330
Views
59
CrossRef citations to date
0
Altmetric
Reviews

Immune surveillance of EBV-infected B cells and the development of non-Hodgkin lymphomas in immunocompromised patients

, & , PhD
Pages 1028-1041 | Received 02 Nov 2007, Accepted 08 Jan 2008, Published online: 01 Jul 2009

References

  • Cohen J I. Epstein – Barr virus infection. N Engl J Med 2000; 343: 481–492
  • Crawford D H, Macsween K F, Higgins C D, Thomas R, McAulay K, Williams H, et al. A cohort study among university students: identification of risk factors for Epstein – Barr virus seroconversion and infectious mononucleosis. Clin Infect Dis 2006; 43: 276–282
  • Callan M F, Tan L, Annels N, Ogg G S, Wilson J D, O'Callaghan C A, et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein – Barr virus in vivo. J Exp Med 1998; 187: 1395–1402
  • Williams H, Macsween K, McAulay K, Higgins C, Harrison N, Swerdlow A, et al. Analysis of immune activation and clinical events in acute infectious mononucleosis. J Infect Dis 2004; 190: 63–71
  • Babcock G J, Decker L L, Volk M, Thorley-Lawson D A. EBV persistence in memory B cells in vivo. Immunity 1998; 9: 395–404
  • Epstein M A, Achong B G, Barr Y M. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1964; 1: 702–703
  • Macsween K F, Crawford D H. Epstein – Barr virus – recent advances. Lancet Infect Dis 2003; 3: 131–140
  • Muller A M, Ihorst G, Mertelsmann R, Engelhardt M. Epidemiology of non-Hodgkin's lymphoma (NHL): trends, geographic distribution, and etiology. Ann Hematol 2005; 84: 1–12
  • Harris N L, Jaffe E S, Stein H, Banks P M, Chan J K, Cleary M L, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 1994; 84: 1361–1392
  • Grulich A E, Vajdic C M, Cozen W. Altered immunity as a risk factor for non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev 2007; 16: 405–408
  • Heslop H E. Biology and treatment of Epstein – Barr virus-associated non-hodgkin lymphomas. Hematology (Am Soc Hematol Edu Prog) 2005; 260–266
  • Thorley-Lawson D A, Gross A. Persistence of the Epstein – Barr virus and the origins of associated lymphomas. N Engl J Med 2004; 350: 1328–1337
  • Allday M J, Crawford D H. Role of epithelium in EBV persistence and pathogenesis of B-cell tumours. Lancet 1988; 1: 855–857
  • Niedobitek G, Agathanggelou A, Herbst H, Whitehead L, Wright D H, Young L S. Epstein – Barr virus (EBV) infection in infectious mononucleosis: virus latency, replication and phenotype of EBV-infected cells. J Pathol 1997; 182: 151–159
  • Shannon-Lowe C D, Neuhierl B, Baldwin G, Rickinson A B, Delecluse H J. Resting B cells as a transfer vehicle for Epstein – Barr virus infection of epithelial cells. Proc Natl Acad Sci USA 2006; 103: 7065–7070
  • Miyashita E M, Yang B, Babcock G J, Thorley-Lawson D A. Identification of the site of Epstein – Barr virus persistence in vivo as a resting B cell. J Virol 1997; 71: 4882–4891
  • Thorley-Lawson D A. Epstein – Barr virus: exploiting the immune system. Nat Rev Immunol 2001; 1: 75–82
  • Hislop A D, Taylor G S, Sauce D, Rickinson A B. Cellular responses to viral infection in humans: lessons from Epstein – Barr virus. Annu Rev Immunol 2007; 25: 587–617
  • Yates J L, Warren N, Sugden B. Stable replication of plasmids derived from Epstein – Barr virus in various mammalian cells. Nature 1985; 313: 812–815
  • Hochberg D, Middeldorp J M, Catalina M, Sullivan J L, Luzuriaga K, Thorley-Lawson D A. Demonstration of the Burkitt's lymphoma Epstein – Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci USA 2004; 101: 239–244
