345
Views
40
CrossRef citations to date
0
Altmetric
Review

Myeloma cells and bone marrow osteoblast interactions: Role in the development of osteolytic lesions in multiple myeloma

&
Pages 2323-2329 | Received 23 Aug 2007, Accepted 23 Aug 2007, Published online: 01 Jul 2009

References

  • Kyle R A, Rajkumar S V. Multiple myeloma. N Engl J Med 2004; 351: 1860–1873
  • Giuliani N, Colla S, Rizzoli V. New insight in the mechanism of osteoclast activation and formation in multiple myeloma: focus on the receptor activator of NF-kappaB ligand (RANKL). Exp Hematol 2004; 32: 685–691
  • Giuliani N, Rizzoli V, GD Roodman. Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood 2006; 108: 3992–3996
  • Vejlgaard T, Abildgaard N, Jans H, Nielsen J L, Heickendorff L. Abnormal bone turnover in monoclonal gamyelomaopathy of undetermined significance: analyses of type I collagen telopeptide, osteocalcin, bone-specific alkaline phosphatase and propeptides of type I and type III procollagens. Eur J Haematol 1997; 58: 104–108
  • Hjorth-Hansen H, Seifert M F, Börset M, Aarset H, Ostlie A, Sundan A, et al. Marked osteoblastopenia and reduced bone formation in a model of multiple myeloma bone disease in severe combined imyelomaunodeficiency mice. J Bone Miner Res 1999; 14: 256–263
  • Evans C E, Ward C, Rathour L, Galasko C B. Myeloma affects both the growth and function of human osteoblast-like cells. Clin Exp Metastasis 1992; 10: 33–38
  • Silvestris F, Cafforio P, Tucci M, Grinello D, Damyelomaacco F. Upregulation of osteoblast apoptosis by malignant plasma cells: a role in myeloma bone disease. Br J Haematol 2003; 122: 39–52
  • Tinhofer I, Biedermann R, Krismer M, Crazzolara R, Greil R. A role of TRAIL in killing osteoblasts by myeloma cells. FASEB J 2006; 20: 751–756
  • Barille S, Collette M, Bataille R, Amiot M. Myeloma cells upregulate interleukin-6 secretion in osteoblastic cells through cell-to-cell contact but downregulate osteocalcin. Blood 1995; 86: 3151–3159
  • Karadag A, Oyajobi B O, Apperley J F, Russell R G, Croucher P I. Human myeloma cells promote the production of interleukin-6 by primary human osteoblasts. Br J Haematol 2000; 108: 383–390
  • Shipman C M, Croucher P I. Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res 2003; 63: 912–916
  • Yaccoby S, Wezeman M J, Zangari M, Walker R, Cottler-Fox M, Gaddy D, et al. Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myeloma tous mouse model. Haematologica 2006; 91: 192–199
  • Ducy P, Zhang R, Geoffroy V, Ridall A L, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997; 89: 747–754
  • Kobayashi T, Kronenberg H. Minireview: transcriptional regulation in development of bone. Endocrinology 2005; 146: 1012–1017
  • Franceschi R T, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem 2003; 88: 446–454
  • Geoffroy V, Kneissel M, Fournier B, Boyde A, Matthias P. High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage. Mol Cell Biol 2002; 22: 6222–6233
  • Shui C, Spelsberg T C, Riggs B L, Khosla S. Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J Bone Miner Res 2003; 18: 213–221
  • Giuliani N, Colla S, Morandi F, Lazzaretti M, Sala R, Bonomini S, et al. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 2005; 106: 2472–2483
  • Michigami T, Shimizu N, Williams P J, Niewolna M, Dallas S L, Mundy G R, et al. Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood 2000; 96: 1953–1960
  • Mori Y, Shimizu N, Dallas M, Niewolna M, Story B, Williams P J, et al. Anti-alpha4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood 2004; 104: 2149–2154
  • van Riet I, de Greef C, del Favero H, Demanet C, Van Camp B. Production of fibronectin and adherence to fibronectin by human myeloma cell lines. Br J Haematol 1994; 87: 258–265
  • Ely S A, Knowles D M. Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gamyelomaopathy of undetermined significance and lymphomas with plasmacytoid differentiation. Am J Pathol 2002; 160: 1293–1299
  • Weitzmann M N, Roggia C, Toraldo G, Weitzmann L, Pacifici R. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin Invest 2002; 110: 1643–1650
  • Giuliani N, Colla S, Sala R, Moroni M, Lazzaretti M, La Monica S, et al. Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood 2002; 100: 4615–4621
  • Ehrlich L A, Chung H Y, Ghobrial I, Choi S J, Morandi F, Colla S, et al. IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood 2005; 106: 1407–1414
  • Lee J W, Chung H Y, Ehrlich L A, Jelinek D F, Callander N S, Roodman G D, et al. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood 2004; 103: 2308–2315
  • Giuliani N, Morandi F, Tagliaferri S, Colla S, Bonomini S, Sammarelli G, et al. Interleukin-3 (IL-3) is overexpressed by T lymphocytes in multiple myeloma patients. Blood 2006; 107: 841–842
