Publication Cover
Ichnos
An International Journal for Plant and Animal Traces
Volume 30, 2023 - Issue 4
122
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Scolicia, ichnotaxonomic practices, and the limits of behavioural convergence

, &

References

  • Aceñolaza, F. G. (1978). Trazas fósiles de la Formación Patquía en el Bordo Atravesado, Sierra de Famatina, La Rioja. Acta Geológica Lilloana, 15, 19–29.
  • Aceñolaza, F., & Yanev, S. (2001). El Ordovícico del sector occidental de Stara Planina (Montes Balcanes), Bulgaria: Icnofósiles e implicaciones paleobiogeográficas. Revista del Museo Argentino de Ciencias Naturales, 3, 55–72. https://doi.org/10.22179/REVMACN.3.110
  • Adrianov, A. V., & Maiorova, A. S. (2022). Echinoderes beringiensis sp. nov. – The first Kinorhyncha from deep-sea methane seepages in the north Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 204, 105154. https://doi.org/10.1016/j.dsr2.2022.105154
  • Aitken, J. D. (1989). Uppermost proterozoic formations in central Mackenzie mountains, Northwest Territories. Geological Survey of Canada Bulletin, 368, 1–26.
  • Ali, S., Gingras, M. K., Wilson, B., Winter, R., Gunness, T., & Wells, M. (2023). The influence of bioturbation on reservoir quality: Insights from the Columbus Basin, offshore Trinidad. Marine and Petroleum Geology, 147, 105983. https://doi.org/10.1016/j.marpetgeo.2022.105983
  • Amireh, B. S., Schneider, W., & Abed, A. M. (2001). Fluvial-shallow marine-glaciofluvial depositional environments of the Ordovician System in Jordan. Journal of Asian Earth Sciences, 19(1–2), 45–60. https://doi.org/10.1016/S1367-9120(00)00010-9
  • Arregui, M. G., Giannoni, I. E., & Varela, A. N. (2023). Dominance of Phycosiphon incertum vs Zoophycos in shelf environment: Example from the transgressive Palermo Aike black shale deposits of the Austral-Magallanes Basin, Argentina. Marine and Petroleum Geology, 155, 106384. https://doi.org/10.1016/j.marpetgeo.2023.106384
  • Asgaard, U., & Bromley, R. G. (2007). Co-occurrence of Schizasterid Echinoids and the Trace Fossil Scolicia, Pleistocene, Greece: Facts, myths and fascioles. In R.G. Bromley, L.A. Buatois, M.G. Mángano, J.F. Genise, & R.N. Melchor (Eds.), Sediment-organism interactions: A multifaceted ichnology (Vol. 88, pp. 85–94). Society for Sedimentary Geology Special Publications.
  • Astibia, H., Rodríguez‐Tovar, F. J., Díaz‐Martínez, I., Payros, A., & Ortiz, S. (2017). Trace fossils from the Middle and Upper Eocene (Bartonian–Priabonian) molasse deposits of the Pamplona Basin (Navarre, western Pyrenees): Palaeoenvironmental implications. Geological Journal, 52(2), 327–349. https://doi.org/10.1002/gj.2763
  • Bak, K., Uchman, A., & Bak, M. (2000). Agglutinated foraminifera, radiolaria and trace fossils from Upper Cretaceous deep-water variegated shales at Trawne Stream, Grajcarek Unit, Pieniny Klippen Belt, Carpathians, Poland. Bulletin of the Polish Academy of Sciences. Earth Sciences, 48, 1–32.
  • Banno, T. (2008). Ecological and taphonomic significance of spatangoid spines: Relationship between mode of occurrence and water temperature. Paleontological Research, 12(2), 145–157. https://doi.org/10.2517/1342-8144(2008)12[145:EATSOS]2.0.CO;2
  • Barras, C. G. (2007). Phylogeny of the Jurassic to Early Cretaceous ‘disasteroid’ echinoids (Echinoidea; Echinodermata) and the origins of spatangoids and holasteroids. Journal of Systematic Palaeontology, 5(2), 133–161. https://doi.org/10.1017/S147720190600201X
  • Bayet-Goll, A., & Neto De Carvalho, C. (2015). Ichnology and sedimentology of a tide-influenced delta in the Ordovician from the Northeastern Alborz range of Iran (Kopet-Dagh region). Lethaia, 49(3), 327–350. https://doi.org/10.1111/let.12150
  • Bayet-Goll, A., Monaco, P., Jalili, F., & Mahmudy-Gharaie, M. H. (2016). Depositional environments and ichnology of Upper Cretaceous deep-marine deposits in the Sistan Suture Zone, Birjand, Eastern Iran. Cretaceous Research, 60, 28–51. https://doi.org/10.1016/j.cretres.2015.10.015
  • Belaústegui, Z., Muñiz, F., Nebelsick, J. H., Domènech, R., & Martinell, J. (2017). Echinoderm ichnology: Bioturbation, bioerosion and related processes. Journal of Paleontology, 91(4), 643–661. https://doi.org/10.1017/jpa.2016.146
  • Benton, M. J. (1982). Dictyodora and associated trace fossils from the Palaeozoic of Thuringia. Lethaia, 15(2), 115–132. https://doi.org/10.1111/j.1502-3931.1982.tb01984.x
  • Benton, M., & Gray, D. (1981). Lower Silurian distal shelf storm-induced turbidites in the Welsh Borders: Sediments, tool marks and trace fossils. Journal of the Geological Society, 138(6), 675–694. https://doi.org/10.1144/gsjgs.138.6.0675
  • Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikuláš, R., Nielsen, J. K., Nielsen, K. S., Rindsberg, A. K., Schlirf, M., & Uchman, A. (2006). Names for trace fossils: A uniform approach. Lethaia, 39(3), 265–286. https://doi.org/10.1080/00241160600787890
  • Bertling, M., Buatois, L. A., Knaust, D., Laing, B., Mángano, M. G., Meyer, N., Mikuláš, R., Minter, N. J., Neumann, C., Rindsberg, A. K., Uchman, A., & Wisshak, M. (2022). Names for trace fossils 2.0: Theory and practice in ichnotaxonomy. Lethaia, 55(3), 1–19. https://doi.org/10.18261/let.55.3.3
  • Bjerstedt, T. W. (1988). Trace fossils from the early Mississippian price delta, southeast West Virginia. Journal of Paleontology, 62, 506–519.
  • Bohacs, K. M., Hasiotis, S. T., & Demko, T. M. (2007). Continental ichnofossils of the Green River and wasatch formations, eocene, wyoming: A preliminary survey, proposed relation to lake-basin type, and application to integrated paleo-environmental interpretation. Mountain Geologist, 44, 79–108.
  • Boivin, S., Saucède, T., Laffont, R., Steimetz, E., & Neige, P. (2018). Diversification rates indicate an early role of adaptive radiations at the origin of modern echinoid fauna. PloS One, 13(4), e0194575. https://doi.org/10.1371/journal.pone.0196375
  • Bottjer, D. J., Droser, M. L., & Jablonski, D. (1988). Palaeoenvironmental trends in the history of trace fossils. Nature, 333(6170), 252–255. https://doi.org/10.1038/333252a0
  • Botziolis, C., Maravelis, A. G., Uchman, A., & Zelilidis, A. (2022). Trace fossils from upper Eocene to lower Oligocene deep-sea deposits of the foreland Pindos Basin, Western Greece. Bulletin of the Geological Society of Greece, Special Publication, 10. Extended Abstract GSG2022-170.
  • Bromley, R. G. (1996). Trace fossils: Biology, taphonomy and applications (2nd ed., pp. 361). Chapman & Hall.
  • Bromley, R. G., & Asgaard, U. (1975). Sediment structures produced by a spatangoid echinoid: A problem of preservation. Bulletin of the Geological Society of Denmark, 24, 261–281.
  • Brustur, T. (1997). Sabularia paleichnocoenosis from the East Carpathians Bend Area, (Vrancea). Romanian Journal of Paleontology, 77, 21–28.
  • Buatois, L. A., & Mángano, M. G. (2011). Ichnology: Organism-substrate interactions in space and time (pp. 348). Cambridge University Press.
