1,137
Views
120
CrossRef citations to date
0
Altmetric
Original

Bone marrow-derived mesenchymal stem cells

, &
Pages 1531-1544 | Received 14 May 2005, Published online: 01 Jul 2009

References

  • Pittenger M F, Mackay A M, Beck S C, Jaiswal R K, Douglas R, Mosca J D, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147
  • Dexter T M, Spooncer E. Growth and differentiation in the hemopoietic system. Annu Rev Cell Biol 1987; 3: 423–441
  • Devine S M, Hoffman R. Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr Opin Hematol 2000; 7: 358–363
  • Friedenstein A J, Piatetzky S, II, Petrakova K V. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16: 381–390
  • Campagnoli C, Roberts I A, Kumar S, Bennett P R, Bellantuono I, Fisk N M. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98: 2396–2402
  • Erices A, Conget P, Minguell J J. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000; 109: 235–242
  • Prockop D J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–74
  • Zvaifler N J, Marinova-Mutafchieva L, Adams G, Edwards C J, Moss J, Burger J A, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2000; 2: 477–488
  • O'Donoghue K, Choolani M, Chan J, de la Fuente J, Kumar S, Campagnoli C, et al. Identification of fetal mesenchymal stem cells in maternal blood: implications for non-invasive prenatal diagnosis. Mol Hum Reprod 2003; 9: 497–502
  • Lee O K, Kuo T K, Chen W M, Lee K D, Hsieh S L, Chen T H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103: 1669–1675
  • Suva D, Garavaglia G, Menetrey J, Chapuis B, Hoffmeyer P, Bernheim L, et al. Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells. J Cell Physiol 2004; 198: 110–118
  • in't Anker P S, Noort W A, Scherjon S A, Kleijburg-van der Keur C, Kruisselbrink A B, van Bezooijen R L, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 2003; 88: 845–852
  • Digirolamo C M, Stokes D, Colter D, Phinney D G, Class R, Prockop D J. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 1999; 107: 275–281
  • Murphy J M, Dixon K, Beck S, Fabian D, Feldman A, Barry F. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 2002; 46: 704–713
  • D'Ippolito G, Schiller P C, Perez-Stable C, Balkan W, Roos B A, Howard G A. Cooperative actions of hepatocyte growth factor and 1,25-dihydroxyvitamin D3 in osteoblastic differentiation of human vertebral bone marrow stromal cells. Bone 2002; 31: 269–275
  • Gerson S L. Mesenchymal stem cells: no longer second class marrow citizens. Nat Med 1999; 5: 262–264
  • Colter D C, Class R, DiGirolamo C M, Prockop D J. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 2000; 97: 3213–3228
  • Javazon E H, Colter D C, Schwarz E J, Prockop D J. Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells 2001; 19: 219–225
  • Pochampally R R, Smith J R, Ylostalo J, Prockop D J. Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 2004; 103: 1647–1652
  • Haynesworth S E, Baber M A, Caplan A I. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 1992; 13: 69–80
  • Woodbury D, Schwarz E J, Prockop D J, Black I B. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61: 364–370
  • Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S, et al. Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 1999; 27: 1460–1466
  • Deans R J, Moseley A B. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000; 28: 875–884
  • Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons P J. Mesenchymal stem cells. Arch Med Res 2003; 34: 565–571
  • Van den Heuvel R L, Versele S R, Schoeters G E, Vanderborght O L. Stromal stem cells (CFU-f) in yolk sac, liver, spleen and bone marrow of pre- and postnatal mice. Br J Haematol 1987; 66: 15–20
  • Majumdar M K, Thiede M A, Mosca J D, Moorman M, Gerson S L. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998; 176: 57–66
  • Waller E K, Olweus J, Lund-Johansen F, Huang S, Nguyen M, Guo G R, et al. The ‘common stem cell’ hypothesis reevaluated: human fetal bone marrow contains separate populations of hematopoietic and stromal progenitors. Blood 1995; 85: 2422–2435
  • Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen G C, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 2003; 89: 1235–1249
  • Barry F P, Boynton R E, Haynesworth S, Murphy J M, Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun 1999; 265: 134–139
  • Barry F, Boynton R, Murphy M, Haynesworth S, Zaia J. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun 2001; 289: 519–524
  • Haynesworth S E, Goshima J, Goldberg V M, Caplan A I. Characterization of cells with osteogenic potential from human marrow. Bone 1992; 13: 81–88
  • Simmons P J, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991; 78: 55–62
  • Bruder S P, Ricalton N S, Boynton R E, Connolly T J, Jaiswal N, Zaia J, et al. Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation. J Bone Miner Res 1998; 13: 655–663
  • Majumdar M K, Thiede M A, Haynesworth S E, Bruder S P, Gerson S L. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 2000; 9: 841–848
  • Owen M. Marrow stromal stem cells. J Cell Sci Suppl 1988; 10: 63–76
  • Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie C M. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001; 98: 2615–2625
  • Galotto M, Campanile G, Robino G, Cancedda F D, Bianco P, Cancedda R. Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chick embryo. J Bone Miner Res 1994; 9: 1239–1249
  • Bennett J H, Joyner C J, Triffitt J T, Owen M E. Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 1991; 99: 131–139
  • Bianco P, Riminucci M, Gronthos S, Robey P G. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001; 19: 180–192
  • Dexter T M, Allen T D, Lajtha L G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 1977; 91: 335–344
  • Gartner S, Kaplan H S. Long-term culture of human bone marrow cells. Proc Natl Acad Sci USA 1980; 77: 4756–4759
  • Qi H, Aguiar D J, Williams S M, La Pean A, Pan W, Verfaillie C M. Identification of genes responsible for osteoblast differentiation from human mesodermal progenitor cells. Proc Natl Acad Sci USA 2003; 100: 3305–3310
  • Barry F, Boynton R E, Liu B, Murphy J M. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 2001; 268: 189–200
  • Suzawa M, Takada I, Yanagisawa J, Ohtake F, Ogawa S, Yamauchi T, et al. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nat Cell Biol 2003; 5: 224–230
  • Wakitani S, Saito T, Caplan A I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 1995; 18: 1417–1426
  • Zhao L R, Duan W M, Reyes M, Keene C D, Verfaillie C M, Low W C. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 2002; 174: 11–20
  • Woodbury D, Reynolds K, Black I B. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 2002; 69: 908–917
  • Minguell J J, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood) 2001; 226: 507–520
  • Dennis J E, Charbord P. Origin and differentiation of human and murine stroma. Stem Cells 2002; 20: 205–214
  • Kopen G C, Prockop D J, Phinney D G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999; 96: 10711–10716
  • Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001; 98: 10344–10349
  • Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279: 1528–1530
  • Caplan A I. The mesengenic process. Clin Plast Surg 1994; 21: 429–435
  • Bruder S P, Jaiswal N, Haynesworth S E. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64: 278–294
  • Jaiswal N, Haynesworth S E, Caplan A I, Bruder S P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997; 64: 295–312
  • Rafii S, Mohle R, Shapiro F, Frey B M, Moore M A. Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 1997; 27: 375–386
  • Almeida-Porada G, Flake A W, Glimp H A, Zanjani E D. Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol 1999; 27: 1569–1575
  • in't Anker P S, Noort W A, Kruisselbrink A B, Scherjon S A, Beekhuizen W, Willemze R, et al. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34( + ) cells in NOD/SCID mice. Exp Hematol 2003; 31: 881–889
