58
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of bis-(benzhydryloxy) substituted axially silicon(IV) phthalocyanine: investigation of photophysical, photochemical, and computational electronic properties

, & ORCID Icon
Pages 324-336 | Received 21 Sep 2023, Accepted 24 Mar 2024, Published online: 15 Apr 2024

References

  • Yaşa Atmaca, G. Investigation of Singlet Oxygen Efficiency of Di-Axially Substituted Silicon Phthalocyanine with Sono-Photochemical and Photochemical Studies. Polyhedron 2021, 193, 114894. DOI: 10.1016/j.poly.2020.114894.
  • Pereira, G. F. M.; Tasso, T. T. From Cuvette to Cells: How the Central Metal İon Modulates the Properties of Phthalocyanines and Porphyrazines as Photosensitizers. Inorg. Chim. Acta 2021, 519, 120271. DOI: 10.1016/j.ica.2021.120271.
  • Kawczyk-Krupka, A.; Bugaj, A. M.; Latos, W.; Zaremba, K.; Wawrzyniec, K.; Kucharzewski, M.; Sieroń, A. Photodynamic Therapy in Colorectal Cancer treatment - The State of the Art in Preclinical Research. Photodiagnosis Photodyn. Ther. 2016, 13, 158–174. DOI: 10.1016/j.pdpdt.2015.07.175.
  • Liu, R.; Gao, Y.; Liu, N.; Suo, Y. Nanoparticles Loading Porphyrin Sensitizers in İmprovement of Photodynamic Therapy for Ovarian Cancer. Photodiagnosis Photodyn. Ther. 2021, 33, 102156. DOI: 10.1016/j.pdpdt.2020.102156.
  • Gvozdev, D. A.; Ramonova, A. A.; Maksimov, E. G.; Paschenko, V. Z. Specific Features of the İnteraction between Chemical Traps and Phthalocyanine Dyes Affecting the Measurement of the Yield of Reactive Oxygen Species. Dyes Pigm. 2020, 181, 108538. DOI: 10.1016/j.dyepig.2020.108538.
  • Mohammed, I.; Oluwole, D. O.; Nemakal, M.; Sannegowda, L. K.; Nyokong, T. Investigation of Novel Substituted Zinc and Aluminium Phthalocyanines for Photodynamic Therapy of Epithelial Breast Cancer. Dyes Pigm. 2019, 170, 107592. DOI: 10.1016/j.dyepig.2019.107592.
  • Oluwole, D. O.; Sarı, F. A.; Prinsloo, E.; Dube, E.; Yuzer, A.; Nyokong, T.; Ince, M. Photophysicochemical Properties and Photodynamic Therapy Activity of Highly Water-Soluble Zn(II) Phthalocyanines. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 203, 236–243. DOI: 10.1016/j.saa.2018.05.090.
  • Wang, Z.; Jia, T.; Sun, Q.; Kuang, Y.; Liu, B.; Xu, M.; Zhu, H.; He, F.; Gai, S.; Yang, P. Construction of Bi/Phthalocyanine Manganese Nanocomposite for Trimodal İmaging Directed Photodynamic and Photothermal Therapy Mediated by 808 Nm Light. Biomaterials 2020, 228, 119569. DOI: 10.1016/j.biomaterials.2019.119569.
  • Hodgkinson, N.; Kruger, C. A.; Mokwena, M.; Abrahamse, H. Cervical Cancer Cells (HeLa) Response to Photodynamic Therapy Using a Zinc Phthalocyanine Photosensitizer. J. Photochem. Photobiol. B 2017, 177, 32–38. DOI: 10.1016/j.jphotobiol.2017.10.004.
  • Reddy, G.; Gaspera, E. D.; Jones, L. A.; Giribabu, L. Self-Assembly of a Symmetrical Dimethoxyphenyl Substituted Zn(II) Phthalocyanine into Nanoparticles with Enhanced NIR Absorbance for Singlet Oxygen Generation. J. Photochem. Photobiol. A: Chem. 2021, 408, 113123. DOI: 10.1016/j.jphotochem.2020.113123.
