352
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Elucidating the chain of command: our current understanding of critical target genes for p53-mediated tumor suppression

&
Received 31 Jan 2024, Accepted 15 Apr 2024, Published online: 25 Apr 2024

References

  • Adams CM, Mitra R, Xiao Y, Michener P, Palazzo J, Chao A, Gour J, Cassel J, Salvino JM, Eischen CM, et al. 2023. Targeted MDM2 degradation reveals a new vulnerability for p53-inactivated triple-negative breast cancer. Cancer Discov. 13(5):1210–1229. doi: 10.1158/2159-8290.CD-22-1131.
  • Attardi LD, Reczek EE, Cosmas C, Demicco EG, McCurrach ME, Lowe SW, Jacks T. 2000. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14(6):704–718. doi: 10.1101/gad.14.6.704.
  • Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. 2018. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25(1):104–113. doi: 10.1038/cdd.2017.169.
  • Bernard A, Boidot R, Végran F. 2022. Alternative splicing in cancer and immune cells. Cancers (Basel). 14(7):1726. doi: 10.3390/cancers14071726.
  • Bieging-Rolett KT, Kaiser AM, Morgens DW, Boutelle AM, Seoane JA, Van Nostrand EL, Zhu C, Houlihan SL, Mello SS, Yee BA, et al. 2020. Zmat3 is a key splicing regulator in the p53 tumor suppression program. Mol Cell. 80(3):452–469.e9. doi: 10.1016/j.molcel.2020.10.022.
  • Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, Kenzelmann Broz D, Basak S, Park EJ, McLaughlin ME, et al. 2011. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell. 145(4):571–583. doi: 10.1016/j.cell.2011.03.035.
  • Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ. 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature. 377(6549):552–557. doi: 10.1038/377552a0.
  • Caelles C, Helmberg A, Karin M. 1994. p53-Dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature. 370(6486):220–223. doi: 10.1038/370220a0.
  • Chen J. 2016. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med. 6(3):a026104. doi: 10.1101/cshperspect.a026104.
  • Chen M-L, Xu P-Z, Peng X-d, Chen WS, Guzman G, Yang X, Di Cristofano A, Pandolfi PP, Hay N. 2006. The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/- mice. Genes Dev. 20(12):1569–1574. doi: 10.1101/gad.1395006.
  • Choe JH, Kawase T, Xu A, Guzman A, Obradovic AZ, Low-Calle AM, Alaghebandan B, Raghavan A, Long K, Hwang PM, et al. 2023. Li–Fraumeni syndrome–associated dimer-forming mutant p53 promotes transactivation-independent mitochondrial cell death. Cancer Discov. 13(5):1250–1273. doi: 10.1158/2159-8290.CD-22-0882.
  • Coronel L, Riege K, Schwab K, Förste S, Häckes D, Semerau L, Bernhart SH, Siebert R, Hoffmann S, Fischer M, et al. 2021. Transcription factor RFX7 governs a tumor suppressor network in response to p53 and stress. Nucleic Acids Res. 49(13):7437–7456. doi: 10.1093/nar/gkab575.
  • Cui D, Xiong X, Shu J, Dai X, Sun Y, Zhao Y. 2020. FBXW7 confers radiation survival by targeting p53 for degradation. Cell Rep. 30(2):497–509.e4. doi: 10.1016/j.celrep.2019.12.032.
  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 82(4):675–684. doi: 10.1016/0092-8674(95)90039-x.
  • Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. 1998. Pten is essential for embryonic development and tumour suppression. Nat Genet. 19(4):348–355. doi: 10.1038/1235.
  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B, et al. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell. 75(4):817–825. doi: 10.1016/0092-8674(93)90500-p.
  • El-Deiry WS. 2016. p21(WAF1) mediates cell cycle inhibition, relevant to cancer suppression and therapy. Cancer Res. 76(18):5189–5191. doi: 10.1158/0008-5472.CAN-16-2055.
  • Engeland K. 2018. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 25(1):114–132. doi: 10.1038/cdd.2017.172.