  • Nolta J A, Hanley M B, Kohn D B. Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood 1994; 83: 3041–3051
  • Azizi S A, Stokes D, Augelli B J, DiGirolamo C, Prockop D J. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats – similarities to astrocyte grafts. Proc Natl Acad Sci USA 1998; 95: 3908–3913
  • Haynesworth S E, Baber M A, Caplan A I. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996; 166: 585–592
  • Roberts I. Mesenchymal stem cells. Vox Sang 2004; 87(Suppl 2)38–41
  • Reese J S, Koc O N, Gerson S L. Human mesenchymal stem cells provide stromal support for efficient CD34 + transduction. J Hematother Stem Cell Res 1999; 8: 515–523
  • Ghaffari S, Dougherty G J, Eaves A C, Eaves C J. Diverse effects of anti-CD44 antibodies on the stromal cell-mediated support of normal but not leukaemic (CML) haemopoiesis in vitro. Br J Haematol 1997; 97: 22–28
  • Turner M L, Masek L C, Hardy C L, Parker A C, Sweetenham J W. Comparative adhesion of human haemopoietic cell lines to extracellular matrix components, bone marrow stromal and endothelial cultures. Br J Haematol 1998; 100: 112–122
  • Zannettino A C, Buhring H J, Niutta S, Watt S M, Benton M A, Simmons P J. The sialomucin CD164 (MGC-24v) is an adhesive glycoprotein expressed by human hematopoietic progenitors and bone marrow stromal cells that serves as a potent negative regulator of hematopoiesis. Blood 1998; 92: 2613–2628
  • Clapp D W, Freie B, Lee W H, Zhang Y Y. Molecular evidence that in situ-transduced fetal liver hematopoietic stem/progenitor cells give rise to medullary hematopoiesis in adult rats. Blood 1995; 86: 2113–2122
  • Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34( + ) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 2000; 95: 3289–3296
  • Ara T, Nakamura Y, Egawa T, Sugiyama T, Abe K, Kishimoto T, et al. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc Natl Acad Sci USA 2003; 100: 5319–5323
  • Dejbakhsh-Jones S, Jerabek L, Weissman I L, Strober S. Extrathymic maturation of alpha beta T cells from hemopoietic stem cells. J Immunol 1995; 155: 3338–3344
  • Barda-Saad M, Rozenszajn L A, Globerson A, Zhang A S, Zipori D. Selective adhesion of immature thymocytes to bone marrow stromal cells: relevance to T cell lymphopoiesis. Exp Hematol 1996; 24: 386–391
  • Li Y, Hisha H, Inaba M, Lian Z, Yu C, Kawamura M, et al. Evidence for migration of donor bone marrow stromal cells into recipient thymus after bone marrow transplantation plus bone grafts: a role of stromal cells in positive selection. Exp Hematol 2000; 28: 950–960
  • Bacigalupo A. Mesenchymal stem cells and haematopoietic stem cell transplantation. Best Pract Res Clin Haematol 2004; 17: 387–399
  • Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31: 890–896
  • Le Blanc K, Tammik L, Sundberg B, Haynesworth S E, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11–20
  • Aggarwal S, Pittenger M F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822
  • Chen Z M, O'Shaughnessy M J, Gramaglia I, Panoskaltsis-Mortari A, Murphy W J, Narula S, et al. IL-10 and TGF-beta induce alloreactive CD4 + CD25 – T cells to acquire regulatory cell function. Blood 2003; 101: 5076–5083
  • Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni P D, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843
  • Chichester C O, Fernandez M, Minguell J J. Extracellular matrix gene expression by human bone marrow stroma and by marrow fibroblasts. Cell Adhes Commun 1993; 1: 93–99
  • Conget P A, Minguell J J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999; 181: 67–73
  • Galmiche M C, Koteliansky V E, Briere J, Herve P, Charbord P. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 1993; 82: 66–76
  • Majumdar M K, Keane-Moore M, Buyaner D, Hardy W B, Moorman M A, McIntosh K R, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 2003; 10: 228–241
