173
Views
1
CrossRef citations to date
0
Altmetric
Articles

Elemental, biochemical and essential oil modulation in developing seedlings of Psoralea corylifolia L. exposed to different presowing gamma irradiation treatment

, , , &
Pages 521-532 | Received 06 Mar 2014, Accepted 22 Feb 2015, Published online: 30 Mar 2015

References

  • P.S. Phirke, A.B. Kudbe and S.P. Umbarkar, The influence of magnetic field on plant growth. Seed Sci. Technol., 24, 375–392 (1996).
  • S. Jan, T. Parween, T.O. Siddiqi and Mahmooduzzafar, Gamma irradiation induced qualitative and quantitative changes in growth and productivity with special reference to enhanced production of psoralen. Plant Growth Regul., 64, 163–171 (2011).
  • S.O. Fapohunda, S.T. Anjorin, E.C. Akueche and B. Harcourt, Multi mycotoxin profile of gamma-radiated sesame seeds from Abuja markets. Nigeria using LC-MS/MS. Nat. Sci., 10, 127–134 (2012).
  • A. Anisimov, V. Vorobev and A. Zuikov, The influence of laser radiation on the velocity of rotational motion of protoplasm in Elodea cells. Laser Phys., 7, 1132–1137 (1997).
  • J. Podleœny, Studies on influence of laser light on seeds, growth, development and yielding of the white lupine (Lupinus albus L.) plants (in Polish). Monografie Rozprawy Naukowe, IUNG, Puawy, 3, 1–59 (2002).
  • R.H. Moussa, Gamma irradiation regulation of nitrate level in rocket (Eruca vesicaria subsp. sativa) plants. J. New. Seed., 8, 91–101 (2006).
  • S. Jan, T. Parween, T.O. Siddiqi and Mahmooduzzafar, Effect of gamma radiation on morphological, biochemical and physiological aspects of plants and plant products. Environ. Rev., 20, 17–39 (2012).
  • H.R. Moussa, Low dose of gamma irradiation enhanced drought tolerance in soybean. Bulg. J. Agric. Sci., 17, 63–72 (2011).
  • A.M.R. Afify, H.S. El-Beltagi, A.A. Aly and A.E. El-Ansary, The impact of γ-irradiation, essential oils and iodine on biochemical components and metabolism of potato tubers during storage. Not. Bot. Horti Agrobo., 40, 129–139 (2012).
  • A.P. Casarett, Effects of radiation on higher plants and plant communities. Ann. NY Acad. Sci., 59, 514 (1968).
  • L.V. Selenia and O.G. Stepanenko, Effect of pre-sowing gamma irradiation on the productivity and active principle content of Matricaria recutita. Rastitel’nye Ressusy, 15, 143–154 (1979).
  • V. Zheljazkov, A. Margine, T. Stovea and K. Shetty, Effect of gamma irradiation on some quantitative characteristics in mint and cornmint. Acta Hort., 426, 381–388 (1996).
  • A.A. Youssef and A.Z. Moussa, Effect of gamma rays on growth and essential oil composition of chamomile (Chamomilla recutita L.). Arab. Univ. J. Agric. Sci., 6, 301–311 (1998).
  • N.S.D. Deaf, Chemical and biological studies on some wild plants. M.Sc. Thesis, Fac. Agric., Zagazig Univ., Zagazig, Egypt (2000).
  • F.A.N. Mahmoud, Effect of gamma radiation and some agrochemicals on germination, growth and flowering of Delphinium ajacis and Mathiola incana plants. M.Sc. Thesis. Fac. Agric., Moshtohor, Zagazig Univ., Egypt (2002).
  • J.M. Krenisky, J. Luo, M.J. Reed and J.R. Carney, Isolation and antihyperglycemic activity of bakuchiol from Otholobium pubescens (Fabaceae) a Peruvian medicinal plants used for the treatment of diabetes. Biol. Pharm. Bull., 22, 1137–1140 (1999).
  • P. Zhou, Y. Takaishi, H. Duan, B. Chen, G. Honda, M. Itoh, Y. Takeda, O.K. Kodzhimatov and K.H. Lee, Coumarins and bicoumarin from Ferula sumbul: Anti-HIV activity and inhibition of cytokine release. Phytochemistry, 53, 689–697 (2000).
  • Y. Shikishima, Y. Takaishi, G. Honda, M. Ito, Y. Takeda, O.K. Kodzhimatov, O. Ashurmetov and K.H. Lee, Chemical constituents of Prangos Tshimganica; structure elucidation and absolute configuration of coumarin and furanocoumarins derivatives with anti-HIV activity. Chem. Pharm. Bull., 49, 877–880 (2001).