  • Buatois, L. A., & Mángano, M. G. (2018). The other biodiversity record: Innovations in animal-substrate interactions through geologic time. GSA Today, 28, 4–10. https://doi.org/10.1130/GSATG371A.1
  • Buatois, L. A., Mángano, M. G., & Sylvester, Z. (2001). A diverse deep‐marine Ichnofauna from the Eocene Tarcau sandstone of the Eastern Carpathians, Romania. Ichnos, 8(1), 23–62. https://doi.org/10.1080/10420940109380172
  • Buatois, L. A., Santiago, N., Parra, K., & Steel, R. (2008). Animal–substrate interactions in an early Miocene wave-dominated tropical delta: Delineating environmental stresses and depositional dynamics (Tacata Field, eastern Venezuela). Journal of Sedimentary Research, 78(7), 458–479. https://doi.org/10.2110/jsr.2008.053
  • Buatois, L. A., Mángano, M. G., Brussa, E., Benedetto, J. L., & Pompei, J. (2009). The changing face of the deep: Colonization of the Early Ordovician deep-sea floor, Puna, northwest Argentina. Palaeogeography Palaeoclimatology Palaeoecology, 280(3–4), 291–299. https://doi.org/10.1016/j.palaeo.2009.06.014
  • Buatois, L. A., Santiago, N., Herrera, M., Plink‐Björklund, P., Steel, R., Espin, M., & Parra, K. (2012). Sedimentological and ichnological signatures of changes in wave, river and tidal influence along a Neogene tropical deltaic shoreline. Sedimentology, 59(5), 1568–1612. https://doi.org/10.1111/j.1365-3091.2011.01317.x
  • Buatois, L. A., Mángano, M. G., & Pattison, S. A. (2019). Ichnology of prodeltaic hyperpycnite–turbidite channel complexes and lobes from the Upper Cretaceous Prairie Canyon Member of the Mancos Shale, Book Cliffs, Utah, USA. Sedimentology, 66(5), 1825–1860. https://doi.org/10.1111/sed.12560
  • Buatois, L. A., Mángano, M. G., Minter, N. J., Zhou, K., Wisshak, M., Wilson, M. A., & Olea, R. A. (2020). Quantifying ecospace utilization and ecosystem engineering during the early Phanerozoic – The role of bioturbation and bioerosion. Science Advances, 6(33), eabb0618. https://doi.org/10.1126/sciadv.abb0618
  • Buckman, J. O. (1992). Palaeoenvironment of a lower carboniferous sandstone succession northwest Ireland: Ichnological and sedimentological studies. In J. Parnell (Ed.), Basins on the Atlantic seaboard: Petroleum sedimentology and basin evolution (Vol. 62, pp. 217–241). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.1992.062.01.19
  • Callow, R. H., McIlroy, D., Kneller, B., & Dykstra, M. (2013). Integrated ichnological and sedimentological analysis of a Late Cretaceous submarine channel-levee system: The Rosario Formation, Baja California, Mexico. Marine and Petroleum Geology, 41, 277–294. https://doi.org/10.1016/j.marpetgeo.2012.02.001
  • Carmona, N. B., Buatois, L. A., Mángano, M. G., & Bromley, R. G. (2008). Ichnology of the Lower Miocene Chenque formation, Patagonia, Argentina: Animal-substrate interactions and the modern evolutionary fauna. Ameghiniana, 45, 93–122.
  • Carmona, N. B., Mángano, M. G., Buatois, L. A., Bromley, R. G., Ponce, J. J., Asgaard, U., & Bellosi, E. (2020). Scolicia and its producer in shallow-marine deposits of the Miocene Chenque Formation (Patagonia, Argentina): Functional morphology and implications for understanding burrowing behavior. Ichnos, 27(3), 290–299. https://doi.org/10.1080/10420940.2020.1744589
  • Casanova-Arenillas, S., Rodríguez-Tovar, F. J., & Martínez-Ruiz, F. (2021). Ichnological analysis as a tool for assessing deep-sea circulation in the westernmost Mediterranean over the last Glacial Cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 562, 110082. https://doi.org/10.1016/j.palaeo.2020.110082
  • Chamberlain, C. K. (1971). Morphology and ethology of trace fossils from the Ouachita Mountains, Southeast Oklahoma. Journal of Paleontology, 45, 212–246.
  • Chen, W. S. (2005). Characteristic trace fossils from shoreface to offshore environments of an Oligocene succession, northeastern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 16(5), 1097–1120. https://doi.org/10.3319/TAO.2005.16.5.1097(T)
  • Cherif, A., & Naimi, M. N. (2022). A diverse ichnofauna and its palaeoenvironmental significance from the Upper Jurassic Argiles de Saïda Formation (Northwestern Algeria). Historical Biology, 34(4), 624–647. https://doi.org/10.1080/08912963.2021.1940995
  • Cherif, A., Naimi, M. N., & Belaid, M. (2021). Deep-sea trace fossils and depositional model from the lower Miocene Tiaret Marl Formation (northwestern Algeria). Journal of African Earth Sciences, 175, 104115. https://doi.org/10.1016/j.jafrearsci.2021.104115
  • Chrząstek, A. (2020). Palaeoenvironmental interpretation of the late Cretaceous Idzików Conglomerate Member (SW Poland, Sudetes, Idzików Quarry) based on analysis of trace fossils. Annales Societatis Geologorum Poloniae, 90, 149–194. https://doi.org/10.14241/asgp.2020.08
  • Chiplonkar, G. W., & Ghare, M. A. (1977). Scolicia rigida sp. nov. A New Trace Fossil from the Upper Utatur Group of Trichinopoly District, S. India. Geological Society of India, 18, 94–95.
  • Contreras-Barrera, A. D., & Gío-Argáez, R. (1985). Consideraciones paleobiológicas de los icnofósiles de la Formacion Chicontepec en el Estado de Puebla. Universidad Nacional Atonóma de Mexico, Instituto de Geologia, Revista, 6, 73–85.
  • Crimes, T. P. (1973). From limestones to distal turbidites: A facies and trace fossil analysis in the Zumaya flysch (Paleocene-Eocene), North Spain. Sedimentology, 20(1), 105–131. https://doi.org/10.1111/j.1365-3091.1973.tb01609.x
  • Crimes, T. P. (1977a). Modular construction of deep-water trace fossils from the Cretaceous of Spain. Journal of Geology, 51, 591–605.
  • Crimes, T. P. (1977b). Trace fossils of an Eocene deep-sea fan, northern Spain. In Crimes, T.P. & Harper, J.C. (Eds.), Trace fossils 2. Geological journal special issue (Vol. 9, pp. 71–90). Seel House Press.
  • Crimes, T. P., & Anderson, M. M. (1985). Trace fossils from Late Precambrian-Early Cambrian strata of southeastern Newfoundland (Canada): Temporal and environmental implications. Journal of Paleontology, 59, 310–343.
  • Crimes, T. P., & Fedonkin, M. A. (1994). Evolution and dispersal of deepsea traces. Palaios, 9(1), 74–83. https://doi.org/10.2307/3515080
  • Crimes, T. P., & McCall, G. J. H. (1995). A diverse ichnofauna from Eocene‐Miocene rocks of the Makran Range (SE Iran). Ichnos, 3(4), 231–258. https://doi.org/10.1080/10420949509386394
  • Crimes, T. P., Goldring, R., Homewood, P., Stuijvenberg, J., Van, & Winkler, W. (1981). Trace fossil assemblages of deep-sea fan deposits, Gurnigel and Schlieren flysch (Cretaceous-Eocene). Eclogae Geologicae Helvetiae, 74, 953–995.
  • Crippa, G., Baucon, A., Felletti, F., Raineri, G., & Scarponi, D. (2018). A multidisciplinary study of ecosystem evolution through early Pleistocene climate change from the marine Arda River section, Italy. Quaternary Research, 89(2), 533–562. https://doi.org/10.1017/qua.2018.10
  • Dam, G. (1990a). Palaeoenvironmental significance of trace fossils from the shallow marine Lower Jurassic Neill Klinter Formation, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 79(3–4), 221–248. https://doi.org/10.1016/0031-0182(90)90019-4
  • Dam, G. (1990b). Taxonomy of trace fossils from the shallow marine Lower Jurassic Neill Klinter Formation, East Greenland. Bulletin of the Geological Society of Denmark, 38, 119–144. https://doi.org/10.37570/bgsd-1990-38-12
  • D’Alessandro, A. (1980). Prime osservacioni sulla ichnofauna miocenica della "Formazione di Gorgolione" (Castelmezzano, Potenza). Rivista Italiana di Paleontologia, 86, 357–398.
  • D’Alessandro, A. (1981). Processi tafonomici e distribuzione delle trace fossili nel flysch di Gorgolione (Appennino Meridionale). Rivista Italiana di Paleontologia, 87, 511–560.
  • Dasgupta, S., Buatois, L. A., & Mángano, M. G. (2016). Living on the edge: Evaluating the impact of stress factors on animal–sediment interactions in subenvironments of a shelf-margin delta, the Mayaro Formation, Trinidad. Journal of Sedimentary Research, 86(9), 1034–1066. https://doi.org/10.2110/jsr.2016.47
  • Demírcan, H. (2008). Trace fossil associations and palaeoenvironmental interpretation of the late Eocene units (SW-Thrace). Bulletin of the Mineral Research and Exploration, 136, 29–47.