  • Kuppers R B. Cells under influence: transformation of B cells by Epstein – Barr virus. Nat Rev Immunol 2003; 3: 801–812
  • Rickinson A B, Moss D J. Human cytotoxic T lymphocyte responses to Epstein – Barr virus infection. Annu Rev Immunol 1997; 15: 405–431
  • Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen P M, Klein G, et al. Inhibition of antigen processing by the internal repeat region of the Epstein – Barr virus nuclear antigen-1. Nature 1995; 375: 685–688
  • Yin Y, Manoury B, Fahraeus R. Self-inhibition of synthesis and antigen presentation by Epstein – Barr virus-encoded EBNA1. Science 2003; 301: 1371–1374
  • Blake N, Haigh T, Shaka'a G, Croom-Carter D, Rickinson A. The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNA1. J Immunol 2000; 165: 7078–7087
  • Precopio M L, Sullivan J L, Willard C, Somasundaran M, Luzuriaga K. Differential kinetics and specificity of EBV-specific CD4+ and CD8+ T cells during primary infection. J Immunol 2003; 170: 2590–2598
  • Maini M K, Gudgeon N, Wedderburn L R, Rickinson A B, Beverley P C. Clonal expansions in acute EBV infection are detectable in the CD8 and not the CD4 subset and persist with a variable CD45 phenotype. J Immunol 2000; 165: 5729–5737
  • Piriou E R, van Dort K, Weel J F, Bemelman F J, Gamadia L E, van Oers M H, et al. Detailed kinetics of EBV-specific CD4+ and CD8+ T cells during primary EBV infection in a kidney transplant patient. Clin Immunol 2006; 119: 16–20
  • Munz C, Bickham K L, Subklewe M, Tsang M L, Chahroudi A, Kurilla M G, et al. Human CD4(+) T lymphocytes consistently respond to the latent Epstein – Barr virus nuclear antigen EBNA1. J Exp Med 2000; 191: 1649–1660
  • Leen A, Meij P, Redchenko I, Middeldorp J, Bloemena E, Rickinson A, et al. Differential immunogenicity of Epstein – Barr virus latent-cycle proteins for human CD4(+) T-helper 1 responses. J Virol 2001; 75: 8649–8659
  • Haque T, Wilkie G M, Jones M M, Higgins C D, Urquhart G, Wingate P, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 2007; 110: 1123–1131
  • Adhikary D, Behrends U, Boerschmann H, Pfunder A, Burdach S, Moosmann A, et al. Immunodominance of lytic cycle antigens in Epstein – Barr virus-specific CD4+ T cell preparations for therapy. PLoS ONE 2007; 2: e583
  • Piriou E R, van Dort K, Nanlohy N M, van Oers M H, Miedema F, van Baarle D. Novel method for detection of virus-specific CD41+ T cells indicates a decreased EBV-specific CD4+ T cell response in untreated HIV-infected subjects. Eur J Immunol 2005; 35: 796–805
  • Nalesnik M A. The diverse pathology of post-transplant lymphoproliferative disorders: the importance of a standardized approach. Transpl Infect Dis 2001; 3: 88–96
  • Bakker N A, van Imhoff G W, Verschuuren E A, van Son W J. Presentation and early detection of post-transplant lymphoproliferative disorder after solid organ transplantation. Transpl Int 2007; 20: 207–218
  • Harris N L, Ferry J A, Swerdlow S H. Posttransplant lymphoproliferative disorders: summary of Society for Hematopathology Workshop. Semin Diagn Pathol 1997; 14: 8–14
  • Ghobrial I M, Habermann T M, Macon W R, Ristow K M, Larson T S, Walker R C, et al. Differences between early and late posttransplant lymphoproliferative disorders in solid organ transplant patients: are they two different diseases?. Transplantation 2005; 79: 244–247
  • Gottschalk S, Rooney C M, Heslop H E. Post-transplant lymphoproliferative disorders. Annu Rev Med 2005; 56: 29–44