  • K. Bapat, G.J. Chintalwar, U. Pandey, V.S. Thakur, H.D. Sarma and G. Samuel, Preparation and in vitro evaluation of radioiodinated bakuchiol as an antitumour agent. Appl. Rad. Isotopes, 62, 389–393 (2005).
  • H. Haraguchi, J. Inonui, Y. Tamura and K. Mizutani, Antioxidative components of Psoralea corylifolia L. (Leguminosae). Phtytochem. Res., 16, 535–544 (2002).
  • N.A. Khatune, M.E. Islam, M.E. Haque, P. Khoudhkar and M.M. Rahman, Antibacterial compounds from seeds of Psoralea corylifolia L. Fitoterapia, 75, 228–300 (2004).
  • G. Jiangninga, W. Xinchub, W. Houb, L. Qinghuab and B. Kaishun, Antioxidants from Chinese medicinal herb Psoralea corylifolia. Food Chem., 91, 287–292 (2005).
  • B. Manohar and K. Udaya Sankar, Prediction of solubility of Psoralea corylifolia L. seed extract in supercritical carbon dioxide by equation of state models. Theor. Found. Chem. Eng., 45, 409–419 (2011).
  • M. Faisal and M. Anis, Thidiazuron induced high frequency axillary shoot multiplication in Psoralea corylifolia. Biol. Plant., 50, 437–440 (2006).
  • M. Anis and M. Faisal, In vitro regeneration and mass multiplication of Psoralea corylifolia – An endangered medicinal plant. Indian J. Biotechnol., 4, 261–264 (2005).
  • S. Jan, T. Parween, T.O. Siddiqi and Mahmooduzzafar, Antioxidant modulation in response to gamma induced oxidative stress in developing seedlings of Psoralea corylifolia L. J. Environ. Radioact., 113, 142–149 (2012).
  • H. Fricke and E. Hart, Chemical dosimetry. In: Radiation Dosimetry, vol. 2. Edits., F.H. Attix and. W.C. Roesch, Academic Press, New York, NY (1996).
  • H.I. Grover, T.V.R. Nair and Y.B. Abrol, Nitrogen metabolism of upper three leaf blades of wheat at different soil nitrogen levels, NR activity and contents of various nitrogenous constituents. Plant Physiol., 42, 287–292 (1978).
  • L. Klepper, D. Flesher and R.H. Hageman, Generation of reduced nicotinamide adenine dinucleotide for nitrate reduction in green leaves. Plant Physiol., 48, 580–590 (1971).
  • Y.P. Lee and T. Takahashi, An improved colorimetric determination of amino acid with the use of ninhydrin. Anal. Biochem., 14, 71–77 (1966).
  • M.M. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Analyt. Biochem., 72, 248–259 (1976).
  • D. Stajner, M. Milosevic and B.M. Popovic, Irradiation effects on phenolic content, lipid and protein oxidation and scavenger ability of soybean seeds. Int. J. Molec. Sci., 8, 618–627 (2007).
  • E. Kovacs and A. Keresztes, Effect of gamma and UV-B/C radiation on plant cells. Micron, 33, 199–210 (2002).
  • S. Jan, T. Parween, T.O. Siddiqi and Mahmooduzzafar, Enhancement in furanocoumarin content and phenylalanine ammonia lyase activity in developing seedlings of Psoralea corylifolia L. in response to gamma irradiation of seeds. Rad. Environ. Biophys., 51, 341–347 (2012).
  • A. Sattar, X. Neelofar and M.A. Akhtar, Effect of radiation and soaking on phytate content of soybean. Acta Aliment., 19, 331–336 (1990).
  • O.A. Joseph, M. Klasus, D. Kwaku and M. Amanda, Functional properties of cowpea (Vigna unguiculata L. Walp) flours and pastes as affected by gamma irradiation. Food Chem., 93, 103–111 (2005).
  • R. Bhat, K.R. Sridhar and S. Seena, Nutritional quality evaluation of velvet bean seeds (Mucuna pruriens) exposed to gamma irradiation. Int. J. Food Sci. Nutr., 59, 261–278 (2008).
  • N. Maman, S.C. Mason, T. Galusha and M.D. Clegg, Hybrid and nitrogen influence on pearl millet production in Nebraska: Yield, growth, and nitrogen uptake, and nitrogen use efficiency. Agro. J., 91, 737–743 (1999).
  • J. Iqbal, M. Kutacek and V. Jiracek, Effects of acute gamma irradiation on the concentration of amino acids and protein-nitrogen in Zea mays. Rad. Bot., 14, 165–172 (1974).
  • D. Zham and D. Voloozh, The effect of pre-sowing gamma irradiation of seeds on the yield and productivity of outdoor tomatoes. Biologia, 31, 9–14 (1976).