  • Demircan, H., & Görmüş, M. (2020). Ichnology of upper Cretaceous–lower Palaeogene deep-sea deposits in the Haymana Basin of Central Anatolia. Annales Societatis Geologorum Poloniae, 90, 463–493. https://doi.org/10.14241/asgp.2020.33
  • Demírcan, H., & Toker, V. (2003). Trace fossils in the western fan of the Cingöz Formation in the northern Adana Basin (southern Turkey). Bulletin of the Mineral Research and Exploration, 127, 15–32.
  • Demírcan, H., & Uchman, A. (2017). Short distance variability of trace fossils in submarine slope and proximal basin plain deposits: A case study from the Ceylan Formation (upper Eocene), Gelibolu Peninsula, NW Turkey. Bollettino della Società Paleontologica Italiana, 56, 1–23.
  • Donovan, S. K., Renema, W., & Pickerill, R. K. (2005). The ichnofossil Scolicia prisca de Quatrefages from the Paleogene of eastern Jamaica and fossil echinoids of the Richmond formation. Caribbean Journal of Science, 41, 876–881.
  • Dorador, J., Rodríguez-Tovar, F. J., Mena, A., & Francés, G. (2021). Deep-sea bottom currents influencing tracemaker community: An ichnological study from the NW Iberian margin. Marine Geology, 437, 106503. https://doi.org/10.1016/j.margeo.2021.106503
  • Droser, M. L., & Bottjer, D. J. (1989). Ordovician increase in extent and depth of bioturbation: Implications for understanding early Paleozoic ecospace utilization. Geology, 17(9), 850–852. https://doi.org/10.1130/0091-7613(1989)017<0850:OIIEAD>2.3.CO;2
  • Durand, F. R., & Aceñolaza, F. G. (1990). Caracteres biofaunísticos, paleocológicos y paleogeográficos de la la Formación Puncoviscana (Precámbrico Superior – Cámbrico Inferior) del Noroeste Argentino. In Aceñolaza, F.G., Miller, H., & Toselli, A.J. (Eds.), El Ciclo Pampeano en el Noreste Argentino. Serie Correlación Geológica (Vol. 4, pp. 71–112). Universidad Nacional de Tucumán.
  • Eble, G. J. (1998). Diversification of disasteroids, holasteroids and spatangoids in the Mesozoic. In R. Mooi, & M. Telford (Eds.), Echinoderms (pp. 629–638). AA Balkema Press.
  • Ekdale, A. A., & de Gibert, J. M. (2020). Late Miocene deep-sea trace fossil associations in the Vera Basin, Almería, Southeastern Spain. Spanish Journal of Palaeontology, 29(1), 95–104. https://doi.org/10.7203/sjp.29.1.17492
  • Ekdale, A. A., Bromley, R. G., & Knaust, D. (2012). The ichnofabric concept. In D. Knaust, & R.G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments. Developments in sedimentology (Vol. 64, pp. 139–155). Elsevier.
  • Fan, R., Zhao, L., Zong, R., & Gong, Y. (2015). Middle Paleozoic Flysch trace fossils from Western Junggar and their palaeoenvironmental significance. Earth Science-Journal of China University of Geosciences, 40, 573–587.
  • Fauth, G., Kern, H. P., Villegas-Martín, J., De Lira Mota, M. A., Dos Santos Filho, M. A. B., Santa Catharina, A., Leandro, L. M., Luft-Souza, F., Strohschoen, O., Nauter-Alves, A., Tungo, E. D. J. F., Bruno, M. D. R., Ceolin, D., Baecker-Fauth, S., Bom, M. H. H., Lima, F. H. D. O., Santos, A., & Assine, M. L. (2023). Early Aptian marine incursions in the interior of northeastern Brazil following the Gondwana breakup. Scientific Reports, 13(1), 6728. https://doi.org/10.1038/s41598-023-32967-w
  • Fillion, D., & Pickerill, R. K. (1984). Systematic ichnology of the Middle Ordovician Trenton Group, St Lawrence Lowland, eastern Canada. Atlantic Geology, 20(1), 1–41. https://doi.org/10.4138/1572
  • Fillion, D., & Pickerill, R. K. (1990). Ichnology of the Lower Ordovician Bell Island and Wabana Groups of eastern Newfoundland. Palaeontographica Canadiana, 7, 1–119.
  • Fraaye, R. H. B., & Werver, O. P. (1990). Trace fossils and their environmental significance in Dinantian carbonates of Belgium. Paläontologische Zeitschrift, 64(3–4), 367–377. https://doi.org/10.1007/BF02985726
  • Frey, R. W., & Howard, J. D. (1990). Trace fossils and depositional sequences in a clastic shelf setting, Upper Cretaceous of Utah. Journal of Paleontology, 64(5), 803–820. https://doi.org/10.1017/S0022336000019004
  • Fu, S., & Werner, F. (2000). Distribution, ecology and taphonomy of the organism trace, Scolicia, in northeast Atlantic deep-sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 156(3–4), 289–300. https://doi.org/10.1016/S0031-0182(99)00146-7
  • Genise, J. F. (2017). Ichnoentomology: Insect traces in soils and paleosols (Vol. 37). Springer.
  • Giannetti, A. (2012). El patrimonio icnológico del Cretácico inferior de Sierra Helada (Cordillera Bética, SE de España). Cidaris, 31, 63–70.
  • Giannetti, A., & Monaco, P. (2015). Definition of sequences through ichnocoenoses and taphofacies: An example from the Sácaras Formation (early Cretaceous, eastern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 438, 70–80. https://doi.org/10.1016/j.palaeo.2015.08.002
  • Giannetti, A., Monaco, P., Corbí, H., & Soria, J. M. (2014). Integrated taphonomy in an open-marine platform: The Lower Cretaceous of Sierra Helada (Betic Cordillera, SE Spain). Cretaceous Research, 51, 274–284. https://doi.org/10.1016/j.cretres.2014.07.001
  • Giannetti, A., Monaco, P., Falces-Delgado, S., La Iacona, F. G., & Corbí, H. (2019). Taphonomy, ichnology, and palaeoecology to distinguish event beds in varied shallow-water settings (Betic Cordillera, SE Spain). Journal of Iberian Geology, 45(1), 47–61. https://doi.org/10.1007/s41513-018-0094-y
  • Gibbs, P. E. (1963). The functional morphology and ecology of the spatangoid genus brisaster gray [MS thesis]. University of British Columbia.
  • Grossheim, V. A. (1946). O znacheniy i metodike izucheniya hieroglifov (na materiale kavkazkoho flyscha) (On the significance and methods of study hieroglyphs (on the material of the Caucasian flysch)). Izvestia Akademii Nauk SSSR, Seria Geologicheskaia, 111–120. [In Russian, with English summary]
  • de Gibert, J. M., & Martinell, J. (1996). Trace fossil assemblages and their palaeoenvironmental significance in the Pliocene marginal marine deposits of the Baix Ebre (Catalonia, NE Spain). Géologie Méditerranéenne, 23(3), 211–225. https://doi.org/10.3406/geolm.1996.1591
  • Gingras, M. K., Rasanen, M., & Ranzi, A. (2002). The significance of bioturbated inclined heterolithic stratification in the southern part of the Miocene Solimoes Formation, Rio Acre, Amazonia Brazil. Palaios, 17(6), 591–601. https://doi.org/10.1669/0883-1351(2002)017<0591:TSOBIH>2.0.CO;2
  • Gingras, M. K., Baniak, G., Gordon, J., Hovikoski, J., Konhauser, K. O., La Croix, A., Lemiski, R., Mendoza, C., Pemberton, S. G., Polo, C., & Zonneveld, J.-P. (2012). Porosity and permeability in bioturbated sediments. In D. Knaust, & R.G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments. Developments in sedimentology (Vol. 64, pp. 837–868). Elsevier.
  • Gómez de Llarena, J. (1954). Observaciones geologicas en el Flysch Cretacico-Numulitico de Guipúzcoa. I. Monografia Del Instituto "Lucas Mollado, 13, 1–98.
  • Goto, R., Ishikawa, H., & Hamamura, Y. (2016). Symbiotic association of the bivalve Tellimya fujitaniana (Galeommatoidea) with the heart urchin Echinocardium cordatum (Spatangoida) in the northwestern Pacific. Zoological Science, 33(4), 434–440. https://doi.org/10.2108/zs150215
  • Haines, P. W. (1982). Trace fossils and depositional environment of the Cambro-Ordovician Pacoota Sandstone, Amadeus Basin central Australia [Bachelor of Science Thesis]. University of Adelaide.
  • Hammersburg, S. R., Hasiotis, S. T., & Robison, R. A. (2018). Ichnotaxonomy of the Cambrian Spence Shale Member of the Langston Formation, Wellsville Mountains, Northern Utah, USA. Paleontological Contributions, 2018, 1–66.
