149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

1-Phosphanorbornane aldehyde as precursor for enantiopure P,N,N ligands

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 303-307 | Received 23 Dec 2023, Accepted 29 Mar 2024, Published online: 18 Apr 2024

References

  • (a) Brooks, W. H.; Guida, W. C.; Daniel, K. G. The Significance of Chirality in Drug Design and Development. Curr. Top. Med. Chem. 2011, 11, 760–770. DOI: 10.2174/156802611795165098. (b) Chen, Q.-S.; Li, J.-Q.; Zhang, Q.-W. Application of Chiral Piperidine Scaffolds in Drug Design. Pharmaceut. Fronts 2023, 05, e1–e14. DOI: 10.1055/s-0043-1764218.
  • (a) Fanourakis, A.; Docherty, P. J.; Chuentragool, P.; Phipps, R. J. Recent Developments in Enantioselective Transition Metal Catalysis Featuring Attractive Noncovalent Interactions between Ligand and Substrate. ACS Catal. 2020, 10, 10672–10714. DOI: 10.1021/acscatal.0c02957. (b) García Mancheño, O.; Waser, M. Recent Developments and Trends in Asymmetric Organocatalysis. Eur. J. Org. Chem. 2023, 26, e202200950. DOI: 10.1002/ejoc.202200950.
  • (a) Corbridge, D. E. C. Phosphorus. Chemistry, Biochemistry and Technology (CRC Press, Boca Raton, 2013). (b) Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955–5980. DOI: 10.1021/jm200587f. (c) Forlani, G.; Berlicki, L.; Duò, M.; Dziędzioła, G.; Giberti, S.; Bertazzini, M.; Kafarski, P. Synthesis and Evaluation of Effective Inhibitors of Plant δ1-Pyrroline-5-Carboxylate Reductase. J. Agric. Food Chem. 2013, 61, 6792–6798. DOI: 10.1021/jf401234s. (d) Long, N.; Cai, X.-J.; Song, B.-A.; Yang, S.; Chen, Z.; Bhadury, P. S.; Hu, D.-Y.; Jin, L.-H.; Xue, W. Synthesis and Antiviral Activities of Cyanoacrylate Derivatives Containing an α-Aminophosphonate Moiety. J. Agric. Food Chem. 2008, 56, 5242–5246. DOI: 10.1021/jf800405m.
  • (a) Xu, G.; Senanayake, C. H.; Tang, W. P-Chiral Phosphorus Ligands Based on a 2,3-Dihydrobenzo[d][1,3]Oxaphosphole Motif for Asymmetric Catalysis. Acc. Chem. Res. 2019, 52, 1101–1112. DOI: 10.1021/acs.accounts.9b00029. (b) Börner A. (Ed.) Phosphorus ligands in asymmetric catalysis (Wiley-VCH-Verl., Weinheim, 2008). (c) Kamer, P. C. J. (Ed.) Phosphorus(III) Ligands in Homogeneous Catalysis. Design and Synthesis (Wiley, Chichester, 2012). (d) Imamoto, T. Synthesis and Applications of High-Performance P-Chiral Phosphine Ligands. Proc. Jpn. Acad, Ser. B 2021, 97, 520–542. DOI: 10.2183/pjab.97.026. (e) Dutartre, M.; Bayardon, J.; Jugé, S. Applications and Stereoselective Syntheses of P-Chirogenic Phosphorus Compounds. Chem. Soc. Rev. 2016, 45, 5771–5794. DOI: 10.1039/C6CS00031B. (f) Cabré, A.; Riera, A.; Verdaguer, X. P-Stereogenic Amino-Phosphines as Chiral Ligands: From Privileged Intermediates to Asymmetric Catalysis. Acc. Chem. Res. 2020, 53, 676–689. DOI: 10.1021/acs.accounts.9b00633. (g) Xie, X.; Li, S.; Chen, Q.; Guo, H.; Yang, J.; Zhang, J. Synthesis and Application of Novel P-Chiral Monophosphorus Ligands. Org. Chem. Front. 2022, 9, 1589–1592. DOI: 10.1039/D1QO01819A.
  • Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. Asymmetric Hydrogenation. Rhodium Chiral Bisphosphine Catalyst. J. Am. Chem. Soc. 1977, 99, 5946–5952. DOI: 10.1021/ja00460a018.
  • (a) Yavari, K.; Aillard, P.; Zhang, Y.; Nuter, F.; Retailleau, P.; Voituriez, A.; Marinetti, A. Helicenes with Embedded Phosphole Units in Enantioselective Gold Catalysis. Angew. Chem. Int. Ed. 2014, 53, 861–865. DOI: 10.1002/anie.201308377. (b) Tang, W.; Qu, B.; Capacci, A. G.; Rodriguez, S.; Wei, X.; Haddad, N.; Narayanan, B.; Ma, S.; Grinberg, N.; Yee, N. K.; et al. Novel, Tunable, and Efficient Chiral Bisdihydrobenzooxaphosphole Ligands for Asymmetric Hydrogenation. Org. Lett. 2010, 12, 176–179. DOI: 10.1021/ol9025815.
