network medicine at the bedside. Clin Epigenetics. 13(1):66. doi: 10.1186/s13148-021-01047-z.
  • Saunderson EA, Stepper P, Gomm JJ, Hoa L, Morgan A, Allen MD, Jones JL, Gribben JG, Jurkowski TP, Ficz G. 2017. Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors. Nat Commun. 8(1):1450. doi: 10.1038/s41467-017-01078-2.
  • Schmitz RJ, Amasino RM. 2007. Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants. Biochim Biophys Acta. 1769(5-6):269–275. doi: 10.1016/j.bbaexp.2007.02.003.
  • Schmitz RJ, Lewis ZA, Goll MG. 2019. DNA methylation: shared and divergent features across eukaryotes. Trends Genet. 35(11):818–827. doi: 10.1016/j.tig.2019.07.007.
  • Schübeler D. 2015. Function and information content of DNA methylation. Nature. 517(7534):321–326. doi: 10.1038/nature14192.
  • Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20(7):898–912. doi: 10.1101/gad.373506.
  • Selma S, Orzáez D. 2021. Perspectives for epigenetic editing in crops. Transgenic Res. 30(4):381–400. doi: 10.1007/s11248-021-00252-z.
  • Sha AH, Lin XH, Huang JB, Zhang DP. 2005. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Mol Genet Genomics. 273(6):484–490. doi: 10.1007/s00438-005-1148-3.
  • Shafiq S, Zeb Q, Ali A, Sajjad Y, Nazir R, Widemann E, Liu LY. 2019. Lead, cadmium and zinc phytotoxicity alter DNA methylation levels to confer heavy metal tolerance in wheat. Int J Mol Sci. 20(19):4676. doi: 10.3390/ijms20194676.
  • Shemer O, Landau U, Candela H, Zemach A, Eshed Williams L. 2015. Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation. Plant Sci. 238:251–261. doi: 10.1016/j.plantsci.2015.06.015.
  • Shi J, Xu J, Chen YE, Li JS, Cui Y, Shen L, Li JJ, Li W. 2021. The concurrence of DNA methylation and demethylation is associated with transcription regulation. Nat Commun. 12(1):5285.,. doi: 10.1038/s41467-021-25521-7.
  • Shim S, Lee HG, Seo PJ. 2021. MET1-dependent DNA methylation represses light signaling and influences plant regeneration in Arabidopsis. Mol Cells. 44(10):746–757. doi: 10.14348/molcells.2021.0160.
  • Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG, Ragozin S, Jurkowski TP, Jeltsch A. 2013. Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol. 425(3):479–491. doi: 10.1016/j.jmb.2012.11.038.
  • Slotkin RK, Martienssen R. 2007. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 8(4):272–285. doi: 10.1038/nrg2072.
  • Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A. 2012. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature. 484(7394):339–344. doi: 10.1038/nature10960.
  • Smith ZD, Meissner A. 2013. DNA methylation: roles in mammalian development. Nat Rev Genet. 14(3):204–220. doi: 10.1038/nrg3354.
  • Snowden AW, Gregory PD, Case CC, Pabo CO. 2002. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol. 12(24):2159–2166. doi: 10.1016/s0960-9822(02)01391-x.
  • Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJ. 2000. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell. 6(4):791–802. doi: 10.1016/s1097-2765(05)00090-0.
  • Soriano-Tárraga C, Jiménez-Conde J, Giralt-Steinhauer E, Mola-Caminal M, Vivanco-Hidalgo RM, Ois A, Rodríguez-Campello A, Cuadrado-Godia E, Sayols-Baixeras S, Elosua R, et al. 2016. Epigenome-wide association study identifies TXNIP gene associated with type 2 diabetes mellitus and sustained hyperglycemia. Hum Mol Genet. 25(3):609–619. doi: 10.1093/hmg/ddv493.
  • Sproviero D, Gagliardi S, Zucca S, Arigoni M, Giannini M, Garofalo M, Olivero M, Dell’Orco M, Pansarasa O, Bernuzzi S, et al. 2021. Different miRNA profiles in plasma derived small and large extracellular vesicles from patients with neurodegenerative diseases. Int J Mol Sci. 22(5):2737. doi: 10.3390/ijms22052737.
  • Srikant T, Drost HG. 2020. How stress facilitates phenotypic innovation through epigenetic diversity. Front Plant Sci. 11:606800. doi: 10.3389/fpls.2020.606800.
  • Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 507(7490):62–67. doi: 10.1038/nature13011.
  • Suriyasak C, Hatanaka K, Tanaka H, Okumura T, Yamashita D, Attri P, Koga K, Shiratani M, Hamaoka N, Ishibashi Y. 2021. Alterations of DNA methylation caused by cold plasma treatment restore delayed germination of heat-stressed rice (Oryza sativa L.) seeds. ACS Agric Sci Technol. 1(1):5–10. doi: 10.1021/acsagscitech.0c00070.
