678
Views
143
CrossRef citations to date
0
Altmetric
Research Article

Nucleolin: A Multifunctional Major Nucleolar Phosphoprotein

&
Pages 407-436 | Published online: 29 Sep 2008

References

  • Adam, S. A., Nakagawa, T., Swanson, M. S., Woodruff, T. K., and Dreyfuss, G. 1986. mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol. Cell Biol. 6: 2932—2943.
  • Amrein, H., Gorman, M., and Nothiger, R. 1988. The sex-determining gene tra-2 of Drosophila encodes a putative RNA-binding protein. Cell 55: 1025—1035.
  • Applegren, N. B., Sekowski, J. W., Hickey, R. J., Tuteja, N., Wilson, S. H., Vitto, L., Syvaoja, J., and Malkas, L. H. 1998. J. Cell. Biochem. (In press).
  • Azum-Gelade, M. C., Noaillac-Depeyre, J., Caizergues-Ferrer, M., and Gas, N. 1994. Cell cycle redistribution of U3 snRNA and fibrillarin. Presence in the cytoplasmic nucleo- lus remnant and in the prenucleolar bodies at telophase. J. Cell. Sci. 107: 463—475.
  • Bandziulis, R. J., Swanson, M. S., and Dreyfuss, G. 1989. RNA-binding proteins as developmental regulators. Genes Dev. 3: 431—437.
  • Belenguer, P., Caizergues-Ferrer, M., Labbe, J.-C., Doree, M., and Amalric, F. 1990. Mitosis- specific phosphorylation of nucleolin by p34cdc2 protein kinases. Mol. Cell. Biol. 10: 3607—3618.
  • Beltrame, M. and Tollervey, D. 1992. Identification and functional analysis of two U3 binding sites on yeast pre-ribosomal RNA. EMBO J. 11: 1531—1542.
  • Bharti, A. K., Olson, M. O. J., Kufe, D. W., and Rubin, E. H. 1996. Identification of nucleolin binding site in human topoisomerase I. J. Biol. Chem. 271: 1993—1997.
  • Biggiogera, M., Kaufman, S. H., Shaper, J. H., Gas, N., Amalric, F., and Fakan, S. 1991. Distribution of nucleolar proteins B23 and nucleolin during mouse spermatogenesis. Chromosoma 100: 162—172.
  • Bogre, L., Jonak, C., Mink, M., Meskiene, I., Trass, J., Ha, D. T. C., Swoboda, I., Plank, C., Wagner, E., Heberle-Bors, E., and Hirt, H. 1996. Developmental and cell-cycle regulation of Alfalfa nucMs1, a plant homolog of the yeast Nsr1 and mammalian nucleolin. Plant Cell 8: 417—428.
  • Bonnet, H., Filhol, O., Truchet, I., Brethenou, P., Cochet, C., Amalric, F., and Bouche, G. 1996. Fibrobast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK-2 activity toward nucleolin. J. Biol. Chem. 271: 24781—24787.
  • Borer, R. A., Lehner, C. F., Eppenberger, H. M., and Nigg, E. A. 1989. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56: 379—390.
  • Borggrefe, T., Wabl, M., Akhmedov, A. T., and Jessberger, R. 1998. A B-cell-specific DNA recombination complex. J. Biol. Chem. 273: 17025—17035.
  • Bouche, G., Baldin, V., Belenguer, P., Prats, H., and Amalric, F. 1994. Activation of rDNA transcription by FGF-2: Key role of protein kinase CK II. Cell Mol. Biol. Res. 40: 547554.
  • Bouche, G., Caizergues-Ferrer, M., Bugler, B., and Amalric, F. 1984. Interrelation between the maturation of a 100 kDa nucleolar protein and pre rRNA synthesis in CHO cells. Nucleic Acids Res. 12: 3025—3035.
  • Bouche, G., Gas, N., Prats, H., Baldin, V., Tauber, J-P., Teissie, J., and Amalric, F. 1987. Basic fibroblast growth factor enters the nucleolus and stimulates the transcription of ribosomal genes in ABAE cells undergoing GO-G1 transition. Proc. Natl. Acad. Sci. USA. 84: 67706774.
  • Bourbon, H. M., Bugler, B., Caizergues-Ferrer, M., Amalric, F., and Zalta, J. P. 1983. Maturation of 100 kDa protein associated with preribosomes in CHO cells. Mol. Biol. Rep. 9: 39—47.
  • Bourbon, H. M., Lapeyre, B., and Amalric, F. 1988. Structure of mouse nucleolin gene. J. Mol. Biol. 200: 627—638.
  • Bouvet, P., Diaz, J. J., Kindbeiter, K., Madjar, J. J., and Amalric, F. 1998. Nucleolin interacts with several ribosomal proteins through its RGG domain. J. Biol. Chem. 273: 19025—19029.