  • C. Jo and D.U. Ahn, Production of volatile compounds from irradiated oil emulsion containing amino acids or proteins. J. Food Sci., 65, 612–616 (2000).
  • S. Khare, A. Trivedi, P.C. Kesavan and R. Prasad, Effect of gamma-radiation on the structure and function of yeast membrane. Int. J. Rad. Bio., 42, 369–383 (1982).
  • M. Horvatic and M. Gruner, The effect of gamma radiation on the methionine and tryptophan content of soy protein products. Nahrung, 37, 147–52 (1993).
  • X. Fan and R.A. Gates, Degradation of monoterpenes in orange juice by gamma radiation. J. Agric. Food Chem., 49, 2422–2426 (2001).
  • L. Calucci, C. Pinzino, M. Zandmeneghi, A. Capocchi, S. Ghiringhelti, S. Tozzi and L. Galleschi, Effect of γ-irradiation on the free radical and antioxidant contents in nine aromatic herbs and spices. J. Agric. Food Chem., 51, 927–934 (2003).
  • H. Seo, J. Kim, H. Song, D. Kim, M. Byun, J. Kwon and K. Kim, Effects of γ-irradiation on the yields of volatile extracts of Angelica gigas Nakai. Rad. Phys. Chem., 76, 1869–1874 (2007).
  • W.M. Urbain, Food Irradiation. Academic Press, London (1986), p. 351.
  • J. Sadecka, Influence of two sterilisation ways, gamma-irradiation and heat treatment, on the volatiles of black pepper (Piper nigrum L.). Czech J. Food Sci., 28, 44–52 (2010).
  • R. Kumari, S. Singh and S.B. Agrawal, Responses of ultraviolet-B induced antioxidant defense system in a medicinal plant, Acorus calamus L. J. Environ. Biol., 31, 907–911 (2010).
  • M. Haddad, M.F. Herent, B. Tilquin and J. Quetin-Leclercq, Effect of gamma and e-beam radiation on the essential oils of Thymus vulgaris thymoliferum, Eucalyptus radiata and Lavandula angustifolia. J. Agric. Food Chem., 55, 6082–6086 (2007).
  • S. Scalia and M. Mezzena, Incorporation of quercetin in lipid microparticles: Effect on photo and chemical-stability. J. Pharmaceut. Biomed. Anal., 10, 90–94 (2009).
  • D. Kozlowski, P. Marsal, M. Steel, R. Mokrini, J.L. Duroux, R. Lazzaroni and P. Trouillas, Theoretical investigation of the formation of a new series of antioxidant depsides from the radiolysis of flavonoid compounds. Rad. Res., 168, 243–252 (2007).
  • R. Arora, A.S. Dhakerb, M. Adhikarib, J. Sharma, R. Chawla, D. Gupta, A. Zhelevaa, Y. Karamalakovaa, R. Kumarb, R.J. Sharmac, A. Sharmab, S. Sultana, R.P. Tripathi, R.K. Sharma and V. Gadjevaa, Radical scavenging and radiomodulatory effects of Psoralea corylifolia Linn. substantiated by in vitro assays and EPR spectroscopy. Z. Naturfor. C. J. Biosci., 66, 35 (2011).
  • S. Adhakari, K.I. Priyadarsini and T. Mukherjee, Physico-chemical studies on the evaluation of the antioxidant activity of herbal extracts and active principles of some Indian medicinal plants. J. Clin. Biochem. Nutri., 40, 174–183 (2007).
  • S. Nirmala, S. Anurag, M. Yadav, Psoralea corylifolia L., an endangered medicinal plant with broad spectrum properties. Med. Plants Int. J. Phytomed. Rel. Indust., 6, 13–20 (2014).
  • R. Gyawali, H. Seo, H. Lee, H. Song, D. Kim, M. Byun and K. Kim, Effect of γ-irradiation on volatile compounds of dried welsh onion (Allium fistulosum L.). Rad. Phys. Chem., 75, 322–328 (2006).
  • P. Variyar, C. Bandyopadhyay and P. Thomas, Effect of gamma irradiation on the phenolic acids of some Indian spices. Int. J. Food Sci. Technol., 33, 533–537 (1998).
  • S.F. Mexis and M.G. Kontominas, Effect of gamma-irradiation on the physiochemical and sensory properties of hazelnuts (Corylus avellana L.). Rad. Phys. Chem., 78, 407–413 (2009).
  • H. Yalcin, I. Ozturk, M. Hayta, O. Sagdic and T. Gumus, Effect of gamma irradiation on some chemical characteristics and volatiles content of linseed. J. Med. Food, (2011). doi:10.1089/jmf,2010.0249.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.