  • Suzuki MM, Bird A. 2008. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 9(6):465–476. doi: 10.1038/nrg2341.
  • Taghbalout A, Du M, Jillette N, Rosikiewicz W, Rath A, Heinen CD, Li S, Cheng AW. 2019. Enhanced CRISPR-based DNA demethylation by Casilio-ME-mediated RNA-guided coupling of methylcytosine oxidation and DNA repair pathways. Nat Commun. 10(1):4296. doi: 10.1038/s41467-019-12339-7.
  • Tan MP. 2010. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem. 48(1):21–26. doi: 10.1016/j.plaphy.2009.10.005.
  • Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 159(3):635–646. doi: 10.1016/j.cell.2014.09.039.
  • Tang S, Yang C, Wang D, Deng X, Cao X, Song X. 2022. Targeted DNA demethylation produces heritable epialleles in rice. Sci China Life Sci. 65(4):753–756. doi: 10.1007/s11427-021-1974-7.
  • Teyssier E, Bernacchia G, Maury S, How Kit A, Stammitti-Bert L, Rolin D, Gallusci P. 2008. Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta. 228(3):391–399. doi: 10.1007/s00425-008-0743-z.
  • Thiebaut F, Hemerly AS, Ferreira PCG. 2019. A role for epigenetic regulation in the adaptation and stress responses of non-model plants. Front Plant Sci. 10:246. doi: 10.3389/fpls.2019.00246.
  • Tian F, Yip SP, Kwong DL, Lin Z, Yang Z, Wu VW. 2013. Promoter hypermethylation of tumor suppressor genes in serum as potential biomarker for the diagnosis of nasopharyngeal carcinoma. Cancer Epidemiol. 37(5):708–713. doi: 10.1016/j.canep.2013.05.012.
  • Toh TB, Lim JJ, Chow EK. 2017. Epigenetics in cancer stem cells. Mol Cancer. 16(1):29. doi: 10.1186/s12943-017-0596-9.
  • Tompkins JD. 2022. Discovering DNA methylation, the history and euture of the writing on DNA. J Hist Biol. 55(4):865–887. doi: 10.1007/s10739-022-09691-8.
  • Trap-Gentil MV, Hébrard C, Lafon-Placette C, Delaunay A, Hagège D, Joseph C, Brignolas F, Lefebvre M, Barnes S, Maury S. 2011. Time course and amplitude of DNA methylation in the shoot apical meristem are critical points for bolting induction in sugar beet and bolting tolerance between genotypes. J Exp Bot. 62(8):2585–2597. doi: 10.1093/jxb/erq433.
  • Uranga M, Vazquez-Vilar M, Orzáez D, Daròs JA. 2021. CRISPR-Cas12a genome editing at the whole-plant level using two compatible RNA virus vectors. Crispr J. 4(5):761–769. doi: 10.1089/crispr.2021.0049.
  • Van Vlodrop IJH, Niessen HEC, Derks S, Baldewijns MMLL, Van Criekinge W, Herman JG, Van Engeland M. 2011. Analysis of promoter CpG island hypermethylation in cancer: location, location, location!. Clin Cancer Res. 17(13):4225–4231. doi: 10.1158/1078-0432.CCR-10-3394.
  • Varotto S, Tani E, Abraham E, Krugman T, Kapazoglou A, Melzer R, Radanović A, Miladinović D. 2020. Epigenetics: possible applications in climate-smart crop breeding. J Exp Bot. 71(17):5223–5236. doi: 10.1093/jxb/eraa188.
  • Veley KM, Elliott K, Jensen G, Zhong Z, Feng S, Yoder M, Gilbert KB, Berry JC, Lin Z-JD, Ghoshal B, et al. 2023. Improving cassava bacterial blight resistance by editing the epigenome. Nat Commun. 14(1):85. doi: 10.1038/s41467-022-35675-7.
  • Virdi KS, Laurie JD, Xu Y-Z, Yu J, Shao M-R, Sanchez R, Kundariya H, Wang D, Riethoven J-JM, Wamboldt Y, et al. 2015. Arabidopsis MSH1 mutation alters the epigenome and produces heritable changes in plant growth. Nat Commun. 6(1):6386. doi: 10.1038/ncomms7386.
  • Vogt G. 2015. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J Biosci. 40(1):159–204. doi: 10.1007/s12038-015-9506-8.
  • Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, Klasić M, Zoldoš V. 2016. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44(12):5615–5628. doi: 10.1093/nar/gkw159.
  • Wang M, Qin L, Xie C, Li W, Yuan J, Kong L, Yu W, Xia G, Liu S. 2014. Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant Cell Physiol. 55(7):1354–1365. doi: 10.1093/pcp/pcu059.