  • Bouvet, P., Dimitrov, S., and Wolffe, A. P. 1994. Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev. 8: 1147—1159.
  • Bouvet, P., Jain, C., Belasco, J. G., Amalric, F., and Erard, M. 1997. RNA recognition by the joint action of two nucleolin RNA-binding domains: genetic analysis and structural modeling. EMBO J16: 5235—5246.
  • Brown, D. D. and Gordan, J. B. 1964. Absence of rRNA synthesis in the anucleolate mutant of X. laevis. Proc. Natl. Acad. Sci. USA 51: 139146.
  • Bugler, B., Bourbon, H. M., Lapeyre, B., Wallace, M. O., Chang, J. H., Amalric, F., and Olson, M. O. J. 1987. RNA binding fragments from nucleolin contain the ribonucleoprotein consensus sequence. J. Biol. Chem. 262: 1092210925.
  • Bugler, B., Caizergues-Ferrer, M., Bouche, G., Bourbon, H., and Amalric, F. 1982. Detection and localization of a class of proteins immu- nologically related to a 100 kD nucleolar protein. Eur. J. Biochem. 128: 475—480.
  • Caizergues-Ferrer, M., Belenguer, P., Lapeyre, B., Amalric, F., and Wallace, M. O. 1987. Phos- phorylation of nucleolin by a nucleolar type NII protein kinase. Biochemistry 26: 78767883.
  • Caizergues-Ferrer, M., Dousseau, F., Gas, N., Bouche, G., Stevens, B., and Amalric, F 1984. Induction of new proteins in the nuclear matrix of CHO cells by a heat shock: detection of a specific set in the nucleolar matrix. Biochem. Biophys. Res. Commun. 118: 444—450.
  • Caizergues-Ferrer, M., Mariottini, P., Curie, C., Lapeyre, B., Gas, N., Amalric, F., and Amaldi, F. 1989. Nucleolin from Xenopus laevis: cDNA cloning and expression during development. Genes Dev. 3: 324—333.
  • Chen, C.-M., Chiang, S.-Y., and Yeh, N.-H. 1991. Increased stability of nucleolin in proliferating cells by inhibition of its self-cleaving activity. J. Biol. Chem. 266: 7754—7758.
  • Creancier, L., Prats, H., Zanibellato, C., Amalric, F., and Bugler, B. 1993. Determination of the functional domains involved in nucleolar targeting of nucleolin. Mol. Biol. Cell 4: 12391250.
  • Csermely, P., Schneider, T., Cheatham, B., Olson, M. O., and Kohn, C. R. 1993. Insulin induces the phosphorylation of nucleolin: a possible mechanism of insulin-induced RNA efflux from nuclei. J. Biol. Chem. 268: 9747—9752.
  • Dalbadie-McFarland, G., and Abelson, J. 1990. PRP5: A helicase-like protein required for mRNA splicing in yeast. Proc. Natl. Acad. Sci. USA 87: 4236—4240.
  • deCarcer, G., Cerdido, A., and Medina, F. J. 1997. NopA64, a novel nucleolar phosphoprotein from proliferating onion cells, sharing immu- nological determinants with mammalian nucleolin. Planta 201: 487—495.
  • Deng, J. S., Ballou, B., and Hof Meister, J. K. 1996. Internalization of anti-nucleolin antibody into viable Hep-2 cells. Mol. Biol. Rep. 23: 191195.
  • Derenzini, M., Hernandez-Verdun, D., Pession, A., and Novello, F. 1983. Structural organization of chromatin in nucleolar organizer regions of nucleoli with a nucleolonema-like and compact ribonucleoprotein distribution. J. Ultra- struct. Res. 84: 161—172.
  • Derenzini, M., Sirri, V., Trere, D., and Ochs, R. L. 1995. The quantity of nucleolar proteins nucleolin and protein B23 is related to cell doubling time in human cancer cells. Lab. Invest. 73: 497—502.
  • Derenzini, M. and Trere, D. 1994. Ag NOR proteins as a parameter of the rapidity of cell proliferation. Zentralbl Pathol. 140: 7—10.
  • Derenzini, M., Trere, D., Pession, A., Montanaro, L., Sirri, V., and Ochs, R. L. 1998. Nucleolar function and size in cancer cells. Am. J. Pathol. 152: 1291—1297.
  • Didier, D. K., and Klee, H. J. 1992. Identification of an Arabidopsis DNA-binding protein with homology to nucleolin. Plant Mol. Biol. 18: 977—979.
  • Dreyfuss, G., Matunis, M. J., Pinol-Roma, S., and Burd, C. G. 1993. hnRNP proteins and the biogenesis of mRNA. Ann. Rev. Biochem. 62: 289—321.
  • Eichler, D. C., and Craig, N. 1994. Processing of eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 49: 197—237.