  • Satomura K, Derubeis A R, Fedarko N S, Ibaraki-O'Connor K, Kuznetsov S A, et al. Receptor tyrosine kinase expression in human bone marrow stromal cells. J Cell Physiol 1998; 177: 426–438
  • Doerflinger N, Miclea J M, Lopez J, Chomienne C, Bougneres P, Aubourg P, et al. Retroviral transfer and long-term expression of the adrenoleukodystrophy gene in human CD34 + cells. Hum Gene Ther 1998; 9: 1025–1036
  • Cahill R A, Jones O Y, Klemperer M, Steele A, Mueller T O, el-Badri N, et al. Replacement of recipient stromal/mesenchymal cells after bone marrow transplantation using bone fragments and cultured osteoblast-like cells. Biol Blood Marrow Transplant 2004; 10: 709–717
  • Simmons P J, Przepiorka D, Thomas E D, Torok-Storb B. Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 1987; 328: 429–432
  • Devine S M, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003; 101: 2999–3001
  • Gao J, Dennis J E, Muzic R F, Lundberg M, Caplan A I. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 2001; 169: 12–20
  • Hou Z, Nguyen Q, Frenkel B, Nilsson S K, Milne M, van Wijnen A J, et al. Osteoblast-specific gene expression after transplantation of marrow cells: implications for skeletal gene therapy. Proc Natl Acad Sci USA 1999; 96: 7294–7299
  • Noort W A, Kruisselbrink A B, in't Anker P S, Kruger M, van Bezooijen R L, de Paus R A, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34( + ) cells in NOD/SCID mice. Exp Hematol 2002; 30: 870–978
  • Pereira R F, O'Hara M D, Laptev A V, Halford K W, Pollard M D, Class R, et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 1998; 95: 1142–1147
  • Rombouts W J, Ploemacher R E. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 2003; 17: 160–170
  • Bauman B D, Nihal M, Maitra B. CXCR-4 transduced human mesenchymal stem cells (MSCs) migrate in response to SDF-1 alpha. Blood 2001; 98: 87a
  • Dittel B N, LeBien T W. Reduced expression of vascular cell adhesion molecule-1 on bone marrow stromal cells isolated from marrow transplant recipients correlates with a reduced capacity to support human B lymphopoiesis in vitro. Blood 1995; 86: 2833–2841
  • Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002; 30: 973–981
  • Van Der Loo J M, Liu B, Eaton K S. Negative effect of culture on the homing of human progenitor cells in hematopoietic organs in the NOD/SCID and B2-NOD/SCID mouse. Blood 2001; 98: 644a
  • Van Riet I WJ-D, Broek I -V, Hellebaut L. In vitro expanded mature mesenchymal stem cells from human bone marrow do not express chemokine receptors of the CCR and CXCR family and have no capacity for in vitro transendothelial migration: signs of impaired in vivo homing. Blood 2002; 100: 525a
  • Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S, et al. Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 2000; 96: 3637–3643
  • Horwitz E M, Prockop D J, Gordon P L, Koo W W, Fitzpatrick L A, Neel M D, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001; 97: 1227–1231
  • Keating A, Singer J W, Killen P D, Striker G E, Salo A C, Sanders J, et al. Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature 1982; 298: 280–283
  • Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F. Isolation of human mesenchymal stem cells: bone marrow vs umbilical cord blood. Haematologica 2001; 86: 1099–1100
  • Tanaka J, Kasai M, Imamura M, Higa T, Kobayashi S, Hashino S, et al. Evaluation of mixed chimerism by two-step polymerase chain reaction amplification of hypervariable region MCT118 after allogeneic bone marrow transplantation. Ann Hematol 1994; 68: 189–193
  • Horwitz E M, Prockop D J, Fitzpatrick L A, Koo W W, Gordon P L, Neel M, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999; 5: 309–313
  • Angelopoulou M, Novelli E, Grove J E, Rinder H M, Civin C, Cheng L, et al. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 2003; 31: 413–420