  • Çapkın, A.; Pişkin, M.; Durmuş, M.; Bulut, M. Spectroscopic, Photophysical and Photochemical Properties of Newly Metallo-Phthalocyanines Containing Coumarin Derivative. J. Mol. Struct. 2020, 1213, 128145. DOI: 10.1016/j.molstruc.2020.128145.
  • Gorduk, S. Highly Soluble HOPEMP-Functionalized Phthalocyanines for Photodynamic Activity: Photophysical, Photochemical and Aggregation Properties. J. Mol. Struct. 2020, 1217, 128478. DOI: 10.1016/j.molstruc.2020.128478.
  • Stachowiak, A.; Kędzierski, K.; Barszcz, B.; Kotwica, K.; Wróbel, D. Determination of Phthalocyanines Energy Gaps Based on Spectroscopic and Electrochemical Studies and DFT Calculations. J. Mol. Liq. 2021, 341, 116800. DOI: 10.1016/j.molliq.2021.116800.
  • Krishnan, M. M.; Baskaran, S.; Arumugham, M. N. Photochemical and DFT/TD-DFT Study of Trifluoroethoxy Substituted Asymmetric Metal-Free and Copper(II) Phthalocyanines. J. Fluorine Chem. 2017, 202, 1–8. DOI: 10.1016/j.jfluchem.2017.08.011.
  • Michálková Nečedová, M.; Martinická, A.; Magdolen, P.; Novakova, V.; Zahradník, P. Phthalocyanine-Triphenylamine Dyads: Synthesis, Electrochemical, Spectral and DFT Study. Dyes Pigm. 2017, 141, 448–456. DOI: 10.1016/j.dyepig.2017.02.025.
  • Thimiopoulos, A.; Vogiatzi, A.; Simandiras, E. D.; Mousdis, G. A.; Psaroudakis, N. Synthesis, Characterization and DFT Analysis of New Phthalocyanine Complexes Containing Sulfur Rich Substituents. Inorg. Chim. Acta 2019, 488, 170–181. DOI: 10.1016/j.ica.2019.01.010.
  • Das, M.; Kumar Madduluri, V.; Jaswal, V.; Sarkar, M. Bis(2-Pyridyl)Diimine as a Naked Eye Colorimetric Fluorescence Turn off Probe Selectively for Fe(II) İons as a Consequence of Energy Changes in the Electronic States upon Complexation. J. Photochem. Photobiol. A: Chem. 2022, 429, 113896. DOI: 10.1016/j.jphotochem.2022.113896.
  • Zhang, L.; Qi, D.; Zhao, L.; Bian, Y.; Li, W. Substituent Effects on the Structure–Property Relationship of Unsymmetrical Methyloxy and Methoxycarbonyl Phthalocyanines: DFT and TDDFT Theoretical Studies. J. Mol. Graph. Model. 2012, 35, 57–65. DOI: 10.1016/j.jmgm.2011.11.005.
  • Yakan, H.; Çavuş, M. S.; Güzel, E.; Arslan, B. S.; Bakır, T.; Muğlu, H. Phthalocyanines İncluding 2-Mercaptobenzimidazole Analogs: Synthesis, Spectroscopic Characteristics, Quantum-Chemical Studies on the Relationship between Electronic and Antioxidant Properties. J. Mol. Struct. 2020, 1202, 127259. DOI: 10.1016/j.molstruc.2019.127259.
  • Takakura, H.; Matsuhiro, S.; Kobayashi, M.; Goto, Y.; Harada, M.; Taketsugu, T.; Ogawa, M. Axial-Ligand-Cleavable Silicon Phthalocyanines Triggered by near-İnfrared Light toward Design of Photosensitizers for Photoimmunotherapy. J. Photochem. Photobiol. A: Chem. 2022, 426, 113749. DOI: 10.1016/j.jphotochem.2021.113749.