  • Egyhazi, E., Pigon, A., Chang, J.-H, Ghaffari, S. H., Dreesen, T. D., Wellman, S. E., Case, S. T., and Olson, M. O. J. 1988. Effects of anti-C23 (nucleolin) antibody on transcription of ribo- somal DNA in Chironomus salivary gland cells. Exp. Cell Res. 178: 264—672.
  • Enright, C. A., Maxwell, E. S., and Sollner-Webb, B. 1996. 5'ETS rRNA processing facilitated by four small RNAs: U14,E3, U17 and U3. RNA 2: 1094—1099.
  • Erard, M., Belenguer, P., Caizergues-Ferrer, M., Pantaloni, A., and Amalric, F. 1988. A major nucleolar protein, nucleolin, induces chroma- tin decondensation by binding to histone H1. Eur. J. Biochem. 175: 525—530.
  • Escande-Geraud, M. L., Azum, M. C., Tichadou, J. L., and Gas, N. 1985. Correlation between rDNA transcription and distribution of a 100 kDa nucleolar protein in CHO cell. Exp. Cell Res. 161: 353—363.
  • Fang, S. H., and Yeh, N. H. 1993. The self-cleaving activity of nucleolin determines its molecular dynamics in relation to cell proliferation. Exp. Cell Res. 208: 48—53.
  • Ghisolfi-Nieto, L., Joseph, G., Puvion-Dutilleul, F., Amalric, F., and Bouvet, P. 1996. Nucleolin is a sequence-specific RNA-binding protein: Characterization of targets on pre-ribosomal RNA. J. Mol. Biol. 260: 34—53.
  • Ghisolfi, L., Joseph, G., Amalric, F., and Erard, M. 1992a. The Glycine-rich domain of nucleolin has an unusual supersecondary structure responsible for its RNA-helix-destabilization properties. J. Biol. Chem. 267: 2955—2959.
  • Ghisolfi, L., Kharrat, A., Joseph, G., Amalric, F., and Erard, M. 1992b. Concerted activities of the RNA recognition and the Glycine-rich C- terminal domains of nucleolin are required for efficient complex formation with pre-riboso- mal RNA. Eur. J. Biochem. 209: 541—548.
  • Ginisty, H., Amalric, F., and Bouvet, P. 1998 Nucleolin functions in the first step of riboso- mal RNA processing. EMBO J. 17: 14761486.
  • Girard, J.-P., Lehtonen, H., Caizergues-Ferrer, M., Amalric, F., Tollervey, D., and Lapeyre, B. 1992. GAR1 is an essential small nucleolar RNP protein required for pre-ribosomal RNA processing in yeast. EMBO J. 11: 673682.
  • Goldstein, L. and Ko, C. 1981. Distribution of proteins between nucleus and cytoplasm of Amoebae proteus. J. Cell Biol. 88: 516—525.
  • Gorlich, D. and Mattaj, I. W. 1996. Nucleocyto- plasmic transport. Science 271: 1513—1518.
  • Gotzman, J., Eger, A., Meissner, M., Grimm, R., Gerner, C., Sauermann, G., and Foisner, R. 1997. Two-dimensional electrophoresis reveals a nuclear matrix-associated nucleolin complex of basic isoelectric point. Electrophoresis 18: 2645—2653.
  • Goessens, G. 1984. Nucleolar structure. Int. Rev. Cytol. 87: 107—158.
  • Gulli, M.P., Faubladier, M., Sicard, H., and Caizergues-Ferrer, M. 1997. Mitosis-specific phosphorylation of gar2, a fission yeast nucle- olar protein structurally related to nucleolin. Chromosoma 105: 532—541.
  • Gulli, M.P., Girard, J. P., Zabetakis, D., Lapeyre, B., Melese, T., and Caizergues-Ferrer, M. 1995. gar2 is a nucleolar protein from Schizosac- charomyces pombe required for 18S rRNA and 40S ribosomal subunit accumulation. Nucleic Acids Res. 23: 1912—1918.
  • Hadjiolov, A. A. 1985. The nucleolus and ribo- some biogenesis. In Cell Biology Monographs, vol. 12, (New York, Springer-Verlag) pp. 1268.
  • Hanakahi, L. A., Dempsey, L. A., Li, M-J., and Maizels, N. 1997. Nucleolin is one component of the B-cell specific transcription factor and switch region binding protein, LR1. Proc. Natl. Acad. Sci. USA 94: 3605—3610.
  • Heine, M. A., Rankin, M. L., and Dimario, P. J. 1993. The Gly/Arg-rich (GAR) domain of Xenopus nucleolin facilitates in vitro nucleic acid binding and in vivo nucleolar localization. Mol. Biol. Cell 11: 1189—204.