  • Hansen, L., Callow, R., Kane, I., & Kneller, B. (2017). Differentiating submarine channel-related thin-bedded turbidite facies: Outcrop examples from the Rosario formation, Mexico. Sedimentary Geology, 358, 19–34. https://doi.org/10.1016/j.sedgeo.2017.06.009
  • Hart, M. W. (1996). Evolutionary loss of larval feeding: Development, form and function in a facultatively feeding larva, Brisaster latifrons. Evolution, 50(1), 174–187. https://doi.org/10.2307/2410792
  • Hasiotis, S. T. (2002). Continental trace fossils. In Society for Sedimentary Geology Short Course Notes 51. SEPM (Society for Sedimentary Geology).
  • Hasiotis, S. T. (2004). Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sedimentary Geology, 167(3–4), 177–268. https://doi.org/10.1016/j.sedgeo.2004.01.006
  • Hobday, D. K., & Mathew, D. (1975). Late Paleozoic fluviatile and deltaic deposits in the northeast Karroo Basin, South Africa. In M.L. Boussard (Ed.), Deltas: Models for exploration (pp. 457–469). Houston Geological Society.
  • Hobday, D. K., & Tavener-Smith, R. (1975). Trace fossils in the Ecca of northern Natal and their palaeoenvironmental significance. Palaeontologia Africana, 18, 47–52.
  • Hovikoski, J., Lemiski, R., Gingras, M., Pemberton, G., & MacEachern, J. A. (2008). Ichnology and sedimentology of a mud-dominated deltaic coast: Upper Cretaceous Alderson Member (Lea Park Fm), western Canada. Journal of Sedimentary Research, 78(12), 803–824. https://doi.org/10.2110/jsr.2008.089
  • Hubbard, S. M., MacEachern, J. A., & Bann, K. L. (2012). Slopes. In D. Knaust, & R.G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments. Developments in sedimentology (Vol. 64, 607–642). Elsevier.
  • Ibrahim, N., Varricchio, D. J., Sereno, P. C., Wilson, J. A., Dutheil, D. B., Martill, D. M., Baidder, L., & Zouhri, S. (2014). Dinosaur footprints and other ichnofauna from the Cretaceous Kem Kem Beds of Morocco. PloS One, 9(6), e90751. https://doi.org/10.1371/journal.pone.0090751
  • Imanda, W., Ramadhan, B., Aulia, I., Harahap, R. A. Y., & Aditiyo, R. (2021). Lithofacies analysis, ichnofacies analysis and depositional environment of Jatiluhur Formation in Cipamingkis area. IOP Conference Series: Earth and Environmental Science, 846(1), 012021. https://doi.org/10.1088/1755-1315/846/1/012021
  • Jablonski, D., & Bottjer, D. J. (1990). The origin and diversification of major groups: Environmental patterns and macroevolutionary lags. In P.D. Taylor, & G.P. Larwood (Eds.), Major evolutionary radiations. Systematic association special volume (Vol. 42, pp. 17–57). Oxford Science Publications.
  • Jackson, A. M., Hasiotis, S. T., & Flaig, P. P. (2016). Ichnology of a paleopolar, river-dominated, shallow marine deltaic succession in the Mackellar Sea: The Mackellar Formation (lower Permian), Central Transantarctic Mountains, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 266–291. https://doi.org/10.1016/j.palaeo.2015.07.010
  • Jagt, J. (2000). Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium—Part 4: Echinoids. Scripta Geologica, 122, 181–375.
  • James, N. P., Seibel, M. J., Dalrymple, R. W., Besson, D., & Parize, O. (2014). Warm‐temperate, marine, carbonate sedimentation in an Early Miocene, tide‐influenced, incised valley; Provence, south‐east France. Sedimentology, 61(2), 497–534. https://doi.org/10.1111/sed.12063
  • Jeffery, C. H. (2001). Heart urchins at the Cretaceous/Tertiary boundary: A tale of two clades. Paleobiology, 27(1), 140–158. https://doi.org/10.1666/0094-8373(2001)027<0140:HUATCT>2.0.CO;2
  • Jiang, Z., Wang, Y., & Wei, C. (2009). Hemipelagic deposition of the Silurian Kepingtage formation in Tarim basin and its sedimentologic significance. Journal of Earth Science, 20(6), 921–931. https://doi.org/10.1007/s12583-009-0079-z
  • Jimi, N., Kimura, T., Ogawa, A., & Kajihara, H. (2018). A new species of the rare, deep-sea polychaete genus Benthoscolex from the Sea of Kumano, Japan (Annelida, Amphinomidae). ZooKeys, 738(738), 81–88. https://doi.org/10.3897/zookeys.738.22927
  • Jones, B. G. (1972). Sedimentology of the Waitemata Group (Lower Miocene) at Pakaurangi Point, Kaipara, New Zealand. Journal of the Royal Society of New Zealand, 2(2), 187–209. https://doi.org/10.1080/03036758.1972.10429374
  • Jordan, O. D., & Mountney, N. P. (2010). Styles of interaction between aeolian, fluvial and shallow marine environments in the Pennsylvanian to Permian lower Cutler beds, south‐east Utah, USA. Sedimentology, 57, 1357–1385. https://doi.org/10.1111/j.1365-3091.2010.01148.x
  • Joseph, J. K., Patel, S. J., & Bhatt, N. Y. (2012). Trace fossil assemblages in mixed siliciclastic-carbonate sediments of the Kaladongar Formation (Middle Jurassic), Patcham island, Kachchh, Western India. Journal of the Geological Society of India, 80(2), 189–214. https://doi.org/10.1007/s12594-012-0131-y
  • Kanazawa, K. (1992). Adaptation of test shape for burrowing and locomotion in Spatangoid Echinoids. Palaeontology, 35, 733–750.
  • Kanazawa, K. (1995). How spatangoids produce their traces: Relationship between burrowing mechanism and trace structure. Lethaia, 28(3), 211–219. https://doi.org/10.1111/j.1502-3931.1995.tb01424.x
  • Kern, J. P., & Warme, J. E. (1974). Trace fossils and bathymetry of the Upper Cretaceous Point Loma Formation, San Diego, California. Geological Society of America Bulletin, 85(6), 893–900. https://doi.org/10.1130/0016-7606(1974)85<893:TFABOT>2.0.CO;2
  • Khin, K., & Myitta. (1999). Marine transgression and regression in Miocene sequences of northern Pegu (Bago) Yoma, Central Myanmar. Journal of Asian Earth Sciences, 17(3), 369–393. https://doi.org/10.1016/S0743-9547(98)00065-8
  • Kier, P. M. (1982). Rapid evolution in echinoids. Palaeontology, 25, 1–9.
  • Kindelan, V. (1919). Nota sobre el Cretáceo y el Eoceno de Guipúzcoa. Boletín Del Instituto Geológico y Minero de España, Serie, 2, 163–198.
  • Knaust, D. (2009). Characterisation of a Campanian deep-sea fan system in the Norwegian Sea by means of ichnofabrics. Marine and Petroleum Geology, 26(7), 1199–1211. https://doi.org/10.1016/j.marpetgeo.2008.09.009
  • Kotake, N. (1993). Tiering of trace fossils assemblages in Plio-Pleistocene bathyal deposits of Boso Peninsula, Japan. Palaios, 8(6), 544–553. https://doi.org/10.2307/3515031
  • Kroh, A., Lukeneder, A., & Gallemí, J. (2014). Absurdaster, a new genus of basal atelostomate from the Early Cretaceous of Europe and its phylogenetic position. Cretaceous Research, 48, 235–249. https://doi.org/10.1016/j.cretres.2013.11.013
  • Książkiewicz, M. (1977). Trace fossils in the flysch of the Polish Carpathians. Paleontologia Polonica, 36, 1–200.
  • La Croix, A. D., He, J., Bianchi, V., Wang, J., Gonzalez, S., & Undershultz, J. R. (2020). Early Jurassic palaeoenvironments in the Surat Basin, Australia–marine incursion into eastern Gondwana. Sedimentology, 67(1), 457–485. https://doi.org/10.1111/sed.12649
  • Lebanidze, Z., Uchman, A., Beridze, T., Kobakhidze, N., Lobzhanidze, K., Khutsishvili, S., Chagelishvili, R., Makadze, D., Koiava, K., & Khundadze, N. (2023). Ichnofacies interpretation of trace fossils occurrences in the Paleocene-lower Eocene deposits of the Borjomi Canyon. Bulletin of the Georgia National Academy of Sciences, 17, 49–54.
  • Lendzion, K. (1972). The stratigraphy of the Lower Cambrian in the Podlasie area. Instytut Geologiczny, Biuletyn, 233, 69–157.
  • Leszczyński, S. (1992). Controls on trace fossil distribution in flysch deposits. Uniwersytet Jagiellonian, Rozprawy Habilitacyjne, 236, 1–88.