  • Noort W A, Kruisselbrink de Paus R A, Mirjam H M, Heemskerk R W, Fibbe W E. Co-transplantation of mesenchymal stem cells (MSC) and UCB CD34 + cells results in enhanced hemopoietic engraftment in NOD/SCID mice without homing of MSC to the bone marrow. Blood 2001; 98: 295a
  • Novelli E, Buyner D, Chopra R. Human mesenchymal stem cells can enhance human CD34 + cell repopulation of NOD/SCID mice. Blood 1998; 92: 117a
  • Koc O N, Gerson S L, Cooper B W, Dyhouse S M, Haynesworth S E, Caplan A I, et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000; 18: 307–316
  • Bennaceur-Griscelli A, Pondarre C, Schiavon V, Vainchenker W, Coulombel L. Stromal cells retard the differentiation of CD34( + )CD38 (low/neg) human primitive progenitors exposed to cytokines independent of their mitotic history. Blood 2001; 97: 435–441
  • Dao M A, Pepper K A, Nolta J A. Long-term cytokine production from engineered primary human stromal cells influences human hematopoiesis in an in vivo xenograft model. Stem Cells 1997; 15: 443–454
  • Eaves C J, Cashman J D, Kay R J, Dougherty G J, Otsuka T, Gaboury L A, et al. Humphries, Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures II Analysis of positive and negative regulators produced by stromal cells within the adherent layer. Blood 1991; 78: 110–117
  • Eaves C J, Cashman J D, Wolpe S D, Eaves A C. Unresponsiveness of primitive chronic myeloid leukemia cells to macrophage inflammatory protein 1 alpha, an inhibitor of primitive normal hematopoietic cells. Proc Natl Acad Sci USA 1993; 90: 12015–12019
  • Zandstra P W, Lauffenburger D A, Eaves C J. A ligand-receptor signaling threshold model of stem cell differentiation control: a biologically conserved mechanism applicable to hematopoiesis. Blood 2000; 96: 1215–1222
  • Lazarus H M, Haynesworth S E, Gerson S L, Rosenthal N S, Caplan A I. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995; 16: 557–564
  • Zeiser R, Marks R, Bertz H, Finke J. Immunopathogenesis of acute graft-vs-host disease: implications for novel preventive and therapeutic strategies. Ann Hematol 2004; 83: 551–565
  • Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30: 42–48
  • Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 2005; 105: 2214–2219
  • Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101: 3722–3729
  • Jiang X X, Zhang Y, Liu B, Zhang S X, Wu Y, Yu X D, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005, in press
  • Potian J A, Aviv H, Ponzio N M, Harrison J S, Rameshwar P. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 2003; 171: 3426–3434
  • Tse W T, Pendleton J D, Beyer W M, Egalka M C, Guinan E C. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75: 389–397
  • Devine S M, Bartholomew A M, Mahmud N, Nelson M, Patil S, Hardy W, et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 2001; 29: 244–255
  • Kim D W, Chung Y J, Kim T G, Kim Y L, Oh I H. Cotransplantation of third-party mesenchymal stromal cells can alleviate single-donor predominance and increase engraftment from double cord transplantation. Blood 2004; 103: 1941–1948
  • Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-vs-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441
  • Lazarus H M, Curtin P, Devine S, McCarthy P, Holland K, Moseley A, et al. Role of mesenchymal stem cells in allogeneic transplantation: early phase I clinical results. Blood 2000; 96: 1691a
  • Lazarus H M, Koc O N, Devine S M, Curtin P, Maziarz R T, Holland H K, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11: 389–398
  • Frassoni F, Labopin M, Bacigalupo A, Gluckman E, Rocha V, Bruno B, et al. Expanded mesenchymal stem cells (MSC), co-infused with HLA identical hemopoietic stem cell transplants, reduce acute and chronic graft vs host disease: a matched pair analysis. Bone Marrow Transplantation 2002; 29(Suppl 2), abstract 75
  • Gronthos S, Graves S E, Ohta S, Simmons P J. The STRO-1 + fraction of adult human bone marrow contains the osteogenic precursors. Blood 1994; 84: 4164–4173