  • Heitz, E. 1931. Nucleolin und chromosomen in der gattung. Vicia Planta 15: 495—505.
  • Herrera, A. and Olson, M. O. J. 1986. Association of protein C23 with rapidly labeled nucleolar RNA. Biochemistry 25: 6258—6264.
  • Hoffmann, J. and Schwach, G. 1989. Co-ordinated changes in the cyclic AMP signaling system and the phosphorylation of two nuclear proteins of Mr 130,000 and 110,000 during pro- liferative stimulation of rat parotid gland by isoprenaline. Possible identity of the two proteins of pp135 and nucleolin. Biochem J. 263: 785—793.
  • Hozak, P., Schofer, C., Sylvester, J., and Wachtler, F. 1993. A study of nucleolar DNA-isolation of DNA from fibrillar components and ultra- structural-localization of different DNA probes. J. Cell Sci. 104: 1199—1205.
  • Issinger, O. G., Martin, T., Richter, W. W. Olson, M., and Fujiki, H. 1988. Hyperphosphorylation of N-60, a protein structurally and immuno- logically related to nucleolin after tumour-promoter treatment. EMBO J. 7: 1621—1626.
  • Jin, Y. J. and Burakoff, S. J. 1993. The 25-kDa FK506-binding protein is localized in the nucleus and associates with casein kinase II and nucleolin. Proc. Natl. Acad. Sci. USA. 90: 7769—7773.
  • Jordan, E. G. 1984. Nucleolar nomenclature. J. Cell Sci. 67: 217—220.
  • Jordan, E. G. 1987. At the heart of the nucleolus. Nature 329: 489—490.
  • Jordan, E. G. 1991. Interpreting nucleolar structure; where are the transcribing genes? J. Cell Sci. 98: 437—442.
  • Jordan, E. G. and McGovern, J. H. 1981. The quantitative relationship of the fibrillar centres and other nucleolar components to changes in growth conditions, serum deprivation and low doses of actinomycin D in cultured dip- loid human fibroblasts (Strain MRC-5). J. Cell Sci. 52: 373—389.
  • Kass, S., Tye, K., Steitz, J. A., and Sollner-Webb, B. 1990. The U3 small nucleolar ribonucle- oprotein functions in the first step of preribosomal RNA processing. Cell 60: 897908.
  • Kharrat, A., Derancourt, J., Doree, M., Amalric, F., and Erard, M. 1991. Synergistic effect of histone H1 and nucleolin on chromatic condensation in mitosis: role of phosphorylated heterodimer. Biochemistry 30: 10329—10336.
  • Kibbey, M. C., Johnson, B., Petryshyn, R., Tucker, M., and Kleinman, H. K. 1995. A 110-kd nuclear shuttling protein, nucleolin, binds to the neurite-promoting IKVAV site of laminin 1. J. Neurosci. Res. 42: 314—322.
  • Koepp, D. M. and Silver, P. A. 1996. A GTPase controlling nuclear trafficking: running the right way or walking randomly? Cell 87: 1—4.
  • Kondo, K. and Inouye, M. 1992. Yeast NSRI protein that has structural similarity to mammalian nucleolin is involved in pre-rRNA processing. J. Biol. Chem. 267: 1625216258.
  • Konishi, T., Karasaki, Y., Nomoto, M., Ohmori, H., Shibata K., Abe, T., Shimizu, K., Itoh, H., and Higashi, K. 1995. Induction of heat shock protein 70 and nucleolin and their intracellular distribution during early stage of liver regeneration. J. Biochem. (Tokyo) 117: 1170—1177.
  • Krausslich H.-G. and Wimmer, E. 1988. Viral proteinases. Ann. Rev. Biochem. 57: 701—754.
  • Lafontaine, D. and Tollervey, D. 1995. Trans-acting factors in yeast pre-rRNA and pre-snoRNA processing. Biochem. Cell. Biol. 73: 803—812.
  • Lapeyre, B., Amalric, F., Ghaffari, S. H., Rao, S. V. V., Dumbar, T. S., and Olson, M. O. J. 1986. Protein and cDNA sequence of Glycine-rich, dimethlarginine containing region located near the carboxy-terminal end of nucleolin (C23 and 100 kDa). J. Biol. Chem. 261: 9167—9173.
  • Lapeyre, B., Bourbon, H., and Amalric, F. 1987. Nucleolin, the major nucleolar protein of growing eukaryotic cells: An unusual protein structure revealed by the nucleotide sequence. Proc. Natl. Acad. Sci. USA, 84: 1472—1476.
  • Lavoie, C. A., Harvey, M., and Lasko, P. F. 1993. Dbp 45A encodes a Drosophila DEAD-box protein with similarity to a putative yeast helicase involved in ribosome assembly. Biochim. Biophys. Acta. 1216: 140—144.