  • (a) Mathey, F. The Organic Chemistry of Phospholes. Chem. Rev 1988, 88, 429–453. DOI: 10.1021/cr00084a005. (b) Maitra, K.; Catalano, V. J.; Nelson, J. H. Intramolecular [4 + 2] Diels − Alder Cycloaddition of a 2H-Phosphole to Coordinated Unsaturated Phosphines, Phospholes, and an Arsine. J. Am. Chem. Soc. 1997, 119, 12560–12567. DOI: 10.1021/ja9724654. (c) Zhang, K.; Zhang, Q.; Wei, D.; Tian, R.; Duan, Z. Hetero-Diels–Alder Reactions of 2H-Phospholes with Allenes: Synthesis and Functionalization of 6-Methylene-1-Phosphanorbornenes. Org. Chem. Front. 2021, 8, 3740–3745. DOI: 10.1039/D1QO00535A. (d) Mathey, F. Transient 2H-Phospholes as Powerful Synthetic Intermediates in Organophosphorus Chemistry. Acc. Chem. Res. 2004, 37, 954–960. DOI: 10.1021/ar030118v.
  • Wonneberger, P.; König, N.; Kraft, F. B.; Sárosi, M. B.; Hey-Hawkins, E. Access to 1-Phospha-2-Azanorbornenes by Phospha-aza-Diels–Alder Reactions. Angew. Chem. Int. Ed. Engl. 2019, 58, 3208–3211. DOI: 10.1002/anie.201811673.
  • Ramazanova, K.; Lönnecke, P.; Hey-Hawkins, E. Facile Synthesis of Enantiomerically Pure P-Chiral 1-Alkoxy-2,3-Dihydrophospholes via Nucleophilic P-N Bond Cleavage of a 1-Phospha-2-Azanorbornene. Chem. Eur. J. 2023, 29, e202300790. DOI: 10.1002/chem.202300790.
  • Ramazanova, K.; Müller, A. K.; Lönnecke, P.; Hollóczki, O.; Kirchner, B.; Hey-Hawkins, E. Ring-Opening Reaction of 1-Phospha-2-Azanorbornenes via P-N Bond Cleavage and Reversibility Studies. Molecules 2023, 28, 7163. DOI: 10.3390/molecules28207163.
  • Möller, T.; Sárosi, M. B.; Hey-Hawkins, E. Asymmetric Phospha-Diels–Alder Reaction: A Stereoselective Approach towards P-Chiral Phosphanes through Diastereotopic Face Differentiation. Chem. Eur. J. 2012, 18, 16604–16607. DOI: 10.1002/chem.201203671.
  • Möller, T.; Wonneberger, P.; Sárosi, M. B.; Coburger, P.; Hey-Hawkins, E. P-Chiral 1-Phosphanorbornenes: From Asymmetric phospha-Diels–Alder Reactions towards Ligand Design and Functionalisation. Dalton Trans. 2016, 45, 1904–1917. DOI: 10.1039/C5DT02564H.
  • Ramazanova, K.; Chakrabortty, S.; Kallmeier, F.; Kretzschmar, N.; Tin, S.; Lönnecke, P.; de Vries, J. G.; Hey-Hawkins, E. Access to Enantiomerically Pure P-Chiral 1-Phosphanorbornane Silyl Ethers. Molecules 2023, 28, 6210. DOI: 10.3390/molecules28176210.
  • Ramazanova, K.; Chakrabortty, S.; Müller, B. H.; Lönnecke, P.; de Vries, J. G.; Hey-Hawkins, E. Synthesis of P-Stereogenic 1-Phosphanorbornane-Derived Phosphine–Phosphite Ligands and Application in Asymmetric Catalysis. RSC Adv. 2023, 13, 34439–34444. DOI: 10.1039/D3RA07630J.
  • Boucher, M. M.; Furigay, M. H.; Quach, P. K.; Brindle, C. S. Liquid–Liquid Extraction Protocol for the Removal of Aldehydes and Highly Reactive Ketones from Mixtures. Org. Process Res. Dev. 2017, 21, 1394–1403. DOI: 10.1021/acs.oprd.7b00231.
  • Moloney, M. G. (Ed.) Organic Reaction Mechanisms 2019: An annual survey covering the literature dated January to December 2019, (Wiley, 2023)
  • Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.; Goodfellow, R.; Granger, P. NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts. IUPAC Recommendations 2001. International Union of Pure and Applied Chemistry. Physical Chemistry Division. Commission on Molecular Structure and Spectroscopy. Solid State Nucl. Magn. Reson. 2002, 22, 458–483. DOI: 10.1002/mrc.1042.
  • Rigaku Corporation. CrysAlisPro Software System (Rigaku Oxford Diffraction, Wroclaw, Poland, 1995–2023).
  • Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. DOI: 10.1107/S2053273314026370.
  • Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. DOI: 10.1107/S2053229614024218.
  • Crystal Impact GbR, version 4.6.8, DIAMOND 4, K. Brandenburg, Bonn, Germany, 2022.