  • Farioli-Vecchioli S, Cinà I, Ceccarelli M, Micheli L, Leonardi L, Ciotti MT, De Bardi M, Di Rocco C, Pallini R, Cavallaro S, et al. 2012. Tis21 knock-out enhances the frequency of medulloblastoma in Patched1 heterozygous mice by inhibiting the Cxcl3-dependent migration of cerebellar neurons. J Neurosci. 32(44):15547–15564. doi: 10.1523/JNEUROSCI.0412-12.2012.
  • Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, Levine AJ. 2007. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 67(7):3043–3053. doi: 10.1158/0008-5472.CAN-06-4149.
  • Fischer BA, Chelbi ST, Guarda G. 2020. Regulatory factor X 7 and its potential link to lymphoid cancers. Trends Cancer. 6(1):6–9. doi: 10.1016/j.trecan.2019.11.001.
  • Fischer M. 2016. p21 governs p53’s repressive side. Cell Cycle. 15(21):2852–2853. doi: 10.1080/15384101.2016.1205393.
  • Fischer M. 2017. Census and evaluation of p53 target genes. Oncogene. 36(28):3943–3956. doi: 10.1038/onc.2016.502.
  • Freeman DJ, Li AG, Wei G, Li H-H, Kertesz N, Lesche R, Whale AD, Martinez-Diaz H, Rozengurt N, Cardiff RD, et al. 2003. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell. 3(2):117–130. doi: 10.1016/s1535-6108(03)00021-7.
  • Galindo-Moreno M, Giráldez S, Limón-Mortés MC, Belmonte-Fernández A, Sáez C, Japón MÁ, Tortolero M, Romero F. 2020. p53 and FBXW7: sometimes two guardians are worse than one. Cancers (Basel). 12(4):985. doi: 10.3390/cancers12040985.
  • Galindo-Moreno M, Giráldez S, Limón-Mortés MC, Belmonte-Fernández A, Reed SI, Sáez C, Japón MÁ, Tortolero M, Romero F. 2019. SCF(FBXW7)-mediated degradation of p53 promotes cell recovery after UV-induced DNA damage. Faseb J. 33(10):11420–11430. doi: 10.1096/fj.201900885R.
  • Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. 2015. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59(2):298–308. doi: 10.1016/j.molcel.2015.06.011.
  • Gencel-Augusto J, Su X, Qi Y, Whitley EM, Pant V, Xiong S, Shah V, Lin J, Perez E, Fiorotto ML, et al. 2023. Dimeric p53 mutant elicits unique tumor-suppressive activities through an altered metabolic program. Cancer Discov. 13(5):1230–1249. doi: 10.1158/2159-8290.CD-22-0872.
  • Harms K, Nozell S, Chen X. 2004. The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci. 61(7–8):822–842. doi: 10.1007/s00018-003-3304-4.
  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75(4):805–816.
  • Hassin O, Oren M. 2023. Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov. 22(2):127–144. doi: 10.1038/s41573-022-00571-8.
  • Ho WC, Fitzgerald MX, Marmorstein R. 2006. Structure of the p53 core domain dimer bound to DNA. J Biol Chem. 281(29):20494–20502. doi: 10.1074/jbc.M603634200.
  • Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. 2010. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA. 107(16):7455–7460. doi: 10.1073/pnas.1001006107.
  • Indeglia A, Leung JC, Miller SA, Leu JI-J, Dougherty JF, Clarke NL, Kirven NA, Shao C, Ke L, Lovell S, et al. 2023. An African-specific variant of TP53 reveals PADI4 as a regulator of p53-mediated tumor suppression. Cancer Discov. 13(7):1696–1719. doi: 10.1158/2159-8290.CD-22-1315.
  • Isbel L, Iskar M, Durdu S, Weiss J, Grand RS, Hietter-Pfeiffer E, Kozicka Z, Michael AK, Burger L, Thomä NH, et al. 2023. Readout of histone methylation by Trim24 locally restricts chromatin opening by p53. Nat Struct Mol Biol. 30(7):948–957. doi: 10.1038/s41594-023-01021-8.
  • Israeli D, Tessler E, Haupt Y, Elkeles A, Wilder S, Amson R, Telerman A, Oren M. 1997. A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. Embo J. 16(14):4384–4392. doi: 10.1093/emboj/16.14.4384.