  • Leszczyński, S. (1993). Ichnocoenosis versus sediment colour in upper Albian to lower Eocene turbidites, Guipúzcoan province, northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 100(3), 251–265. https://doi.org/10.1016/0031-0182(93)90057-P
  • Li, R. H. (1993). Trace fossils and ichnofacies of Middle Ordovician Gongwusu Formation, Zhuozishan, Inner Mongolia. Acta Palaeontologica Sinica, 32, 88–104.
  • Li, R. H. (1994). Identification of Contourites in Middle Ordovician Gongwushu formation, Zhuozishan, and depositional environment. Oil & Gas Geology, 15, 235–240.
  • Lobitzer, H., Bodrogi, I., Filácz, E., Stradner, H., & Surenian, R. (1994). Lebensspuren der Oberalmer, Schrambach- und Roßfeld-Formation (Oberjura/Unterkreide) der Salzburger Kalkalpen. In H. Lobitzer, G. Császár, & A. Daurer (Eds.), Jubiläumsschrift, 20 Jahre Geologische Zusammenarbeit Österreich-Ungarn (pp. 285–322). Geologische Bundesanstalt.
  • Löffler, S.-B., & Geyer, O. F. (1994). Über Lebensspuren aus dem eozänen Belluno-Flysch (Nord-Italien). Paläontologische Zeitschrift, 68(3–4), 491–519. https://doi.org/10.1007/BF02991358
  • López-Cabrera, M. I., Olivero, E. B., Carmona, N. B., & Ponce, J. J. (2008). Cenozoic trace fossils of the Cruziana, Zoophycos and Nereites ichnofacies from the Fuegian Andes, Argentina. Ameghiniana, 45, 1–17.
  • Loope, D. B. (1984). Eolian origin of upper Paleozoic sandstones, southeastern Utah. Journal of Sedimentary Research, 54, 563–580.
  • Lovelace, D. M., & Lovelace, S. D. (2012). Paleoenvironments and paleoecology of a Lower Triassic invertebrate and vertebrate ichnoassemblage from the Red Peak Formation (Chugwater Group), central Wyoming. Palaios, 27(9), 636–657. https://doi.org/10.2110/palo.2012.p12-011r
  • Löwemark, L., Lin, Y., Chen, H. F., Yang, T. N., Beier, C., Werner, F., Lee, C. Y., Song, S. R., & Kao, S. J. (2006). Sapropel burn-down and ichnological response to late Quaternary sapropel formation in two∼ 400 ky records from the eastern Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 239(3–4), 406–425. https://doi.org/10.1016/j.palaeo.2006.02.013
  • Löwemark, L., O'Regan, M., Hanebuth, T. J., & Jakobsson, M. (2012). Late quaternary spatial and temporal variability in Arctic deep-sea bioturbation and its relation to Mn cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, 365–366, 192–208. https://doi.org/10.1016/j.palaeo.2012.09.028
  • Lukeneder, A., & Uchman, A. (2008).) Trace fossils of the early Valanginian in the Hochkogel section (upper Austria, northern calcareous Alps): their impact on log orientation and palaeonvironmental interpretations. Berichte der Geologischen Bundesanstalt, 74, 71–72.
  • Luo, H., & Zhang, S. (1986). Early Cambrian vermes and trace fossils from Jinning-Anning region. Acta Palaeontologica Sinica, 25, 303–311.
  • MacEachern, J. A., Zaitlin, B. A., & Pemberton, S. G. (1999). A sharp-based sandstone of the Viking Formation, Joffre Field, Alberta, Canada; criteria for recognition of transgressively incised shoreface complexes. Journal of Sedimentary Research, 69(4), 876–892. https://doi.org/10.2110/jsr.69.876
  • Manley, R., & Lewis, D. W. (1998). Ichnocoenoses of the mount messenger formation, a Miocene submarine fan system, Taranaki Basin, New Zealand. New Zealand Journal of Geology and Geophysics, 41(1), 15–33. https://doi.org/10.1080/00288306.1998.9514787
  • Mángano, M. G., Buatois, L. A., West, R. R., & Maples, C. G. (2002). Ichnology of an equatorial tidal flat: The Stull Shale Member at Waverly, eastern Kansas. Bulletin of the Kansas Geological Survey, 245, 1–130.
  • Marintsch, E. J., & Finks, R. M. (1982). Lower Devonian Ichnofacies at Highland Mills, New York and Their Gradual Replacement across Environmental Gradients. Journal of Paleontology, 56, 1050–1078.
  • Martino, R. L. (1989). Trace Fossils from Marginal Marine Facies of the Kanawha Formation (Middle Pennsylvanian), West Virginia. Journal of Paleontology, 63(4), 389–403. https://doi.org/10.1017/S0022336000019648
  • McCann, T., & Pickerill, R. K. (1988). Flysch trace fossils from the Cretaceous Kodiak Formation of Alaska. Journal of Paleontology, 62(3), 330–348. https://doi.org/10.1017/S0022336000059138
  • McIlroy, D. (2007). Ichnology of a macrotidal tide-dominated deltaic depositional system: Lajas formation, Neuquén Province, Argentina. In R.G. Bromley, L.A. Buatois, M.G. Mángano, J.F. Genise, & R.N. Melchor (Eds.), Sediment-organism interactions: A multifaceted ichnology (Vol. 88, pp. 193–210). SEPM Special Publications.
  • Melvin, J. (2015). Lithostratigraphy and depositional history of upper Ordovician and lowermost Silurian sediments recovered from the Qusaiba-1 shallow core hole, Qasim region, central Saudi Arabia. Review of Palaeobotany and Palynology, 212, 3–21. https://doi.org/10.1016/j.revpalbo.2014.08.014
  • Miguez-Salas, O., & Rodríguez-Tovar, F. J. (2021). Trace fossil analysis of sandy clastic contouritic deposits in the late Miocene Rifian Corridor (Morocco): Ichnotaxonomical and palaeoenvironmental insights. Journal of African Earth Sciences, 174, 104054. https://doi.org/10.1016/j.jafrearsci.2020.104054
  • Miguez-Salas, O., Vardaro, M. F., Rodríguez-Tovar, F. J., Pérez-Claros, J. A., & Huffard, C. L. (2022). Deep-sea echinoid trails and seafloor nutrient distribution: Present and past implications. Frontiers in Marine Science, 9, 903864. https://doi.org/10.3389/fmars.2022.903864
  • Monaco, P., & Uchman, A. (1999). Deep-sea ichnoassemblages and ichnofabrics of the Eocene Scisti varicolori beds in the Trasimeno area, western Umbria, Italy. Depositional Episodes and Bioevents. Palaeopelagos Special Publication, 2, 39–52.
  • Monaco, P., Giannetti, A., Caracuel, J. E., & Yébenes, A. (2005). Lower Cretaceous (Albian) shell-armoured and associated echinoid trace fossils from the Sácaras formation, Serra Gelada area, southeast Spain. Lethaia, 38(4), 333–344. https://doi.org/10.1080/00241160500355277
  • Nara, M., Seno’o, M., & Yamaoka, Y. (2020). Scolicia shirahamensis isp. nov.: A triple-corded Scolicia and its ichnological implications. Ichnos, 27(3), 300–306. https://doi.org/10.1080/10420940.2020.1744580
  • Nichols, D. (1959). Changes in the chalk heart-urchin Micraster interpreted in relation to living forms. Philosophical Transactions of the Royal Society of London, Series B, 242, 347–437.
  • Nielsen, J. K., Görmüş, K., Kanbur, S., & M, Uysal. (2010). First records of trace fossils from the Lake District, southwestern Turkey. Bulletin of Geosciences, 85, 691–708. https://doi.org/10.3140/bull.geosci.1189
  • Niu, Y., Shan, T., Dong, X., Zhou, S., & Gao, W. (2015). Trace fossils and their sedimentary environment of Ordovician Majiagou Formation in the north-west of Henan Province. Acta Sedimentologica Sinica, 33, 211–225.
  • Niu, Y., Hu, Y., Gao, W., Dong, X., & Cui, S. (2018). Ichnofabrics and sedimentary evolution of the third member of Ordovician Majiagou formation in northwestern Henan Province. Acta Geologica Sinica, 92, 1–13.
  • Oaie, G. (1998). Sedimentological significance of mudstone microclast intervals in Upper Proterozoic turbidites, Central Dobrogea, Romania. Sedimentary Geology, 115, 289–300.
  • Olivero, E. B., & López Cabrera, M. I. (2023). Helminthopsis and Cylindrichnus Ichnoguilds from Miocene Thin-Bedded Turbidites, Tierra del Fuego, Argentina. Palaios, 38(9), 371–393. https://doi.org/10.2110/palo.2022.058
  • Olivero, E. B., Ponce, J. J., Marsicano, C. A., & Martinioni, D. R. (2007). Depositional settings of the basal López de Bertodano formation, Maastrichtian, Antarctica. Revista de la Asociación Geológica Argentina, 62, 521–529.