  • Wang W, Zhao X, Pan Y, Zhu L, Fu B, Li Z. 2011. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J Genet Genomics. 38(9):419–424. doi: 10.1016/j.jgg.2011.07.006.
  • Wang X, Li Q, Yuan W, Cao Z, Qi B, Kumar S, Li Y, Qian W. 2016. The cytosolic Fe–S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation. Sci Rep. 6:26443. doi: 10.1038/srep26443.
  • Wei S, Zou Q, Lai S, Zhang Q, Li L, Yan Q, Zhou X, Zhong H, Lai L. 2016. Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators. Sci Rep. 6(1):19648. doi: 10.1038/srep19648.
  • Weltner J, Balboa D, Katayama S, Bespalov M, Krjutškov K, Jouhilahti E-M, Trokovic R, Kere J, Otonkoski T. 2018. Human pluripotent reprogramming with CRISPR activators. Nat Commun. 9(1):2643. doi: 10.1038/s41467-018-05067-x.
  • Weng X, Wu J, Lv Z, Peng C, Chen J, Zhang C, He B, Tong R, Hu W, Ding C, Cao L, Chen D, Wu J, Zheng S. 2019. Targeting Mybbp1a suppresses HCC progression via inhibiting IGF1/AKT pathway by CpG islands hypo-methylation dependent promotion of IGFBP5. EBioMedicine. 44:225–236. doi: 10.1016/j.ebiom.2019.05.029.
  • Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, et al. 2016. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. Elife. 5:e13546. doi: 10.7554/eLife.13546.
  • Wiencke JK, Zheng S, Jelluma N, Tihan T, Vandenberg S, Tamgüney T, Baumber R, Parsons R, Lamborn KR, Berger MS, et al. 2007. Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol. 9(3):271–279. doi: 10.1215/15228517-2007-003.
  • Wong CK, Gromisch C, Ozturk S, Papageorgis P, Abdolmaleky HM, Reinhard BM, Thiagalingam A, Thiagalingam S. 2019. MicroRNA-4417 is a tumor suppressor and prognostic biomarker for triple-negative breast cancer. Cancer Biol Ther. 20(8):1113–1120. doi: 10.1080/15384047.2019.1595285.
  • Xiang H, Zhu J, Chen Q, Dai F, Li X, Li M, Zhang H, Zhang G, Li D, Dong Y, et al. 2010. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol. 28(5):516–520. doi: 10.1038/nbt.1626.
  • Xie H, Sun Y, Cheng B, Xue S, Cheng D, Liu L, Meng L, Qiang S. 2019. Variation in ICE1 methylation primarily determines phenotypic variation in freezing tolerance in Arabidopsis thaliana. Plant Cell Physiol. 60(1):152–165. doi: 10.1093/pcp/pcy197.
  • Xiong T, Meister GE, Workman RE, Kato NC, Spellberg MJ, Turker F, Timp W, Ostermeier M, Novina CD. 2017. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Sci Rep. 7(1):6732. doi: 10.1038/s41598-017-06757-0.
  • Xiong T, Rohm D, Workman RE, Roundtree L, Novina CD, Timp W, Ostermeier M. 2018. Protein engineering strategies for improving the selective methylation of target CpG sites by a dCas9-directed cytosine methyltransferase in bacteria. PLOS One. 13(12):e0209408. doi: 10.1371/journal.pone.0209408.
  • Xu GL, Bestor TH. 1997. Cytosine methylation targeted to pre-determined sequences. Nat Genet. 17(4):376–378. doi: 10.1038/ng1297-376.
  • Xu H, Li Z, Tong Z, He F, Li X. 2020. Metabolomic analyses reveal substances that contribute to the increased freezing tolerance of alfalfa (Medicago sativa L.) after continuous water deficit. BMC Plant Biol. 20(1):15. doi: 10.1186/s12870-019-2233-9.
  • Xu X, Gao J, Dai W, Wang D, Wu J, Wang J. 2019. Gene activation by a CRISPR-assisted trans enhancer. Elife. 8:e45973. doi: 10.7554/eLife.45973.
  • Yadav NS, Titov V, Ayemere I, Byeon B, Ilnytskyy Y, Kovalchuk I. 2022. Multigenerational exposure to heat stress induces phenotypic resilience, and genetic and epigenetic variations in Arabidopsis thaliana offspring. Front Plant Sci. 13:728167. doi: 10.3389/fpls.2022.728167.
  • Yamazaki T, Hatano Y, Handa T, Kato S, Hoida K, Yamamura R, Fukuyama T, Uematsu T, Kobayashi N, Kimura H, et al. 2017. Targeted DNA methylation in pericentromeres with genome editing-based artificial DNA methyltransferase. PLoS One. 12(5):e0177764. doi: 10.1371/journal.pone.0177764.