  • Janic A, Valente LJ, Wakefield MJ, Di Stefano L, Milla L, Wilcox S, Yang H, Tai L, Vandenberg CJ, Kueh AJ, et al. 2018. DNA repair processes are critical mediators of p53-dependent tumor suppression. Nat Med. 24(7):947–953. doi: 10.1038/s41591-018-0043-5.
  • Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, MacLean KH, Han J, Chittenden T, Ihle JN, et al. 2003. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell. 4(4):321–328. doi: 10.1016/s1535-6108(03)00244-7.
  • Jeffrey PD, Gorina S, Pavletich NP. 1995. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science. 267(5203):1498–1502. doi: 10.1126/science.7878469.
  • Jennis M, Kung C-P, Basu S, Budina-Kolomets A, Leu JI-J, Khaku S, Scott JP, Cai KQ, Campbell MR, Porter DK, et al. 2016. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev. 30(8):918–930. doi: 10.1101/gad.275891.115.
  • Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B. 1991. Identification of p53 as a sequence-specific DNA-binding protein. Science. 252(5013):1708–1711. doi: 10.1126/science.2047879.
  • Kiryu-Seo S, Hirayama T, Kato R, Kiyama H. 2005. Noxa is a critical mediator of p53-dependent motor neuron death after nerve injury in adult mouse. J Neurosci. 25(6):1442–1447. doi: 10.1523/JNEUROSCI.4041-04.2005.
  • Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ. 1995. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 270(5233):96–99. doi: 10.1126/science.270.5233.96.
  • Laptenko O, Prives C. 2006. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13(6):951–961. doi: 10.1038/sj.cdd.4401916.
  • Laptenko O, Shiff I, Freed-Pastor W, Zupnick A, Mattia M, Freulich E, Shamir I, Kadouri N, Kahan T, Manfredi J, et al. 2015. The p53 C-terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell. 57(6):1034–1046. doi: 10.1016/j.molcel.2015.02.015.
  • Lee YR, Chen M. 2018. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol. 19(9):547–562. doi: 10.1038/s41580-018-0015-0.
  • Leu JIJ, Dumont P, Hafey M, Murphy ME, George DL. 2004. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 6(5):443–450. doi: 10.1038/ncb1123.
  • Levine AJ, Oren M. 2009. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 9(10):749–758. doi: 10.1038/nrc2723.
  • Li AG, Piluso LG, Cai X, Wei G, Sellers WR, Liu X. 2006. Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol Cell. 23(4):575–587. doi: 10.1016/j.molcel.2006.06.028.
  • Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W. 2012. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 149(6):1269–1283. doi: 10.1016/j.cell.2012.04.026.
  • Liu J, Zhang C, Lin M, Zhu W, Liang Y, Hong X, Zhao Y, Young KH, Hu W, Feng Z, et al. 2014. Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma. Oncotarget. 5(9):2635–2647. doi: 10.18632/oncotarget.1862.
  • Liu Y, Gu W. 2022. p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ. 29(5):895–910. doi: 10.1038/s41418-022-00943-y.
  • Luo Y, Hurwitz J, Massagué J. 1995. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature. 375(6527):159–161. doi: 10.1038/375159a0.
  • Mao J-H, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI, Brown K, Bryson S, Balmain A. 2004. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature. 432(7018):775–779. doi: 10.1038/nature03155.
  • Martín-Caballero J, Flores JM, García-Palencia P, Serrano M. 2001. Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res. 61(16):6234–6238.
  • McCurrach ME, Connor TM, Knudson CM, Korsmeyer SJ, Lowe SW. 1997. BAX-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci USA. 94(6):2345–2349. doi: 10.1073/pnas.94.6.2345.
  • Meek DW, Anderson CW. 2009. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol. 1(6):a000950–a000950. doi: 10.1101/cshperspect.a000950.
  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM. 2003. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 11(3):577–590. doi: 10.1016/s1097-2765(03)00050-9.
  • Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC. 1994. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 9(6):1799–1805.
  • Miyashita T, Reed JC. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 80(2):293–299. doi: 10.1016/0092-8674(95)90412-3.