  • Orłowski, S. (1989). Trace fossils in the Lower Cambrian sequence in the Swietokrzyskie Mountains, central Poland. Acta Palaeontologica Polonica, 34, 211–231.
  • Orr, P. J. (2001). Colonization of the deep‐marine environment during the early Phanerozoic: The ichnofaunal record. Geological Journal, 36(3–4), 265–278. https://doi.org/10.1002/gj.891
  • Ozukum, A., Srivastava, S. K., & Desai, B. (2022). Ichnological study of the Palaeogene sedimentary succession of Botsa, Kohima District, Nagaland, India. Geological Journal, 57(12), 5239–5249. https://doi.org/10.1002/gj.4477
  • Palópolo, E. E., Kroh, A., Harzhauser, M., Griffin, M., Casadio, S., & Carmona, N. (2021). An early Miocene spatangoid assemblage on a submarine volcanic ash dune from Patagonia (Argentina). Journal of South American Earth Sciences, 108, 103214. https://doi.org/10.1016/j.jsames.2021.103214
  • Patel, S. J., Desai, B. G., Vaidya, A. D., & Shukla, R. (2008). Middle Jurassic trace fossils from Habo Dome, Mainland Kachchh, Western India. Journal Geological Society of India, 71, 345–362.
  • Pendón, J. G. (1974). Rasgos sedimentológicos de las areniscas en las unidades de Algeciras y dell Aljibe (Campo de Gibraltar). Cuadernos Geológicos, 5, 101–115.
  • Pendón, J. G. (1977). Diferentes tipos de trazas orgánicas existentes en las turbiditas del Campo de Gibraltar. Estudios Geológicos, 33, 23–33.
  • Pervesler, P., & Uchman, A. (2004). Ichnofossils from the type area of the Grund Formation (Miocene, lower Badenian) in northern lower Austria (Molasse Basin). Geologica Carpathica, 55, 103–110.
  • Pervesler, P., & Uchman, A. (2007). Ichnology of the lower Badenian (Middle Miocene) Baden-Sooß core at the type locality of the Badenian (Vienna Basin, Lower Austria). Joannea Geologie Und Paläontologie, 9, 79–81.
  • Pervesler, P., Uchman, A., Hohenegger, J., & Dominici, S. (2011). Ichnological record of environmental changes in early quaternary (Gelasian–Calabrian) marine deposits of the Stirone Section, northern Italy. Palaios, 26(9), 578–593. https://doi.org/10.2110/palo.2010.p10-082r
  • Pfeiffer, H. (1968). Die Spurenfossilien des Kulms (Dinants) und Devons der Frankenwälder Querzone (Thüringen). Jahrbuch Der Geologie, 2, 651–717.
  • Phillips, C., McIlroy, D., & Elliott, T. (2011). Ichnological characterization of Eocene/Oligocene turbidites from the Grès d‘Annot Basin, French Alps, SE France. Palaeogeography, Palaeoclimatology, Palaeoecology, 300(1–4), 67–83. https://doi.org/10.1016/j.palaeo.2010.12.011
  • Pickerill, R. K., Fyffe, L. R., & Forbes, W. H. (1988). Late Ordovician-early Silurian trace fossils from the Matapedia Group, Tobique River, western New Brunswick, Canada. Maritime Sediments and Atlantic Geology, 24(2), 139–148. https://doi.org/10.4138/1646
  • Plaziat, J. C., & Mahmoudi, M. (1988). Trace fossils attributed to burrowing echinoids: A revision including new ichnogenus and ichnospecies. Geobios, 21(2), 209–233. https://doi.org/10.1016/S0016-6995(88)80019-6
  • Poiré, D. G., Spalletti, L. A., & Del Valle, A. (2003). The Cambrian-Ordovician siliciclastic platform of the Balcarce formation (Tandilia System, Argentina): Facies, trace fossils, palaeoenvironments and sequence stratigraphy. Geologica Acta, 1, 41–60.
  • Porębski, S. J. (1995). Facies architecture in a tectonically − controlled incised − valley estuary: La Meseta Formation (Eocene) of Seymour Island, Antarctic Peninsula. In K. Birkenmajer (Ed.), Geological results of the Polish Antarctic expeditions. Part XI. Studia Geologica Polonica (Vol. 107, pp. 7–97). Wydawnictwa Geologiczne.
  • Porębski, S. J. (2000). Shelf − valley compound fill produced by fault subsidence and eustatatic sea − level changes, Eocene La Meseta Formation, Seymour Island, Antarctica. Geology, 28(2), 147–150. https://doi.org/10.1130/0091-7613(2000)28<147:SCFPBF>2.0.CO;2
  • Powichrowski, L. K. (1989). Trace fossils from the Helminthoid Flysch (Upper Cretaceous-Palaeocene) of the Ligurian Alps (Italy): Development of deep marine ichnoassociations in fan and basin plain environments. Eclogae Geologicae Helvetiae, 82(2), 385–411.
  • Poyatos-Moré, M., García-García, F., Rodríguez-Tovar, F. J., Soria, J., Viseras, C., Pérez-Valera, F., & Midtkandal, I. (2022). Sharp-based, mixed carbonate–siliciclastic shallow-marine deposits (upper Miocene, Betic Cordillera, Spain): The record of ancient transgressive shelf ridges? Sedimentary Geology, 429, 106077. https://doi.org/10.1016/j.sedgeo.2021.106077
  • Quatrefages, M. A. D. (1849). Note sur la Scolicia prisca (A. de Q.), annélide fossile de la craie. Annales Des Sciences Naturelles 3, Zoologie, 12, 265–266.
  • Radwański, Z. (1978). Środowisko sedymentacyjne fliszu formacji sromowieckiej (górna kreda) w Pienińskim Pasie Skałkowym. Studia Geologica Polonica, 57, 1–86.
  • Rajchel, J., & Uchman, A. (1998). Ichnological analysis of an Eocene mixed marly-siliciclastic flysch deposits in the Nienadowa Marls Member, Skole Unit, Polish Flysch Carpathians. Annales Societatis Geologorum Poloniae, 68, 61–74.
  • Rajchel, J., & Uchman, A. (2012). Ichnology of Upper Cretaceous deep-sea thick-bedded flysch sandstones: Lower Istebna Beds, Silesian Unit (Outer Carpathians, southern Poland). Geologica Carpathica, 63(2), 107–120. https://doi.org/10.2478/v10096-012-0009-3
  • Rajkumar, H. S., Soibam, I., Khaidem, K. S., Sanasam, S. S., & Khuman, C. M. (2019). Ichnological significance of upper Disang formation and lower Barail formation (Late Eocene to Early Oligocene) of Nagaland, Northeast India, in the Indo-Myanmar Ranges. Journal of the Geological Society of India, 93(4), 471–481. https://doi.org/10.1007/s12594-019-1202-0
  • Rebata H. L. A., Räsänen, M. E., Gingras, M. K., Vieira, V., Jr., Barberi, M., & Irion, G. (2006). Sedimentology and ichnology of tide-influenced Late Miocene successions in western Amazonia: The gradational transition between the Pebas and Nauta formations. Journal of South American Earth Sciences, 21(1–2), 96–119. https://doi.org/10.1016/j.jsames.2005.07.011
  • Rex, M. A., & Etter, R. J. (2010). Deep-sea biodiversity: Pattern and scale. Harvard University Press.