  • Lee, C.-H., Chang, S. C., Chen, C.-J., and Chang, M.-F 1998. The nucleolin binding activity of hepatitis delta antigen is associated with nucleolus targeting. J. Biol. Chem. 273: 76507656.
  • Lee, W.-C., Xue, Z., and Melese, T. 1991. The NSR1 gene encodes a protein that specifically binds nuclear localization sequences and has two RNA recognition motifs. J. Cell. Biol. 113: 1—12.
  • Lee, W.-C., Zabetakis, D., and Melese, T. 1992. NSRI is required for pre-ribosomal RNA processing and for the proper maintenance of steady state level of ribosomal subunits. Mol. Cell. Biol. 12:. 3865—3871.
  • Leger-Silvestre, I., Guelli, M. P., Noaillac-Depeyre, J., Faubladier, M., Sicar, H., Caizergues-Ferrer, M., and Gas, N. 1997. Ultrastructural changes in the Schizosaccharomyces pombe nucleolus following the disruption of the gar2+ gene, which encodes a nucleolar protein structurally related to nucleolin. Chromosoma 105: 542552.
  • Li, D., Dobrowolska, G., and Krebs, E. G. 1996. The physical association of casein kinase 2 with nucleolin. J. Biol. Chem. 271: 1566215668.
  • Li, Y., and Sugiura, M. 1990. Three distinct ribo- nucleoproteins from tobacco chloroplasts; each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs. EMBO J. 9: 3059—3066.
  • Li, Y.-P., Busch, R. K., Valdez, B. C., and Busch, H. 1996. C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur. J. Biochem. 237: 153—158.
  • Lischwe, M. A., Cook, R. G., Ahn, Y. S., Yeoman, L. C., and Busch, H. 1985. Clustering of glycin and NG,N G-dimethyl arginine in nucleolar protein C23. Biochemistry 24: 6025—6028.
  • Maridor, G. and Nigg, E. V. 1990. cDNA sequence of chicken nucleolin/C23 and NO38/B23, two major nucleolar proteins. Nucleic Acids Res. 18: 1286—1290.
  • Martin, M., Garcia-Fernandez, L. F., Moreno- Diazdela-Espina, S., Noaillac-Depeyre, J., Gas, N., and Medina, F. J. 1992. Identification and localization of a nucleolin in onion nucleoli. Exp. Cell Res. 199: 74—84.
  • Matson, S. W., Bean, D., and George, K. A. 1994. DNA helicases: enzymes with essential roles in all aspects of DNA metabolism. BioEssays 16: 13—21.
  • Maxwell, E. S. and Fournier, M. J. 1995. The small nucleolar RNAs. Annu. Rev. Biochem. 35: 897934.
  • McGrath, K. E., Smothers, J. F., Dadd, C. A., Madireddi, M. T., Gorovski, M. A., and Allis, C. D. 1997. An abundant nucleolar phosphop- rotein is associated with ribosomal DNA in Tetrahymena. Mol. Biol. Cell 8: 97—108.
  • McClintock, B. 1934. The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z. Zellforsch. Mikrosk. 21: 294—398.
  • Medina, F. J., Cerdido, A., and Fernandez-Gomez, M. E. 1995. Components of the nucleolar processing complex (pre-rRNA, fibrillarin and nucleolin) colocalize during mitosis and are incorporated to daughter cell nucleoli. Exp. Cell. Res. 221: 111—125.
  • Merkle, T. and Nagy, F. 1997. Nuclear import of proteins: putative important factors and development of in vitro import systems in higher plants. Trend Plant Sci. 2: 458—464.
  • Minota, S., Jarjour, W. N., Roubeig, R. A. S., Mimura, T., and Winfield, J. B. 1990. Reactivity of autoantibodies and DNA/Anti-DNA complexes with a novel 110-kilodalton phos- phoprotein in sytemic lupus erythematosus and other diseases. J. Immunol. 144: 1263—1269.
  • Miranda, G. A., Chokler, I., and Aguilera, R. J. 1995. The murine nucleolin protein is an in- ducible DNA and ATP binding protein which is readily detected in nuclear extracts of li- popolysaccharide-treated splenocytes. Exp. Cell. Res. 217: 294—308.
  • Montgomery, T. H. 1898. Comparative cytological studies with especial regard to the morphology of the nucleolus. J. Morphol. 15: 265565.
  • Najbauer, J., Johnson, B. A., Young, A. L., and Aswad, D. W. 1993. Peptides with sequences similar to Glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J. Biol. Chem. 268: 10501—10519.
  • Naranda, T., Strong, W. B., Menaya, J., Fabbri, B. J., and Hershey, J. W. B. 1994. Two structural domains of initiation factor eIF-4B are involved in binding to RNA. J. Biol. Chem. 269: 14465—14472.