  • Moyer SM, Wasylishen AR, Qi Y, Fowlkes N, Su X, Lozano G. 2020. p53 drives a transcriptional program that elicits a non-cell-autonomous response and alters cell state in vivo. Proc Natl Acad Sci USA. 117(38):23663–23673. doi: 10.1073/pnas.2008474117.
  • Müller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M, Friedman SL, Galle PR, Stremmel W, Oren M, et al. 1998. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med. 188(11):2033–2045. doi: 10.1084/jem.188.11.2033.
  • Nakano K, Vousden KH. 2001. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 7(3):683–694. doi: 10.1016/s1097-2765(01)00214-3.
  • Natan E, Baloglu C, Pagel K, Freund SMV, Morgner N, Robinson CV, Fersht AR, Joerger AC. 2011. Interaction of the p53 DNA-binding domain with its n-terminal extension modulates the stability of the p53 tetramer. J Mol Biol. 409(3):358–368. doi: 10.1016/j.jmb.2011.03.047.
  • Nguyen TA, Menendez D, Resnick MA, Anderson CW. 2014. Mutant TP53 posttranslational modifications: challenges and opportunities. Hum Mutat. 35(6):738–755. doi: 10.1002/humu.22506.
  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N. 2000. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 288(5468):1053–1058. doi: 10.1126/science.288.5468.1053.
  • Palacios G, Crawford HC, Vaseva A, Moll UM. 2008. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model. Cell Cycle. 7(16):2584–2590. doi: 10.4161/cc.7.16.6070.
  • Pant V, Sun C, Lozano G. 2023. Tissue specificity and spatio-temporal dynamics of the p53 transcriptional program. Cell Death Differ. 30(4):897–905. doi: 10.1038/s41418-023-01123-2.
  • Pfister NT, Prives C. 2017. Transcriptional regulation by wild-type and cancer-related mutant forms of p53. Cold Spring Harb Perspect Med. 7(2):a026054. doi: 10.1101/cshperspect.a026054.
  • Robles AI, Bemmels NA, Foraker AB, Harris CC. 2001. APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res. 61(18):6660–6664.
  • Rouault JP, Falette N, Guéhenneux F, Guillot C, Rimokh R, Wang Q, Berthet C, Moyret-Lalle C, Savatier P, Pain B, et al. 1996. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet. 14(4):482–486. doi: 10.1038/ng1296-482.
  • Rubin SM, Sage J, Skotheim JM. 2020. Integrating old and new paradigms of G1/S control. Mol Cell. 80(2):183–192. doi: 10.1016/j.molcel.2020.08.020.
  • Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS. 2002. BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol. 4(11):842–849. doi: 10.1038/ncb866.
  • Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR. 2000. p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem. 275(10):7337–7342. doi: 10.1074/jbc.275.10.7337.
  • Schuler M, Maurer U, Goldstein JC, Breitenbücher F, Hoffarth S, Waterhouse NJ, Green DR. 2003. p53 triggers apoptosis in oncogene-expressing fibroblasts by the induction of Noxa and mitochondrial Bax translocation. Cell Death Differ. 10(4):451–460. doi: 10.1038/sj.cdd.4401180.
  • Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A, Morishita Y, Akira S, Taniguchi T, Tanaka N, et al. 2003. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev. 17(18):2233–2238. doi: 10.1101/gad.1103603.
  • Stadler SC, Vincent CT, Fedorov VD, Patsialou A, Cherrington BD, Wakshlag JJ, Mohanan S, Zee BM, Zhang X, Garcia BA, et al. 2013. Dysregulation of PAD4-mediated citrullination of nuclear GSK3β activates TGF-β signaling and induces epithelial-to-mesenchymal transition in breast cancer cells. Proc Natl Acad Sci USA. 110(29):11851–11856. doi: 10.1073/pnas.1308362110.
  • Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW. 2001. Regulation of PTEN transcription by p53. Mol Cell. 8(2):317–325. doi: 10.1016/s1097-2765(01)00323-9.
  • Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. 2018. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 25(1):133–143. doi: 10.1038/cdd.2017.174.
  • Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, Nagasaki M, Nakayama-Hamada M, Kawaida R, Ono M, et al. 2003. Functional haplotypes of PADI4, encoding ­citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet. 34(4):395–402. doi: 10.1038/ng1206.
  • Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, et al. 2010. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA. 107(16):7461–7466. doi: 10.1073/pnas.1002459107.
  • Suzuki S, Venkatesh D, Kanda H, Nakayama A, Hosokawa H, Lee E, Miki T, Stockwell BR, Yokote K, Tanaka T, et al. 2022. GLS2 is a tumor suppressor and a regulator of ferroptosis in hepatocellular carcinoma. Cancer Res. 82(18):3209–3222. doi: 10.1158/0008-5472.CAN-21-3914.
  • Tanikawa C, Espinosa M, Suzuki A, Masuda K, Yamamoto K, Tsuchiya E, Ueda K, Daigo Y, Nakamura Y, Matsuda K, et al. 2012. Regulation of histone modification and chromatin structure by the p53-PADI4 pathway. Nat Commun. 3(1):676. doi: 10.1038/ncomms1676.
  • Tanikawa C, Ueda K, Nakagawa H, Yoshida N, Nakamura Y, Matsuda K. 2009. Regulation of protein citrullination through p53/PADI4 network in DNA damage response. Cancer Res. 69(22):8761–8769. doi: 10.1158/0008-5472.CAN-09-2280.
  • Tanikawa C, Zhang Y-Z, Yamamoto R, Tsuda Y, Tanaka M, Funauchi Y, Mori J, Imoto S, Yamaguchi R, Nakamura Y, et al. 2017. The transcriptional landscape of p53 signalling pathway. EBioMedicine. 20:109–119. doi: 10.1016/j.ebiom.2017.05.017.
  • Tripathi V, Kaur E, Kharat SS, Hussain M, Damodaran AP, Kulshrestha S, Sengupta S. 2019. Abrogation of FBW7α-dependent p53 degradation enhances p53’s function as a tumor suppressor. J Biol Chem. 294(36):13224–13232. doi: 10.1074/jbc.AC119.008483.
  • Valente LJ, Gray DHD, Michalak EM, Pinon-Hofbauer J, Egle A, Scott CL, Janic A, Strasser A. 2013. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep. 3(5):1339–1345. doi: 10.1016/j.celrep.2013.04.012.
  • Varmeh-Ziaie S, Okan I, Wang Y, Magnusson KP, Warthoe P, Strauss M, Wiman KG. 1997. Wig-1, a new p53-induced gene encoding a zinc finger protein. Oncogene. 15(22):2699–2704. doi: 10.1038/sj.onc.1201454.
  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et al. 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303(5659):844–848. doi: 10.1126/science.1092472.
  • Vousden KH, Lu X. 2002. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2(8):594–604. doi: 10.1038/nrc864.
  • Wahid M, Pratoomthai B, Egbuniwe IU, Evans HR, Babaei-Jadidi R, Amartey JO, Erdelyi V, Yacqub-Usman K, Jackson AM, Morris JC, et al. 2023. Targeting alternative splicing as a new cancer immunotherapy-phosphorylation of serine arginine-rich splicing factor (SRSF1) by SR protein kinase 1 (SRPK1) regulates alternative splicing of PD1 to generate a soluble antagonistic isoform that prevents T cell exhaustion. Cancer Immunol Immunother. 72(12):4001–4014. doi: 10.1007/s00262-023-03534-z.
  • Walker KK, Levine AJ. 1996. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA. 93(26):15335–15340. doi: 10.1073/pnas.93.26.15335.
  • Weber J, de la Rosa J, Grove CS, Schick M, Rad L, Baranov O, Strong A, Pfaus A, Friedrich MJ, Engleitner T, et al. 2019. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nat Commun. 10(1):1415. doi: 10.1038/s41467-019-09180-3.
  • Wu GS, Burns TF, McDonald ER, Meng RD, Kao G, Muschel R, Yen T, el-Deiry WS. 1999. Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest. Oncogene. 18(47):6411–6418. doi: 10.1038/sj.onc.1203025.
  • Yeh CH, Bellon M, Nicot C. 2018. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer. 17(1):115. doi: 10.1186/s12943-018-0857-2.