  • Phinney D G, Kopen G, Isaacson R L, Prockop D J. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 1999; 72: 570–585
  • Allay J A, Dennis J E, Haynesworth S E, Majumdar M K, Clapp D W, Shultz L D, et al. LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Hum Gene Ther 1997; 8: 1417–1427
  • Brouard N, Chapel A, Neildez-Nguyen T M, Granotier C, Khazaal I, et al. Transplantation of stromal cells transduced with the human IL3 gene to stimulate hematopoiesis in human fetal bone grafts in non-obese, diabetic-severe combined immunodeficiency mice. Leukemia 1998; 12: 1128–1135
  • Chuah M K, Van Damme A, Zwinnen H, Goovaerts I, Vanslembrouck V, Collen D, et al. Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and transient production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice. Hum Gene Ther 2000; 11: 729–738
  • Dao M A, Nolta J A. Use of the bnx/hu xenograft model of human hematopoiesis to optimize methods for retroviral-mediated stem cell transduction (review). Int J Mol Med 1998; 1: 257–264
  • Gordon E M, Skotzko M, Kundu R K, Han B, Andrades J, Nimni M, et al. Capture and expansion of bone marrow-derived mesenchymal progenitor cells with a transforming growth factor-beta1-von Willebrand's factor fusion protein for retrovirus-mediated delivery of coagulation factor IX. Hum Gene Ther 1997; 8: 1385–1394
  • Hurwitz D R, Kirchgesser M, Merrill W, Galanopoulos T, McGrath C A, Emami S, et al. Systemic delivery of human growth hormone or human factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells. Hum Gene Ther 1997; 8: 137–156
  • Li K J, Dilber M S, Abedi M R, Bjorkstrand B, Smith C I, Garoff H, et al. Retroviral-mediated gene transfer into human bone marrow stromal cells: studies of efficiency and in vivo survival in SCID mice. Eur J Haematol 1995; 55: 302–306
  • Oyama M, Tatlock A, Fukuta S, Kavalkovich K, Nishimura K, Johnstone B, et al. Retrovirally transduced bone marrow stromal cells isolated from a mouse model of human osteogenesis imperfecta (oim) persist in bone and retain the ability to form cartilage and bone after extended passaging. Gene Ther 1999; 6: 321–329
  • Schwarz E J, Alexander G M, Prockop D J, Azizi S A. Multipotential marrow stromal cells transduced to produce L-DOPA: engraftment in a rat model of Parkinson disease. Hum Gene Ther 1999; 10: 2539–2549
  • Studeny M, Marini F C, Champlin R E, Zompetta C, Fidler I J, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603–3608
  • Studeny M, Marini F C, Dembinski J L, Zompetta C, Cabreira-Hansen M, Bekele B N, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96: 1593–1603
  • Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307–3318
  • Burns J S, Abdallah B M, Guldberg P, Rygaard J, Schroder H D, Kassem M. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res 2005; 65: 3126–3135
  • Rubio D, Garcia-Castro J, Martin M C, de la Fuente R, Cigudosa J C, Lloyd A C, et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65: 3035–3039
  • De Kok I J, Peter S J, Archambault M, van den Bos C, Kadiyala S, Aukhil I, et al. Investigation of allogeneic mesenchymal stem cell-based alveolar bone formation: preliminary findings. Clin Oral Implants Res 2003; 14: 481–489
  • Mankani M H, Kuznetsov S A, Fowler B, Kingman A, Robey P G. In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Biotechnol Bioeng 2001; 72: 96–107
  • Tsuchida H, Hashimoto J, Crawford E, Manske P, Lou J. Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J Orthop Res 2003; 21: 44–53
  • Murphy J M, Fink D J, Hunziker E B, Barry F P. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 2003; 48: 3464–3474
  • Stamm C, Westphal B, Kleine H D, Petzsch M, Kittner C, Klinge H, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003; 361: 45–46
  • Mezey E, Key S, Vogelsang G, Szalayova I, Lange G D, Crain B. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 2003; 100: 1364–1369

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.