  • Mitra, K.; Hartman, M. C. T. Silicon Phthalocyanines: Synthesis and Resurgent Applications. Org. Biomol. Chem. 2021, 19, 1168–1190. DOI: 10.1039/D0OB02299C.
  • Lessard, B. H. The Rise of Silicon Phthalocyanine: From Organic Photovoltaics to Organic Thin Film Transistors. ACS Appl. Mater. Interfaces 2021, 13, 31321–31330. DOI: 10.1021/acsami.1c06060.
  • Ağırtaş, M. S. Highly Soluble Phthalocyanines with Hexadeca Tert-Butyl Substituents. Dyes Pigm. 2008, 79, 247–251. DOI: 10.1016/j.dyepig.2008.03.004.
  • Lessard, B. H.; Dang, J. D.; Grant, T. M.; Gao, D.; Seferos, D. S.; Bender, T. P. Bis(Tri‑n‑Hexylsilyl Oxide) Silicon Phthalocyanine: A Unique Additivein Ternary Bulk Heterojunction Organic Photovoltaic Devices. ACS Appl. Mater. Interfaces 2014, 6, 15040–15051. DOI: 10.1021/am503038t.
  • Al-Raqa, S. Y.; Khezami, K.; Kaya, E. N.; Durmuş, M. A Novel Water Soluble Axially Substituted Silicon(IV) Phthalocyanine Bearing Quaternized 4-(4-Pyridinyl)Phenol Groups: Synthesis, Characterization, Photophysicochemical Properties and BSA/DNA Binding Behavior. Polyhedron 2021, 194, 114937. DOI: 10.1016/j.poly.2020.114937.
  • Ağırtaş, M. S. Fluorescence Properties in Different Solvents and Synthesis of Axially Substituted Silicon Phthalocyanine Bearing Bis-4-Tritylphenoxy Units. Heterocycl. Commun. 2020, 26, 130–136. DOI: 10.1515/hc-2020-0113.
  • Zheng, B. D.; Li, S. L.; Huang, Z. L.; Zhang, L.; Liu, H.; Zheng, B. Y.; Ke, M. R.; Huang, J. D. A Non-Aggregated Zinc(II) Phthalocyanine with Hexadeca Cations for Antitumor and Antibacterial Photodynamic Therapies. J. Photochem. Photobiol. B 2020, 213, 112086. DOI: 10.1016/j.jphotobiol.2020.112086.
  • Atmaca, G. Y.; Dizman, C.; Eren, T.; Erdoğmuş, A. Novel Axially Carborane-Cage Substituted Silicon Phthalocyanine Photosensitizer; Synthesis, Characterization and Photophysicochemical Properties. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 137, 244–249. DOI: 10.1016/j.saa.2014.08.035.
  • Kaya, E. N.; Köksoy, B.; Yeşilot, S.; Durmuş, M. Purple Silicon(IV) Phthalocyanine Axially Substituted with BODIPY Groups. Dyes Pigm. 2020, 172, 107867. DOI: 10.1016/j.dyepig.2019.107867.
  • Cabir, B.; Yildiko, U.; Ağırtaş, M. S.; Horoz, S. Computational DFT Calculations, Photovoltaic Properties and Synthesis of (2R,3S)-2,3,4-Trihydroxybutoxy Substituted Phthalocyanines. Inorg. Nano-Met. Chem. 2020, 50, 816–827. DOI: 10.1080/24701556.2020.1725051.
  • Solğun, D. G.; Yıldıko, Ü.; Ağırtaş, M. S. Synthesis, DFT Calculations, Photophysical, Photochemical Properties of Peripherally Metallophthalocyanines Bearing (2-(Benzo[d][1,3] Dioxol-5-Ylmethoxy)Phenoxy) Substituents. Polycycl. Aromat. Compd. 2022, 42, 6444–6462. DOI: 10.1080/10406638.2021.1983618.