  • Nicoloso, M., Caizergues-Ferrer, M., Michot, B., Azum, M. C., and Bachellerie, J. P. 1994. U20, a novel small nucleolar RNA, is encoded in an intron of the nucleolin gene in mammals. Mol. Cell. Biol. 14: 5766—5776.
  • Nigg, E. A. 1988. Nuclear function and organization: the potential of immunochemical approaches. Int. Rev. Cytol. 110: 27—92.
  • Nigg, E. A. 1997. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386: 779—787.
  • Ohkoudo, M., Sawa, H., Shiina, Y., Sato, H., Kamata, K., Iijima, J., Yamamoto, H., Fujii, M., and Saito, I. 1996. Morphometrical analysis of nucleolin immunohistochemistry in meningiomas. Acta Neuropathol. (Berl.) 92: 1—7.
  • Ohmori, H., Tadamasa, M., Furutani, A., Higashi, K., Hirano, H., Gotoh, H., Kuroino, A., Masui, A., Nakamura, T., and Amalric, F. 1990. Simultaneous activation of heat shock protein (Hsp 70) and nucleolin genes during in vivo and in vitro prereplicative stages of rat hepa- tocytes. Exp. Cell Res. 189: 227—232.
  • Olson, M. O. J. 1990. The role of proteins in nucle- olar structure and function, in: The eukaryotic nucleus: molecular biochemistry and macro- molecule assemblies. (Straus, P. R. and Wilson, S. H., Eds.). pp. 519—559. Telford Press, Coldwell.
  • Olson, M. O. J., Orrick, L. R., Jones, C., and Busch, H. 1974. Phosphorylation of acid soluble nucleolar proteins of Novikoff hepatoma ascites cells in vivo. J. Biol. Chem. 249: 2823—2827.
  • Olson, M. O. J., Rivers, Z. M., Thompson, B. A., Kao, W.-Y., and Case, S. T. 1983. Interaction of nucleolar phosphoprotein C23 with cloned segments of rat ribosomal deoxyribonucleic acid. Biochemistry 22: 3345—3351.
  • Olson, M. O. J. and Thompson, B. A. 1983. Distribution of proteins among chromatin components of nucleoli. Biochemistry 22: 31873193.
  • Orrick, L. R., Olson, M. O. J., and Busch, H. 1973. Comparison of nucleolar proteins of normal rat liver and Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel elec- trophoresis. Proc. Natl. Acad. Sci. USA 84: 1472—1476.
  • Pause, A. and Sonenberg, N. 1992. Mutational analysis of a DEAD box RNA helicase: the mammalian translation factor eIF-4A. EMBO J. 11: 2643—2654.
  • Pederson, T. 1998. The plurifunctional nucleolus. Nucleic Acids Res. 26: 3871—3876.
  • Perry, R. P. 1960. On the nucleolar and nuclear dependence of cytoplasmic RNA synthesis in HeLa cells. Exp. Cell Res. 20: 216—220.
  • Perry, R. P. 1962. The cellular sites of synthesis of ribosomal and 4S RNA. Proc. Natl. Acad. Sci. USA 48: 2179—2186.
  • Peter, M., Nakagawa, J., Doree, M., Labbe, J. C., and Nigg, E. A. 1990. Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell 60: 791—801.
  • Pfeifle, J. and Anderer, F. 1983. Localization of phosphoprotein pp 105 in cell lines of various species. Biochem. Biophys. Res. Commun. 116: 106—112.
  • Query, C. C., Bentley, R. C., and Keene, J. D. 1989. A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 SnRNP protein. Cell 57: 89—101.
  • Sapp, M., Knippers, R., and Richter, Z. 1986. DNA binding properties of a 110 kDa nucleolar protein. Nucleic Acids Res. 14: 6803—6820.
  • Scheer, U. and Rose, K. M. 1984. Localization of RNA polymerase in interphase cells and mi- totic chromosomes by light and electron-microscopic immunocytochemistry. Proc. Natl. Acad. Sci. USA 81: 1431—1435.
  • Scheer, U. and Weisenberger, D. 1994. The nucleolus. Curr. Opin. Cell Biol. 6: 354—359.
  • Schmidt-Zachmann, M. S. and Nigg, E. A. 1993. Protein localization to the nucleolus: a search for targeting domains in nucleolin. J. Cell Sci. 105: 799—806.
  • Schneider, H. R., Recihert, G. U., and Issinger, O. G. 1986. Enhanced casein kinase II activity during mouse embryogenesis. Eur. J. Biochem. 161: 733—738.
  • Schwab, M. S. and Dreyer, C. 1997. Protein phos- phorylation sites regulate the function of the bipartite NLS of nucleolin. Eur. J. Cell Biol. 73: 287—297.
  • Schwab, M. S., Gossweiler, U., and Dreyer, C. 1998. Subcellular distribution of distinct nucleolin subfractions recognized by two monoclonal antibodies. Exp. Cell. Res. 239: 226—234.