  • Shahinian V B, Muirhead N, Jevnikar A M, Leckie S H, Khakhar A K, Luke P P, et al. Epstein – Barr virus seronegativity is a risk factor for late-onset posttransplant lymphoproliferative disorder in adult renal allograft recipients. Transplantation 2003; 75: 851–856
  • Smith J M, Corey L, Healey P J, Davis C L, McDonald R A. Adolescents are more likely to develop posttransplant lymphoproliferative disorder after primary Epstein – Barr virus infection than younger renal transplant recipients. Transplantation 2007; 83: 1423–1428
  • Curtis R E, Travis L B, Rowlings P A, Socie G, Kingma D W, Banks P M, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood 1999; 94: 2208–2216
  • Opelz G, Dohler B. Lymphomas after solid organ transplantation: a collaborative transplant study report. Am J Transplant 2004; 4: 222–230
  • Everly M J, Bloom R D, Tsai D E, Trofe J. Posttransplant lymphoproliferative disorder. Ann Pharmacother 2007; 41: 1850–1858
  • Riddler S A, Breinig M C, McKnight J L. Increased levels of circulating Epstein – Barr virus (EBV)-infected lymphocytes and decreased EBV nuclear antigen antibody responses are associated with the development of posttransplant lymphoproliferative disease in solid-organ transplant recipients. Blood 1994; 84: 972–984
  • Rooney C M, Loftin S K, Holladay M S, Brenner M K, Krance R A, Heslop H E. Early identification of Epstein – Barr virus-associated post-transplantation lymphoproliferative disease. Br J Haematol 1995; 89: 98–103
  • Rowe D T, Qu L, Reyes J, Jabbour N, Yunis E, Putnam P, et al. Use of quantitative competitive PCR to measure Epstein – Barr virus genome load in the peripheral blood of pediatric transplant patients with lymphoproliferative disorders. J Clin Microbiol 1997; 35: 1612–1615
  • Stevens S J, Verschuuren E A, Pronk I, van Der Bij W, Harmsen M C, The T H, et al. Frequent monitoring of Epstein – Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients. Blood 2001; 97: 1165–1171
  • van Esser J W, van der Holt B, Meijer E, Niesters H G, Trenschel R, Thijsen S F, et al. Epstein – Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell-depleted SCT. Blood 2001; 98: 972–978
  • van Esser J W, Niesters H G, van der Holt B, Meijer E, Osterhaus A D, Gratama J W, et al. Prevention of Epstein – Barr virus-lymphoproliferative disease by molecular monitoring and preemptive rituximab in high-risk patients after allogeneic stem cell transplantation. Blood 2002; 99: 4364–4369
  • Savoie A, Perpete C, Carpentier L, Joncas J, Alfieri C. Direct correlation between the load of Epstein – Barr virus-infected lymphocytes in the peripheral blood of pediatric transplant patients and risk of lymphoproliferative disease. Blood 1994; 83: 2715–2722
  • Oertel S, Trappe R U, Zeidler K, Babel N, Reinke P, Hummel M, et al. Epstein – Barr viral load in whole blood of adults with posttransplant lymphoproliferative disorder after solid organ transplantation does not correlate with clinical course. Ann Hematol 2006; 85: 478–484
  • Stevens S J, Pronk I, Middeldorp J M. Toward standardization of Epstein – Barr virus DNA load monitoring: unfractionated whole blood as preferred clinical specimen. J Clin Microbiol 2001; 39: 1211–1216
  • Wagner H J, Wessel M, Jabs W, Smets F, Fischer L, Offner G, et al. Patients at risk for development of posttransplant lymphoproliferative disorder: plasma versus peripheral blood mononuclear cells as material for quantification of Epstein – Barr viral load by using real-time quantitative polymerase chain reaction. Transplantation 2001; 72: 1012–1019
