176
Views
14
CrossRef citations to date
0
Altmetric
Original

Flt3-ITD mutations can generate leukaemia specific neoepitopes: Potential role for immunotherapeutic approaches

, , &
Pages 307-312 | Received 28 Jul 2005, Published online: 01 Jul 2009

References

  • Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918
  • Kiyoi H, Naoe T, Yokota S, Nakao M, Minami S, Kuriyama K. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia 1997; 11: 1447–1452
  • Kottaridis P D, Gale R E, Frew M E, Harrison G, Langabeer S E, Belton A A. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759
  • Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U. Analysis of Flt3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335
  • Abu-Duhier F M, Goodeve A C, Wilson G A, Gari M A, Peake I R, Rees D C. FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol 2000; 111: 190–195
  • Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002; 21: 2555–2563
  • Clark R E, Dodi I A, Hill S C, Lill J R, Aubert G, Macintyre G. Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the Bcr-Abl b3a2 fusion protein. Blood 2001; 98: 2887–2893
  • Nieda M, Nicol A, Kikuchi A, Kashiwase K, Taylor K, Suzuki K. Dendritic cells stimulate the expansion of bcr-abl specific CD8+ T cells with cytotoxic activity against leukemic cells from patients with chronic myeloid leukemia. Blood 1998; 91: 977–983
  • Mannering S I, McKenzie J L, Fearnley D B, Hart D N. HLA-DR1-restricted bcr-abl (b3a2)-specific CD4+ T lymphocytes respond to dendritic cells pulsed with b3a2 peptide and antigen-presenting cells exposed to b3a2 containing cell lysates. Blood 1997; 90: 290–297
  • Pinilla-Ibarz J, Cathcart K, Korontsvit T, Soignet S, Bocchia M, Caggiano J. Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogen breakpoint fusion protein generates specific immune responses. Blood 2000; 95: 1781–1787
  • He L, Feng H, Raymond A, Kreeger M, Zeng Y, Graner M. Dendritic-cell-peptide immunization provides immunoprotection against bcr-abl-positive leukemia in mice. Cancer Immunol Immunother 2001; 50: 31–40
  • Linnemann T, Tumenjargal S, Gellrich S, Wiesmuller K, Kaltoft K, Sterry W. Mimotopes for tumor-specific T lymphocytes in human cancer determined with combinatorial peptide libraries. Eur J Immunol 2001; 31: 156–165
  • Parker K C, Shields M, DiBrino M, Brooks A, Coligan J E. Peptide binding to MHC class I molecules: implications for antigenic peptide prediction. Immunol Res 1995; 14: 34–57
  • Parker K C, Bednarek M A, Coligan J E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1994; 152: 163–175
  • Vollmer M, Li L, Schmitt A, Greiner J, Reinhardt P, Ringhoffer M. Expression of human leucocyte antigens and co-stimulatory molecules on blasts of patients with acute myeloid leukaemia. Br J Haematol 2003; 120: 1000–1008
  • Brouwer R E, van der Heiden P, Schreuder G M, Mulder A, Datema G, Anholts J D. Loss or downregulation of HLA class I expression at the allelic level in acute leukemia is infrequent but functionally relevant, and can be restored by interferon. Hum Immunol 2002; 63: 200–210
  • Robin M, Schlageter M H, Chomienne C, Padua R A. Targeted immunotherapy in acute myeloblastic leukemia: from animals to humans. Cancer Immunol Immunother 2005; 54: 933–943

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.