  • Riahi, S., Uchman, A., Stow, D., Soussi, M., & Ismail-Lattrache, K. B. (2014). Deep-sea trace fossils of the Oligocene–Miocene Numidian Formation, northern Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology, 414, 155–177. https://doi.org/10.1016/j.palaeo.2014.08.010
  • Rütters, S., & McCann, T. (2018). The ichnoassemblages of the Abad Member (Tortonian–Messinian), Vera Basin, SE Spain: Implications for the regional tectonic and palaeogeographical evolution. Geological Magazine, 155(6), 1277–1304. https://doi.org/10.1017/S0016756817000127
  • Rybakova, E., Krylova, E., Mordukhovich, V., Galkin, S., Alalykina, I., Smirnov, I., Sanamyan, N., Nekhaev, I., Vinogradov, G., Shilov, V., Prudkovsky, A., Kolpakov, E., Gebruk, A., & Adrianov, A. (2022). Methane seep communities on the Koryak slope in the Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 206, 105203. https://doi.org/10.1016/j.dsr2.2022.105203
  • Rodríguez-Tovar, F. J., Uchman, A., Payros, A., Orue-Etxebarria, X., Apellaniz, E., & Molina, E. (2010). Sea-level dynamics and palaeoecological factors affecting trace fossil distribution in Eocene turbiditic deposits (Gorrondatxe section, N Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 285(1–2), 50–65. https://doi.org/10.1016/j.palaeo.2009.10.022
  • Rodríguez-Tovar, F. J., Pujalte, V., & Payros, A. (2020). Danian-lower Selandian Microcodium-rich calcarenites of the Subbetic Zone (SE Spain): Record of Nereites ichnofacies in a deep-sea, base-of-slope system. Sedimentary Geology, 406, 105723. https://doi.org/10.1016/j.sedgeo.2020.105723
  • Sari, B., Kandemir, R., Özer, S., Walaszczyk, I., Görmüş, M., Demircan, H., & Yilmaz, C. (2014). Upper Campanian calciclastic turbidite sequences from the Hacımehmet area (eastern Pontides, NE Turkey): Integrated biostratigraphy and microfacies analysis. Acta Geologica Polonica, 64(4), 393–418. https://doi.org/10.2478/agp-2014-0022
  • Sato, K. N., Levin, L. A., & Schiff, K. (2017). Habitat compression and expansion of sea urchins in response to changing climate conditions on the California continental shelf and slope (1994–2013). Deep Sea Research Part II: Topical Studies in Oceanography, 137, 377–389. https://doi.org/10.1016/j.dsr2.2016.08.012
  • Saucède, T., Mooi, R., & David, B. (2007). Phylogeny and origin of Jurassic irregular echinoids (Echinodermata: Echinoidea). Geological Magazine, 144(2), 333–359. https://doi.org/10.1017/S0016756806003001
  • Schinner, G. O. (1993). Burrowing behavior, substratum preference, and distribution of Schizaster canaliferus (Echinoidea: Spatangoida) in the Northern Adriatic Sea. Marine Ecology, 14(2), 129–145. https://doi.org/10.1111/j.1439-0485.1993.tb00371.x
  • Seilacher, A. (1955). Spuren und Fazies im Unterkambrium. In O.H. Schindewolf, & A. Seilacher (Eds.), Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan) (Vol. 10, pp. 11–143). Akademie der Wissenschaften und der Literatur zu Mainz, mathematisch-naturwissenschaftliche Klasse, Abhandlungen.
  • Seilacher, A. (1967). Bathymetry of trace fossils. Marine Geology, 5(5–6), 413–428. https://doi.org/10.1016/0025-3227(67)90051-5
  • Sharafi, M., Rodríguez-Tovar, F. J., Janočko, J., Bayet-Goll, A., Mohammadi, M., & Khanehbad, M. (2022). Environmental significance of trace fossil assemblages in a tide–wave-dominated shallow-marine carbonate system (Lower Cretaceous), northern Neo-Tethys margin, Kopet-Dagh Basin, Iran. International Journal of Earth Sciences, 111(1), 103–126. https://doi.org/10.1007/s00531-021-02101-0
  • Singh, I. B., & Rai, V. (1983). Fauna and biogenic structures in Krol–Tal succession (Vendian–Early Cambrian), Lesser Himalaya: Their biostratigraphic and palaeoecological significance. Journal of the Palaeontological Society of India, 28, 67–90.
  • Smith, A. B. (2004). Phylogeny and systematics of holasteroid echinoids and their migration into the deep‐sea. Palaeontology, 47(1), 123–150. https://doi.org/10.1111/j.0031-0239.2004.00352.x
  • Smith, A. B., & Anzalone, L. (2000). Loriolella, a key taxon for understanding the early evolution of irregular echinoids. Palaeontology, 43(2), 303–324. https://doi.org/10.1111/1475-4983.00128
  • Smith, A. B., & Crimes, T. P. (1983). Trace fossils formed by heart urchins‐a study of Scolicia and related traces. Lethaia, 16(1), 79–92. https://doi.org/10.1111/j.1502-3931.1983.tb01147.x
  • Smith, A. B., & Stockley, B. (2005). The geological history of deep-sea colonization by echinoids: Roles of surface productivity and deep-water ventilation. Proceedings of the Royal Society.Proceedings. Biological Sciences, 272(1565), 865–869. https://doi.org/10.1098/rspb.2004.2996
  • Smith, P. R., Harper, A. S., & Wood, M. F. (1982). Nonmarine trace fossils in Miocene-Pliocene Ridge Basin, Central Transverse Range, California. In J.C. Cromwell, J.C., & M.H. Link (Eds.), Geologic History of Ridge Basin, Southern California (pp. 253–258). Society of Economic Paleontologists and Mineralogists, Pacific Section.
  • Sour-Tovar, F., Quiroz-Barroso, S. A., Guerrero-Arenas, R., Jiménez-Hidalgo, E. (2023). Post-Symposium Fieldtrip Guidebook. SLIC 2023, Fifth Latin American Symposium on Ichnology, Puerto Escondido (pp. 25).
  • Stanley, C. D., & Pickerill, R. K. (1993). Fustiglyphus annulatus from the Ordovician of Ontario, Canada, with a systematic review of the ichnogenera Fustiglyphus Vialov 1971 and Rhabdoglyphus Vassoievich 1951. Ichnos, 3, 57–67.
  • Stevenson, A., & Kroh, A. (2020). Deep-sea sea urchins. Developments in Aquaculture and Fisheries Science, 43, 237–254.
  • Stiles, E., Montes, C., Jaramillo, C., & Gingras, M. K. (2022). A shallow-water depositional interpretation for the upper Miocene Chagres Formation (Caribbean coast of Panama) (Vol. 134, pp. 2971–2985). Geological Society of America, Bulletin.
  • Strathmann, R. (1978). Length of pelagic period in echinoderms with feeding larvae from the Northeast Pacific. Journal of Experimental Marine Biology and Ecology, 34(1), 23–27. https://doi.org/10.1016/0022-0981(78)90054-0
  • Tanaka, K. (1970). Sedimentation of the Cretaceous flysch of the Ikushumbetsu area, Hokkaido, Japan. Geological Survey of Japan, Report, 236, 1–102.
  • Tchoumatchenco, P., & Uchman, A. (2001). The oldest deep-sea Ophiomorpha and Scolicia and associated trace fossils from the Upper Jurassic–Lower Cretaceous deep-water turbidite deposits of SW Bulgaria. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(1–2), 85–99. https://doi.org/10.1016/S0031-0182(01)00218-8
  • Tunis, G., & Uchman, A. (1992). Trace fossils in the ‘Flysch del Grivó’ (Lower Tertiary) in the Julian Prealps, NE Italy: Preliminary observations. Gortania, 14, 71–104.
  • Tunis, G., & Uchman, A. (1996a). Trace fossil and facies changes in the Upper Cretaceous-middle Eocene flysch deposits of the Julian Prealps (Italy and Slovenia): Consequences of regional and world-wide changes. Ichnos, 4(3), 169–190. https://doi.org/10.1080/10420949609380125
  • Tunis, G., & Uchman, A. (1996b). Ichnology of the Eocene flysch deposits in the Istria peninsula, Croatia and Slovenia. Ichnos, 5(1), 1–22. https://doi.org/10.1080/10420949609386403
  • Tunis, G., & Uchman, A. (1998). Ichnology of flysch deposits in the Carnian Pre-Alps (North-Eastern Italy). Gortania, 20, 41–58.
  • Turner, B. R. (1978). Trace fossils from the Upper Triassic fluviatile Molteno Formation of the Karoo (Gondwana) supergroup, Lesotho. Journal of Paleontology, 52, 959–963.
  • Turner, B. R., Stanistreet, I. G., & Whateley, M. K. G. (1981). Trace fossils and palaeoenvironments in the Ecca Group of the Nongoma Graben, northern Zululand, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 36(1–2), 113–123. https://doi.org/10.1016/0031-0182(81)90053-5
  • Tyler, P. A., & Young, C. M. (1998). Temperature and pressure tolerances in dispersal stages of the genus Echinus (Echinodermata: Echinoidea): Prerequisites for deep-sea invasion and speciation. Deep Sea Research Part II: Topical Studies in Oceanography, 45(1–3), 253–277. https://doi.org/10.1016/S0967-0645(97)00091-X
  • Tyler, P. A., Young, C. M., & Clarke, A. (2000). Temperature and pressure tolerances of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri (Echinodermata: Echinoidea): Potential for deep-sea invasion from high latitudes. Marine Ecology Progress Series, 192, 173–180. https://doi.org/10.3354/meps192173
  • Uchman, A. (1991). Diverse tiering patterns in Paleogene flysch trace fossils, Magura nappe, Carpathian Mountains, Poland. Ichnos, 1(4), 287–292. https://doi.org/10.1080/10420949109386363
  • Uchman, A. (1994). Wstepne wyniki badań ichnologicznych w warstwach hieroglifowych (Eocen) jednostki dukielskiej. Polska Akademia Nauk, Oddział w Krakowie, Sprawozdania z Posiedzeń Komisji Naukowych Polskiej Akademii Nauk, 36, 257–258.
  • Uchman, A. (1995). Taxonomy and palaeoecology of flysch trace fossils: The Marnoso-arenacea formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria, 15, 1–115.