  • Yang J, Rajan SS, Friedrich MJ, Lan G, Zou X, Ponsting H, Garyfallos DA, Liu P, Bradley A, Metzakopian E. 2019. Genome-scale CRISPRa screen identifies novel factors for cellular reprogramming. Stem Cell Reports. 12(4):757–771. doi: 10.1016/j.stemcr.2019.02.010.
  • Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. 2023. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 8(1):210. doi: 10.1038/s41392-023-01480-x.
  • Yang JL, Liu LW, Gong YQ, Huang DQ, Wang F, He LL. 2007. Analysis of genomic DNA methylation level in radish under cadmium stress by methylation-sensitive amplified polymorphism technique. J Plant Physiol. Mol Biol. 33:219–226.
  • Yoshioka S, Fujii W, Ogawa T, Sugiura K, Naito K. 2015. Development of a mono-promoter-driven CRISPR/Cas9 system in mammalian cells. Sci Rep. 5(1):18341. doi: 10.1038/srep18341.
  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 163(3):759–771.,. doi: 10.1016/j.cell.2015.09.038.
  • Zhang C, Chen H, Zhuang R-R, Chen Y-T, Deng Y, Cai T-C, Wang S-Y, Liu Q-Z, Tang R-H, Shan S-H, et al. 2019. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco. J Exp Bot. 70(19):5407–5421. doi: 10.1093/jxb/erz274.
  • Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. 2011. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. 29(2):149–153. doi: 10.1038/nbt.1775.
  • Zhang H, Lang Z, Zhu JK. 2018. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol. 19(8):489–506. doi: 10.1038/s41580-018-0016-z.
  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, et al. 2006. Genome-wide high-resolution mapping andfunctional analysis of DNA methylation in Arabidopsis. Cell. 126(6):1189–1201.,. doi: 10.1016/j.cell.2006.08.003.
  • Zhao JG, Lu ZG, Wang L, Jin B. 2021. Plant responses to heat stress: physiology, ranscription, noncoding RNAs, and epigenetics. Int J Mol Sci. 22(1):117. doi: 10.3390/ijms22010117.
  • Zhao L, Ng ET, Koopman P. 2014. A piggyBac transposon- and gateway-enhanced system for efficient BAC transgenesis. Dev Dyn. 243(9):1086–1094. doi: 10.1002/dvdy.24153.
  • Zheng X, Chen L, Xia H, Wei H, Lou Q, Li M, Li T, Luo L. 2017. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci Rep. 7(1):39843. doi: 10.1038/srep39843.
  • Zheng Y, Huang G, Silva TC, Yang Q, Jiang Y-Y, Koeffler HP, Lin D-C, Berman BP. 2021. A pan-cancer analysis of CpG Island gene regulation reveals extensive plasticity within Polycomb target genes. Nat Commun. 12(1):2485.,. doi: 10.1038/s41467-021-22720-0.
  • Zheng Y, Shen W, Zhang J, Yang B, Liu YN, Qi H, Yu X, Lu SY, Chen Y, Xu YZ, et al. 2018. CRISPR interference-based specific and efficient gene inactivation in the brain. Nat Neurosci. 21(3):447–454. doi: 10.1038/s41593-018-0077-5.
  • Zhong L, Xu Y, Wang JB. 2009. DNA-methylation changes induced by salt stress in wheat. African J Biotechnol. 8:6201–6207.
  • Zhong S, Fei Z, Chen Y-R, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J, et al. 2013. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol. 31(2):154–159. doi: 10.1038/nbt.2462.
  • Zhou H, Liu J, Zhou C, Gao N, Rao Z, Li H, Hu X, Li C, Yao X, Shen X, et al. 2018. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat Neurosci. 21(3):440–446. doi: 10.1038/s41593-017-0060-6.
  • Zhu J, Kapoor A, Sridhar VV, Agius F, Zhu JK. 2007. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr Biol. 17(1):54–59. doi: 10.1016/j.cub.2006.10.059.
  • Zimmer-Bensch G, Zempel H. 2021. DNA methylation in genetic and sporadic forms of neurodegeneration: lessons from Alzheimers, related tauopathies and genetic tauopathies. Cells. 10(11):3064. doi: 10.3390/cells10113064.
  • Zink F, Magnusdottir DN, Magnusson OT, Walker NJ, Morris TJ, Sigurdsson A, Halldorsson GH, Gudjonsson SA, Melsted P, Ingimundardottir H, et al. 2018. Insights into imprinting from parent-of-origin phased methylomes and transcriptomes. Nat Genet. 50(11):1542–1552. doi: 10.1038/s41588-018-0232-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.