  • Hakim H, Gibson C, Pan J, Srivastava K, Gu Z, Bankowski M J, et al. Comparison of various blood compartments and reporting units for the detection and quantification of Epstein – Barr virus in peripheral blood. J Clin Microbiol 2007; 45: 2151–2155
  • Gruhn B, Meerbach A, Hafer R, Zell R, Wutzler P, Zintl F. Pre-emptive therapy with rituximab for prevention of Epstein – Barr virus-associated lymphoproliferative disease after hematopoietic stem cell transplantation. Bone Marrow Transplant 2003; 31: 1023–1025
  • Annels N E, Kalpoe J S, Bredius R G, Claas E C, Kroes A C, Hislop A D, et al. Management of Epstein – Barr virus (EBV) reactivation after allogeneic stem cell transplantation by simultaneous analysis of EBV DNA load and EBV-specific T cell reconstitution. Clin Infect Dis 2006; 42: 1743–1748
  • Sebelin-Wulf K, Nguyen T D, Oertel S, Papp-Vary M, Trappe R U, Schulzki A, et al. Quantitative analysis of EBV-specific CD4/CD8 T cell numbers, absolute CD4/CD8 T cell numbers and EBV load in solid organ transplant recipients with PLTD. Transpl Immunol 2007; 17: 203–210
  • Smets F, Latinne D, Bazin H, Reding R, Otte J B, Buts J P, et al. Ratio between Epstein – Barr viral load and anti-Epstein – Barr virus specific T-cell response as a predictive marker of posttransplant lymphoproliferative disease. Transplantation 2002; 73: 1603–1610
  • Clave E, Agbalika F, Bajzik V, Peffault de Latour R, Trillard M, Rabian C, et al. Epstein – Barr virus (EBV) reactivation in allogeneic stem-cell transplantation: relationship between viral load EBV-specific T-cell reconstitution and rituximab therapy. Transplantation 2004; 77: 76–84
  • Meij P, van Esser J W, Niesters H G, van Baarle D, Miedema F, Blake N, et al. Impaired recovery of Epstein – Barr virus (EBV) – specific CD8+ T lymphocytes after partially T-depleted allogeneic stem cell transplantation may identify patients at very high risk for progressive EBV reactivation and lymphoproliferative disease. Blood 2003; 101: 4290–4297
  • Beral V, Peterman T, Berkelman R, Jaffe H. AIDS-associated non-Hodgkin lymphoma. Lancet 1991; 337: 805–809
  • Schulz T F, Boshoff C H, Weiss R A. HIV infection and neoplasia. Lancet 1996; 348: 587–591
  • Pluda J M, Venzon D J, Tosato G, Lietzau J, Wyvill K, Nelson D L, et al. Parameters affecting the development of non-Hodgkin's lymphoma in patients with severe human immunodeficiency virus infection receiving antiretroviral therapy. J Clin Oncol 1993; 11: 1099–1107
  • Ballerini P, Gaidano G, Gong J Z, Tassi V, Saglio G, Knowles D M, et al. Multiple genetic lesions in acquired immunodeficiency syndrome-related non-Hodgkin's lymphoma. Blood 1993; 81: 166–176
  • Carbone A, Tirelli U, Gloghini A, Volpe R, Boiocchi M. Human immunodeficiency virus-associated systemic lymphomas may be subdivided into two main groups according to Epstein – Barr viral latent gene expression. J Clin Oncol 1993; 11: 1674–1681
  • Hamilton-Dutoit S J, Pallesen G, Franzmann M B, Karkov J, Black F, Skinhoj P, et al. AIDS-related lymphoma. Histopathology, immunophenotype, association with Epstein – Barr virus as demonstrated by in situ nucleic acid hybridization. Am J Pathol 1991; 138: 149–163
  • van Baarle D, Hovenkamp E, Callan M F, Wolthers K C, Kostense S, Tan L C, et al. Dysfunctional Epstein – Barr virus (EBV)-specific CD8(+) T lymphocytes and increased EBV load in HIV-1 infected individuals progressing to AIDS-related non-Hodgkin lymphoma. Blood 2001; 98: 146–155