  • Uchman, A. (1998). Taxonomy and ethology of flysch trace fossils: Revision of the Marian Książkiewicz collection and studies of complementary material. Annales Societatis Geologorum Poloniae, 68, 105–218.
  • Uchman, A. (1999). Ichnology of the Rhenodanubian Flysch (Lower Cretaceous-Eocene) in Austria and Germany. Beringeria, 25, 67–173.
  • Uchman, A. (2001). Eocene flysch trace fossils from the Hecho Group of the Pyrenees, northern Spain. Beringeria, 28, 3–41.
  • Uchman, A. (2003). Trends in diversity, frequency and complexity of graphoglyptid trace fossils: Evolutionary and palaeoenvironmental aspects. Palaeogeography, Palaeoclimatology, Palaeoecology, 192(1–4), 123–142. https://doi.org/10.1016/S0031-0182(02)00682-X
  • Uchman, A. (2004). Phanerozoic history of deep-sea trace fossils. In D. McIlroy (Ed.), The application of ichnology to palaeoenvironmental and stratigraphic analysis (Vol. 228, pp. 125–139). Geological Society of London, Special Publication. https://doi.org/10.1144/GSL.SP.2004.228.01.07
  • Uchman, A. (2007). Deep-sea trace fossils from the mixed carbonate-siliciclastic flysch of the Monte Antola Formation (Late Campanian-Maastrichtian), North Apennines, Italy. Cretaceous Research, 28(6), 980–1004. https://doi.org/10.1016/j.cretres.2007.01.005
  • Uchman, A., & Demírcan, H. (1999). Trace fossils of Miocene deep-sea fan fringe deposits from the Cingöz Formation, southern Turkey. Annales Societatis Geologorum Poloniae, 69, 125–135.
  • Uchman, A., & Krenmayr, H. G. (1995). Trace fossils from lower Miocene (Ottnangian) molasse deposits of Upper Austria. Paläontologische Zeitschrift, 69(3–4), 503–524. https://doi.org/10.1007/BF02987810
  • Uchman, A., & Tchoumatchenco, P. (2022). Ichnofossils from turbiditic deposits of the Emine Formation (Campanian–Paleocene) in the Eastern Stara Planina Mountains, Bulgaria. Geologica Balcanica (pp. 72). Geological Institute, Bulgarian Academy of Sciences.
  • Uchman, A., Janbu, N. E., & Nemec, W. (2004). Trace fossils in the Cretaceous-Eocene flysch of the Sinop-Boyabat basin, central Pontides, Turkey. Annales Societatis Geologorum Poloniae, 74, 197–235.
  • Uchman, A., Abbassi, N., & Naeeji, M. (2005). Persichnus igen. nov. and associated ichnofossils from the Upper Cretaceous to Eocene deep-sea deposits of the Sanandaj Area, West Iran. Ichnos, 12(2), 141–149. https://doi.org/10.1080/10420940590914624
  • Uchman, A., Johnson, M. E., Ramalho, R. S., Quartau, R., Berning, B., Hipólito, A., Melo, C. S., Rebelo, A. C., Cordeiro, R., & Ávila, S. P. (2020). Neogene marine sediments and biota encapsulated between lava flows on Santa Maria Island (Azores, north‐east Atlantic): An interplay between sedimentary, erosional and volcanic processes. Sedimentology, 67(7), 3595–3618. https://doi.org/10.1111/sed.12763
  • Villegas-Martín, J., & Rojas-Consuegra, R. (2010). Primeros aportes a la sistemática icnológica del Eoceno de Cuba [Paper presentation]. First Latin American Symposium on Ichnology, São Leopoldo., Abstracts (p. 67).
  • Villegas-Martín, J., Netto, R. G., Lavina, E. L. C., & Rojas-Consuegra, R. (2014). Ichnofabrics of the Capdevila formation (early Eocene) in the Los Palacios Basin (western Cuba): Paleoenvironmental and paleoecological implications. Journal of South American Earth Sciences, 56 pp., 214–227. https://doi.org/10.1016/j.jsames.2014.09.006
  • Villier, L., Néraudeau, D., Clavel, B., Neumann, C., & David, B. (2004). Phylogeny of early Cretaceous spatangoids (Echinodermata: Echinoidea) and taxonomic implications. Palaeontology, 47(2), 265–292. https://doi.org/10.1111/j.0031-0239.2004.00364.x
  • Virtasalo, J. J., Bonsdorff, E., Moros, M., Kabel, K., Kotilainen, A. T., Ryabchuk, D., Kallonen, A., & Hämäläinen, K. (2011). Ichnological trends along an open-water transect across a large marginal-marine epicontinental basin, the modern Baltic Sea. Sedimentary Geology, 241(1–4), 40–51. https://doi.org/10.1016/j.sedgeo.2011.09.010
  • Walker, D. E., & Gagnon, J.-M. (2014). Locomotion and functional spine morphology of the heart urchin Brisaster fragilis, with comparisons to B. latifrons. Journal of Marine Biology, 9, 297631.
  • Walters, M., MacEachern, J., & Hubbard, S. (2019). Scolicia-dominated levee deposits, upper Cretaceous Nanaimo Group, Saltspring Island, British Columbia, Canada. In: 2019 AAPG Annual Convention and Exhibition AAPG Datapages/Search and Discovery Article #90350.
  • Wetzel, A. (1983). Biogenic structures in modern slope to deep-sea sediments in the Sulu Sea Basin (Philippines). Palaeogeography, Palaeoclimatology, Palaeoecology, 42(3–4), 285–304. https://doi.org/10.1016/0031-0182(83)90027-5
  • Wetzel, A. (1984). Bioturbation in deep-sea fine-grained sediments: Influence of sediment texture, turbidite frequency and rates of environmental change. In D. A. V. Stow, & D. J. W. Piper (Eds), Fine-grained Sediments: Deep-water Processes and Facies. Geological Society, London, Special Publications, 15(1), 595–608. https://doi.org/10.1144/GSL.SP.1984.015.01.37
  • Wetzel, A. (2008). Recent bioturbation in the deep South China Sea: A uniformitarian ichnologic approach. Palaios, 23(9), 601–615. https://doi.org/10.2110/palo.2007.p07-096r
  • Wetzel, A. (2009). The preservation potential of ash layers in the deep‐sea: The example of the 1991‐Pinatubo ash in the South China Sea. Sedimentology, 56(7), 1992–2009. https://doi.org/10.1111/j.1365-3091.2009.01066.x
  • Wetzel, A., & Uchman, A. (1997). Ichnology of deep-sea fan overbank deposits of the Ganei Slates (Eocene, Switzerland) – A classical flysch trace fossil locality studied first by Oswald Heer. Ichnos, 5(2), 139–162. https://doi.org/10.1080/10420949709386413
  • Wetzel, A., & Uchman, A. (1998). Trophic level in the deep-sea recorded by ichnofabrics: An example from Palaeogene flysch in the Carpathians. Palaios, 13(6), 533–546. https://doi.org/10.2307/3515345
  • Wetzel, A., & Uchman, A. (2001). Sequential colonization of muddy turbidites in the Eocene Beloveža formation, Carpathians, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 168(1–2), 171–186. https://doi.org/10.1016/S0031-0182(00)00254-6
  • Wiese, F., Schlüter, N., Zirkel, J., Herrle, J. O., & Friedrich, O. (2023). A 104-Ma record of deep-sea Atelostomata (Holasterioda, Spatangoida, irregular echinoids) – A story of persistence, food availability and a big bang. PloS One, 18(8), e0288046. https://doi.org/10.1371/journal.pone.0288046
  • Yang, S., Song, Z., & Liang, D. (1982). Middle Jurassic to Early Cretaceous flysch trace fossils from the Ngari region, Tibet. Acta Geologica Sinica, 4, 302–313.
  • Young, C. M., Ekaratne, S. U., & Cameron, J. L. (1998). Thermal tolerances of embryos and planktotrophic larvae of Archaeopneustes hystrix (A. Agassiz) (Spatangoidea) and Stylocidaris lineata (Mortensen) (Cidaroidea), bathyal echinoids from the Bahamian Slope. Journal of Experimental Marine Biology and Ecology, 223(1), 65–76. https://doi.org/10.1016/S0022-0981(97)00149-4
  • Zhang, L. J., Fan, R. Y., & Gong, Y. M. (2015). Zoophycos macroevolution since 541 Ma. Scientific Reports, 5(1), 14954. https://doi.org/10.1038/srep14954
  • Zheng, Q. F., & Cao, C. Q. (2023). Dynamic process of turbidity current‐induced benthic‐marine ­oxygenation evidenced by sequential ichnocoenoses: An example from a Late Permian oxygen‐deficient basin. Geological Journal, 59(1), 1–11. https://doi.org/10.1002/gj.4837

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.