  • Serin, G., Joseph, G., Faucher, C., Ghisolfi, L., Bouche, G., Amalric, F., and Bouvet, P. 1996. Localization of nucleolin binding sites on human and mouse pre-ribosomal RNA. Biochimie 78: 530—538.
  • Serin, G., Joseph, G., Ghisolfi, L., Bauzan, M., Erard, M., Amalric, F., and Bouvet, P. 1997. Two RNA-binding domains determine the RNA-binding specificity of nucleolin. J. Biol. Chem. 272: 13109—13116.
  • Shaw, P. J. 1996. Nuclear organization in plants. Essays Biochem. 31: 77—89.
  • Shaw, P. J., and Jordan, E. G. 1995. The nucleolus. Annu. Rev. Cell Div. Biol. 11: 93—121.
  • Sicard, H., Faubladier, M., Noaillac-Depeyre, J., Leger-Silvestre, I., Gas, N., and Caizergues- Ferrer, M. 1998. The role of the Schizosac- charomyces pombe gar2 protein in nucleolar structure and function depends on the concerted action of its highly charged N terminus and its RNA-binding domains. Mol. Biol. Cell 9: 2011—2023.
  • Sirri, V., Roussel, P., Gendron, M. C., and Hernandez-Verdun, D. 1997. Amount of the two major Ag-NOR proteins, nucleolin, and B23 is cell-cycle dependent. Cytometry 28: 147—156.
  • Sirri, V., Roussel, P., Trere, D., Derenzini, M., and Hernandez-Verdun, D. 1995. Amount variability of total and individual Ag-NOR proteins in cells stimulated to proliferate. J. Histochem. Cytochem. 43: 887—893.
  • Sollner-Webb, B., Tycowski, K. T., and Steitz, J. A. 1995. Ribosomal RNA processing in eu- karyotes. In Zimmerman, R. A. and Dahlberg, A. E. (Eds.). RibosomalRNA. CRC Press, Boca Raton, FL, pp. 469—490.
  • Sommerville, J. 1986. Nucleolar structure and ri- bosome biogenesis. TIBS 11: 438—442.
  • Srivastava, M., Fleming, P. J., Pollard, H. B., and Burns, A. L. 1989. Cloning and sequencing of the human nucleolin cDNA. FEBS Lett. 250: 99—105.
  • Sun, C. and Woolford, J. L., Jr. 1994. The yeast NOP4 gene-product is an essential nucleolar protein required for pre-ribosomal-RNA processing and accumulation of 60S ribosomal subunits. EMBO J. 13: 3127—3135.
  • Suzuki, N., Saito, T., and Hosoya, T. 1987. In vivo effects of dexamethasone and cycloheximide on the phosphorylation of 110-kDa proteins and protein kinase activities of rat liver nucleoli. J. Biol. Chem. 262: 4696—4700.
  • Tawfic, S., Goueli, S. A., Olson, M. O., and Ahmed, K. 1994. Androgenic regulation of phospho- rylation and stability of nucleolar protein nucleolin in rat ventral prostate. Prostate 24: 101—106.
  • Thien, W. and Schoffer, P. 1982. Control of phy- tochrome of chtyoplasmic precursor rRNA synthesis in the cotyledons of mustard seedlings. Plant Physiol. 69: 1156—1160.
  • Thompson, W. F., Wells, A. F., and Shaw, P. J. 1997. Sites of rDNA transcription are widely dispersed through the nucleolus in Pisum sativum and can comprise single genes. Plant J. 12: 571—581.
  • Tollervey, D. and Kiss, T. 1997. Function and synthesis of small nucleolar RNAs. Cur. Opin. Cell Biol. 3: 337—342.
  • Tong, C.-G., Reichler, S., Blumenthal, S., Balk, J., Hsieh, H.-L., and Roux, S. J. 1997. Light regulation of the abundance of mRNA encoding a nucleolin-like protein localized in the nucleoli of pea nuclei. Plant Physiol. 114: 643—652.
  • Trere, D., Gramantieri, L., Siringo, S., Melchiorri, C., Barbara, L., Bolondi, L., and Derenzini, M. 1996. In hepatocellular carcinoma Ag NOR protein expression correlates with tumour mass doubling time. J. Hepatol. 24: 60—65.
  • Tuteja, N. 1997. Unraveling DNA helicases from plant cells. Plant Mol. Biol. 33: 947—952.
  • Tuteja, N., Huang, N. W., Skopac, D., Tuteja, R., Hrvatic, S., Zhang, J., Pongor, S., Joseph, G., Faucher, C., Amalric, F., and Falaschi, A. 1995. Human DNA helicase IV is nucleolin, an RNA helicase modulated by phosphorylation. Gene 160: 143—148.