  • van Baarle D, Wolthers K C, Hovenkamp E, Niesters H G, Osterhaus A D, Miedema F, et al. Absolute level of Epstein – Barr virus DNA in human immunodeficiency virus type 1 infection is not predictive of AIDS-related non-Hodgkin lymphoma. J Infect Dis 2002; 186: 405–409
  • Dalod M, Dupuis M, Deschemin J C, Sicard D, Salmon D, Delfraissy J F, et al. Broad, intense anti-human immunodeficiency virus (HIV) ex vivo CD8(+) responses in HIV type 1-infected patients: comparison with anti-Epstein – Barr virus responses and changes during antiretroviral therapy. J Virol 1999; 73: 7108–7116
  • Kersten M J, Klein M R, Holwerda A M, Miedema F, van Oers M H. Epstein – Barr virus-specific cytotoxic T cell responses in HIV-1 infection: different kinetics in patients progressing to opportunistic infection or non-Hodgkin's lymphoma. J Clin Invest 1997; 99: 1525–1533
  • Piriou E R, van Dort K, Nanlohy N M, Miedema F, van Oers M H, van Baarle D. Altered EBV viral load setpoint after HIV seroconversion is in accordance with lack of predictive value of EBV load for the occurrence of AIDS-related non-Hodgkin lymphoma. J Immunol 2004; 172: 6931–6937
  • Gaidano G, la-Favera R. Molecular pathogenesis of AIDS-related lymphomas. Adv Cancer Res 1995; 67: 113–153
  • Grulich A E, Wan X, Law M G, Milliken S T, Lewis C R, Garsia R J, et al. B-cell stimulation and prolonged immune deficiency are risk factors for non-Hodgkin's lymphoma in people with AIDS. AIDS 2000; 14: 133–140
  • Walling D M, Etienne W, Ray A J, Flaitz C M, Nichols C M. Persistence and transition of Epstein – Barr virus genotypes in the pathogenesis of oral hairy leukoplakia. J Infect Dis 2004; 190: 387–395
  • Doisne J M, Urrutia A, Lacabaratz-Porret C, Goujard C, Meyer L, Chaix M L, et al. CD8+ T cells specific for EBV, cytomegalovirus, influenza virus are activated during primary HIV infection. J Immunol 2004; 173: 2410–2418
  • Papagno L, Spina C A, Marchant A, Salio M, Rufer N, Little S, et al. Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol 2004; 2: E20
  • Quesnel A, Pozzetto B, Touraine F, Moja P, Lucht F, De T G, et al. Antibodies to Epstein – Barr virus and cytomegalovirus in relation to CD4 cell number in human immunodeficiency virus 1 infection. J Med Virol 1992; 36: 60–64
  • Stevens S J, Blank B S, Smits P H, Meenhorst P L, Middeldorp J M. High Epstein – Barr virus (EBV) DNA loads in HIV-infected patients: correlation with antiretroviral therapy and quantitative EBV serology. AIDS 2002; 16: 993–1001
  • Fahey J L, Taylor J M, Detels R, Hofmann B, Melmed R, Nishanian P, et al. The prognostic value of cellular and serologic markers in infection with human immunodeficiency virus type 1. N Engl J Med 1990; 322: 166–172
  • Giorgi J V, Hultin L E, McKeating J A, Johnson T D, Owens B, Jacobson L P, et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 1999; 179: 859–870
  • Hazenberg M D, Otto S A, van Benthem B H, Roos M T, Coutinho R A, Lange J M, et al. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 2003; 17: 1881–1888
  • Miedema F, Petit A J, Terpstra F G, Schattenkerk J K, De Wolf F, Al B J, et al. Immunological abnormalities in human immunodeficiency virus (HIV)-infected asymptomatic homosexual men. HIV affects the immune system before CD4+ T helper cell depletion occurs. J Clin Invest 1988; 82: 1908–1914
  • Schellekens P T, Roos M T, De Wolf F, Lange J M, Miedema F. Low T-cell responsiveness to activation via CD3/TCR is a prognostic marker for acquired immunodeficiency syndrome (AIDS) in human immunodeficiency virus-1 (HIV-1)-infected men. J Clin Immunol 1990; 10: 121–127