  • Standal T, Abildgaard N, Fagerli U M, Stordal B, Hjertner O, Borset M, et al. HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood 2007; 109: 3024–3030
  • Westendorf J J, Kahler R A, Schroeder T M. Wnt signaling in osteoblasts and bone diseases. Gene 2004; 341: 19–39
  • Krishnan V, Bryant H U, Macdougald O A. Regulation of bone mass by Wnt signaling. J Clin Invest 2006; 116: 1202–1209
  • Gordon M D, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 2006; 281: 22429–22433
  • Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 2003; 18: 1842–1853
  • Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, et al. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 2004; 23: 8520–8526
  • Galli L M, Barnes T, Cheng T, Acosta L, Anglade A, Willert K, et al. Differential inhibition of Wnt-3a by Sfrp-1, Sfrp-2, and Sfrp-3. Dev Dyn 2006; 235: 681–690
  • Li J, Sarosi I, Cattley R C, Pretorius J, Asuncion F, Grisanti M, et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 2006; 39: 754–766
  • Morvan F, Boulukos K, Clãcment-Lacroix P, Roman-Roman S, Suc-Royer I, Vayssiere B, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 2006; 21: 934–945
  • Boyden L M, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick M A, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002; 346: 1513–1521
  • de Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 2004; 34: 818–826
  • Boland G M, Perkins G, Hall D J, Tuan R S. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 2004; 93: 1210–1230
  • Baksh D, Boland G M, Tuan R S. Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem 2007; 101: 1109–1124
  • Baksh D, Tuan R S. Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells. J Cell Physiol 2007; 212: 817–826
  • Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–2494
  • Giuliani N, Morandi F, Tagliaferri S, Lazzaretti M, Donofrio G, Bonomini S, et al. Production of Wnt inhibitors by myeloma cells: potential effects on canonical Wnt pathway in the bone microenvironment. Cancer Res 2007; 67: 7665–7674
  • Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E, et al. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 2005; 106: 3160–3165
  • De Toni F, Racaud-Sultan C, Chicanne G, Mas V M, Cariven C, Mesange F, et al. A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene 2006; 25: 3113–3122
  • Gunn W G, Conley A, Deininger L, Olson S D, Prockop D J, Gregory C A. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 2006; 24: 986–991
  • Lee A Y, He B, You L, Xu Z, Mazieres J, Reguart N, et al. Dickkopf-1 antagonizes Wnt signaling independent of beta-catenin in human mesothelioma. Biochem Biophys Res Commun 2004; 323: 1246–1250
  • Peng S, Miao C, Li J, Fan X, Cao Y, Duan E. Dickkopf-1 induced apoptosis in human placental choriocarcinoma is independent of canonical Wnt signaling. Biochem Biophys Res Commun 2006; 350: 641–647
  • Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy J D. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007; 109: 2106–2111
  • Robbiani D F, Chesi M, Bergsagel P L. Bone lesions in molecular subtypes of multiple myeloma. N Engl J Med 2004; 351: 197–198
  • Kropff M, Bisping G, Wenning D, Berdel W E, Kienast J. Proteasome inhibition in multiple myeloma. Eur J Cancer 2006; 42: 1623–1639
  • Garrett I R, Chen D, Gutierrez G, Zhao M, Escobedo A, Rossini G, et al. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Invest 2003; 111: 1771–1782
  • Zhao M, Qiao M, Oyajobi B O, Mundy G R, Chen D. E3 ubiquitin ligase Smurf1 mediates core-binding factor alpha1/Runx2 degradation and plays a specific role in osteoblast differentiation. J Biol Chem 2003; 278: 27939–27944
  • Zangari M, Esseltine D, Lee C K, Barlogie B, Elice F, Burns M J, et al. Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol 2005; 131: 71–73
  • Zangari M, Yaccoby S, Cavallo F, Esseltine D, Tricot G. Response to bortezomib and activation of osteoblasts in multiple myeloma. Clin Lymphoma Myeloma 2006; 7: 109–114
  • Shimazaki C, Uchida R, Nakano S, Namura K, Fuchida S I, Okano A, et al. High serum bone-specific alkaline phosphatase level after bortezomib-combined therapy in refractory multiple myeloma: possible role of bortezomib on osteoblast differentiation. Leukemia 2005; 19: 1102–1103
  • Heider U, Kaiser M, Muller C, Jakob C, Zavrski I, Schulz C O, et al. Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur J Haematol 2006; 77: 233–238
  • Terpos E, Heath D J, Rahemtulla A, Zervas K, Chantry A, Anagnostopoulos A, et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodeling in patients with relapsed multiple myeloma. Br J Haematol 2006; 135: 688–692
  • Giuliani N, Morandi F, Tagliaferri S, Lazzaretti M, Bonomini S, Crugnola M, et al. The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 2007; 110: 334–338

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.