  • Tuteja, N., Phan, T.-N, Tuteja, R., Ochem, A., and Falaschi, A. 1997. Inhibition of DNA unwinding and ATPase activities of human DNA helicase II by chemotherapeutic agents. Biochem. Biophys. Res. Commun. 236: 636640.
  • Tuteja, N., Rahman, K., Tuteja, R., and Falaschi, A. 1991. DNA helicase IV from HeLa cells. Nucleic Acids Res. 19: 3613—3618.
  • Tuteja, N., Rahman, K., Tuteja, R., and Falaschi, A. 1993. Human DNA helicase V, a novel DNA unwinding enzyme from HeLa cells. Nucleic Acids Res. 21: 2323—2329.
  • Tuteja, N., Rahman, K., Tuteja, R., Ochem, A., Skopac, D., and Falashci, A. 1992. DNA helicase III from HeLa cells; and enzyme that acts preferentially on partially unwound DNA duplexes. Nucleic Acids Res. 20: 5329—5337.
  • Tuteja, N., Tuteja, R., Ochem, A., Taneja, P., Huang, N. W., Simoncsits, A., Susic, S., Rahman, K., Marusic, L., Chen, J., Zhang, J., Wang, S., Pongor, S., and Falaschi, A. 1994. Human DNA helicase II: a novel DNA unwinding enzyme identified as the Ku auto- antigen. EMBO J13: 4991—5001.
  • Tuteja, N., and Tuteja, R. 1996. DNA helicases: the long unwinding road. Nature Genetics 13: 11—12.
  • Valdez, B. C., Henning, D., Busch, R. K., Srivastava, M., and Busch, H. 1995. Immuno- dominant RNA recognition motifs of human nucleolin/C23. Mol. Immunol. 32: 1207—1213.
  • Vandelaer, M., Thiry, M., and Goessens, G. 1993. Ultrastructural distribution of DNA within the ring shaped nucleolus of human resting T lymphocytes. Exp. Cell Res. 205: 430—432.
  • Venema, J., Bousquet-Antonelli, C., Gelugne, J. P., Caizergues-Ferrer, M., and Tollervey, D. 1997. Rok1p is a putative RNA helicase required for rRNA processing. Mol. Cell. Biol. 17: 33983407.
  • Venema J. and Tollervey, D. 1995. Processing of pre-ribosomal RNA in Saccaromyces cerevisiae. Yeast 11: 1629—1650.
  • Wachtler, F., Hartung, M., Devictor, M., Wiegant, J., Stahl, A., and Schwarzacher, H. G. 1989. Ribosomal DNA is located and transcribed in the dense fibrillar components of human sertoli- cell nucleoli. Exp. Cell Res. 184: 61—71.
  • Warrener, P. and Petryshyn, R. 1991. Phosphory- lation and proteolytic degradation of nucleolin from 3T3-F442A cells. Biochem. Biophys. Res. Commun. 180: 716—723.
  • Xue, Z. and Melese, T. 1994. Nucleolar proteins that bind NLSs: A role in nuclear import or ribosome biogenesis. Trends Cell Biol. 4: 414417.
  • Xue, Z., Shan, X. Y., Lapeyre, B., and Melese, T. 1993. The amino terminus of mammalian nucleolin specifically recognizes SV-40 T- antigen nuclear localization sequences. Eur. J. Cell Biol. 62: 13—21.
  • Yang, T.-H., Tsai, W. H., Lee, Y.-M, Lei, H.-Y., Lai, M.-Y, Chen, D.-S., Yeh, N.-H, and Lee, S.-C. 1994. Purification and characterization of nucleolin and its identification as a transcription repressor. Mol. Cell. Biol. 14: 60686074.
  • Yokoyama, Y., Takahashi, Y., Hashimoto, M., Shinohara, A., Lian, Z., and Tamaya, T. 1998. Effects of sex steroids on silver stained proteins of nucleolar organizer regions (Ag-NOR) in the rabbit uterus. Biotech. Histochem. 73: 202—210.
  • Yu, D., Schwartz, M. Z., and Petryshyn, R. 1998. Effect of laminin on the nuclear localization of nucleolin in rat intestinal epithelial IEC-6 cells. Biochem. Biophys. Res. Commun. 247: 186—192.
  • Zhang, W., Wagner, B. J., Ehrenmon, K., Schaefer, A. W., Demaria, C. T., Crater, D., Dehaven, K., Long, L., and Brewer, G. 1993. Purification, characterization and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol. Cell Biol. 13: 7652—7665.
  • Zhou, G., Seiberhener, M. L., and Wooten, M. W. 1997. Nucleolin is a protein kinase C-zeta substrate: Connection between cell surface signaling and nucleus in PC12 cells. J. Biol. Chem. 272: 31130—31137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.