  • De Milito A, Morch C, Sonnerborg A, Chiodi F. Loss of memory (CD27) B lymphocytes in HIV-1 infection. AIDS 2001; 15: 957–964
  • De Milito A. B lymphocyte dysfunctions in HIV infection. Curr HIV Res 2004; 2: 11–21
  • Moir S, Malaspina A, Ogwaro K M, Donoghue E T, Hallahan C W, Ehler L A, et al. HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals. Proc Natl Acad Sci USA 2001; 98: 10362–10367
  • Moir S, Ogwaro K M, Malaspina A, Vasquez J, Donoghue E T, Hallahan C W, et al. Perturbations in B cell responsiveness to CD4+ T cell help in HIV-infected individuals. Proc Natl Acad Sci USA 2003; 100: 6057–6062
  • Terpstra F G, Al B J, Roos M T, De Wolf F, Goudsmit J, Schellekens P T, et al. Longitudinal study of leukocyte functions in homosexual men seroconverted for HIV: rapid and persistent loss of B cell function after HIV infection. Eur J Immunol 1989; 19: 667–673
  • Wolthers K C, Otto S A, Lens S M, Van Lier R A, Miedema F, Meyaard L. Functional B cell abnormalities in HIV type 1 infection: role of CD40L and CD70. AIDS Res Hum Retroviruses 1997; 13: 1023–1029
  • Piriou E R, van Dort K, Otto S A, van Oers M HJ, van Baarle D. Tight regulation of the ebv-setpoint: inter-individual Differences in EBV DNA Load are Conserved after HIV. Infection Clin Infect Dis 2008; 46: 313–316
  • Khan G, Miyashita E M, Yang B, Babcock G J, Thorley-Lawson D A. Is EBV persistence in vivo a model for B cell homeostasis?. Immunity 1996; 5: 173–179
  • Day C L, Shea A K, Altfeld M A, Olson D P, Buchbinder S P, Hecht F M, et al. Relative dominance of epitope-specific cytotoxic T-lymphocyte responses in human immunodeficiency virus type 1-infected persons with shared HLA alleles. J Virol 2001; 75: 6279–6291
  • Gamadia L E, Remmerswaal E B, Weel J F, Bemelman F, Van Lier R A, Ten Berge I. Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 2003; 101: 2686–2692
  • McNeil A C, Shupert W L, Iyasere C A, Hallahan C W, Mican J A, Davey R T, Jr, et al. High-level HIV-1 viremia suppresses viral antigen-specific CD4(+) T cell proliferation. Proc Natl Acad Sci USA 2001; 98: 13878–13883
  • Rosenberg E S, Billingsley J M, Caliendo A M, Boswell S L, Sax P E, Kalams S A, et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 1997; 278: 1447–1450
  • Walter E A, Greenberg P D, Gilbert M J, Finch R J, Watanabe K S, Thomas E D, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333: 1038–1044
  • Jin X, Wills M, Sissons J G, Carmichael A. Progressive loss of IL-2-expandable HIV-1-specific cytotoxic T lymphocytes during asymptomatic HIV infection. Eur J Immunol 1998; 28: 3564–3576
  • Piriou E, van Dort K, Nanlohy N M, van Oers M H, Miedema F, van Baarle D. Loss of EBNA1-specific memory CD4+ and CD8+ T cells in HIV-infected patients progressing to AIDS-related non-Hodgkin lymphoma. Blood 2005; 106: 3166–3174
  • Piriou E, Jansen C A, van Dort K, De Cuyper I, Nanlohy N M, Lange J M, et al. Reconstitution of EBV latent but not lytic antigen-specific CD4+ and CD8+ T cells after HIV treatment with highly active antiretroviral therapy. J Immunol 2005; 175: 2010–2017
  • Williams H, McAulay K, Macsween K F, Gallacher N J, Higgins C D, Harrison N, et al. The immune response to primary EBV infection: a role for natural killer cells. Br J Haematol 2005; 129: 266–274
  • O'Reilly R J, Small T N, Papadopoulos E, Lucas K, Lacerda J, Koulova L. Biology and adoptive cell therapy of Epstein – Barr virus-associated lymphoproliferative disorders in recipients of marrow allografts. Immunol Rev 1997; 157: 195–216

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.