  • Altun, K.; Yildiko, Ü.; Tanriverdi, A. A.; Çakmak, İ. Structural and Spectral Properties of 4-(4-(1-(4-Hydroxyphenyl)-1-Phenylethyl)Phenoxy) Phthalonitrile: Analysis by TD-DFT Method, ADME Analysis and Docking Studies. IJCT 2021, 5, 147–155. DOI: 10.32571/ijct.1004065.
  • O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Cclib: A Library for Package-İndependent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29, 839–845. DOI: 10.1002/jcc.20823.
  • Zouaghi, M. O.; Arfaoui, Y.; Champagne, B. Density Functional Theory İnvestigation of the Electronic and Optical Properties of Metallo-Phthalocyanine Derivatives. Opt. Mater. 2021, 120, 111315. DOI: 10.1016/j.optmat.2021.111315.
  • Demircioğlu, Z.; Kaştaş, Ç. A.; Büyükgüngör, O. Theoretical Analysis (NBO, NPA, Mulliken Population Method) and Molecular Orbital Studies (Hardness, Chemical Potential, Electrophilicity and Fukui Function Analysis) of (E)-2-((4-Hydroxy-2-Methylphenylimino)Methyl)-3-Methoxyphenol. J. Mol. Struct. 2015, 1091, 183–195. DOI: 10.1016/j.molstruc.2015.02.076.
  • Janeoo, Shashi, Saroa, Amandeep, Kumar, Rakesh, Kaur, Harminder, Reenu, Computational İnvestigation of Bioactive 2,3-Diaryl Quinolines Using DFT Method: FT- IR, NMR Spectra, NBO, NLO, HOMO-LUMO Transitions, and Quantum-Chemical Properties. J. Mol. Struct. 2022, 1253, 132285. DOI: 10.1016/j.molstruc.2021.132285.
  • Barim, E.; Akman, F. Synthesis, Characterization and Spectroscopic İnvestigation of N-(2-Acetylbenzofuran-3-Yl)Acrylamide Monomer: Molecular Structure, HOMO–LUMO Study, TD-DFT and MEP Analysis. J. Mol. Struct. 2019, 1195, 506–513. DOI: 10.1016/j.molstruc.2019.06.015.
  • Buvaneswari, M.; Santhakumari, R.; Usha, C.; Jayasree, R.; Sagadevan, S. Synthesis, Growth, Structural, Spectroscopic, Optical, Thermal, DFT, HOMO–LUMO, MEP, NBO Analysis and Thermodynamic Properties of Vanillin İsonicotinic Hydrazide Single Crystal. J. Mol. Struct. 2021, 1243, 130856. DOI: 10.1016/j.molstruc.2021.130856.
  • Rahuman, M. H.; Muthu, S.; Raajaraman, B. R.; Raja, M.; Umamahesvari, H. Investigations on 2-(4-Cyanophenylamino) Acetic Acid by FT-IR, FT-Raman, NMR and UV-Vis Spectroscopy, DFT (NBO, HOMO-LUMO, MEP and Fukui Function) and Molecular Docking Studies. Heliyon 2020, 6, e04976. DOI: 10.1016/j.heliyon.2020.e04976.
  • Shukla, B. K.; Yadava, U. DFT Calculations on Molecular Structure, MEP and HOMO-LUMO Study of 3-Phenyl-1-(Methyl-Sulfonyl)-1H-Pyrazolo[3,4-d]Pyrimidine-4-Amine. Mater. Today: Proc. 2022, 49, 3056–3060. DOI: 10.1016/j.matpr.2020.10.903.
  • Tekeş, A. T.; Ata, A. Ç.; Tanriverdi, A. A.; Çakmak, I. In Silico Molecular Docking Studies of THBF Compound: TD-DFT Simulations and Drug Design. JIST 2021, 11, 2955–2966. DOI: 10.21597/jist.953803.
  • Yildiko, U.; Tanriverdi, A. A. A Novel Sulfonated Aromatic Polyimide Synthesis and Characterization: Energy Calculations, QTAIM Simulation Study of the Hydrated Structure of One Unit. Bulletin Korean Chem. Soc. 2022, 43, 822–835. DOI: 10.1002/bkcs.12521.
  • Srivastava, A. K.; Pandey, A. K.; Jain, S.; Misra, N. FT-IR Spectroscopy, İntra-Molecular C − H⋯O İnteractions, HOMO, LUMO, MESP Analysis and Biological Activity of Two Natural Products, Triclisine and Rufescine: DFT and QTAIM Approaches. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 136 Pt B, 682–689. DOI: 10.1016/j.saa.2014.09.082.
  • Malloum, A.; Conradie, J. QTAIM Analysis Dataset for Non-Covalent İnteractions in Furan Clusters. Data Brief. 2022, 40, 107766. DOI: 10.1016/j.dib.2021.107766.
  • Shamim, S. U. D.; Miah, M. H.; Hossain, M. R.; Hasan, M. M.; Hossain, M. K.; Hossain, M. A.; Ahmed, F. Theoretical İnvestigation of Emodin conjugated doped b12n12 Nanocage by Means of DFT, QTAIM and PCM Analysis. Physica E Low Dimens. Syst. Nanostruct. 2022, 136, 115027. DOI: 10.1016/j.physe.2021.115027.
  • Yildiko, Ü.; Türkan, F.; Tanriverdi, A. A.; Ata, A. C.; Atalar, M. N.; Cakmak, İ. Synthesis, Enzymes İnhibitory Properties and Characterization of 2- (Bis (4-Aminophenyl) Methyl) Butan-1-Ol Compound: Quantum Simulations, and in-Silico Molecular Docking Studies. J. Indian Chem. Soc. 2021, 98, 100206. DOI: 10.1016/j.jics.2021.100206.
  • Yildiko, U.; Tanriverdi, A. A. Synthesis and Characterization of Pyromellitic Dianhydride Based Sulfonated Polyimide: Survey of Structure Properties with DFT and QTAIM. J. Polym. Res. 2021, 29, 19. DOI: 10.1007/s10965-021-02872-9.
  • Kowsalya, P.; Neelakantan, M. A.; Bhuvanesh, N. S. P. Tetranuclear Cu(II) Complex with [2 + 4] Cu4O4 Cubane Based Core Framework Derived from 2-[{2-(1-Hydroxy-Ethyl)-Phenylimino}-Methyl]-6-Methoxy-Phenol: Quantifying Conventional and Unconventional İnteractions and QTAIM Analysis. J. Mol. Struct. 2022, 1254, 132396. DOI: 10.1016/j.molstruc.2022.132396.
  • Priya, M. K.; Revathi, B. K.; Renuka, V.; Sathya, S.; Asirvatham, P. S. Molecular Structure, Spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) Analysis, HOMO-LUMO Energies, Mulliken, MEP and Thermal Properties of New Chalcone Derivative by DFT Calculation. Mater. Today: Proc. 2019, 8, 37–46. DOI: 10.1016/j.matpr.2019.02.078.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian, Inc.: Wallingford, CT, 2016, Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, 2009.
  • Yİldİko, Ü.; Ata, A. Ç.; Tanriverdİ, A. A.; Çakmak, İ. Investigation of Novel Diethanolamine Dithiocarbamate Agent for RAFT Polymerization: DFT Computational Study of the Oligomer Molecules. Bull. Mater. Sci. 2021, 44, 186. DOI: 10.1007/s12034-021-02450-1.
  • Becke, A. D. Density‐Functional Thermochemistry. IV. A New Dynamical Correlation Functional and İmplications for Exact‐Exchange Mixing. J. Chem. Phys. 1996, 104, 1040–1046. DOI: 10.1063/1.470829.
  • Britel, O.; Fitri, A.; Touimi Benjelloun, A.; Slimi, A.; Benzakour, M.; McHarfi, M. Theoretical Design of New Carbazole Based Organic Dyes for DSSCs Applications. A DFT/TD-DFT İnsight. J. Photochem. Photobiol. A: Chem. 2022, 429, 113902. DOI: 10.1016/j.jphotochem.2022.113902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.