101
Views
15
CrossRef citations to date
0
Altmetric
Original Article: Research

Leukemic cells with increased telomerase activity exhibit resistance to imatinib

, , , , , & show all
Pages 1168-1177 | Received 26 Dec 2007, Accepted 07 Mar 2008, Published online: 01 Jul 2009

References

  • Deininger M W, Goldman J M, Melo J V. The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356
  • Konopka J B, Watanabe S M, Witte O N. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 1984; 37: 1035–1042
  • Melo J V. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype [comment]. Blood 1996; 88A: 2375–2384
  • Daley G Q, Van Etten R A, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830
  • Scott M L, Van Etten R A, Daley G Q, Baltimore D. v-abl causes hematopoietic disease distinct from that caused by bcr-abl. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 6506–6510
  • Druker B J, Talpaz M, Resta D J, Peng B, Buchdunger E, Ford J M, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia [comment]. N Engl J Med 2001; 344: 1031–1037
  • Blackburn E H. Structure and function of telomeres. Nature 1991; 350: 569–573
  • Kim N W, Piatyszek M A, Prowse K R, Harley C B, West M D, Ho P L, et al. Specific association of human telomerase activity with immortal cells and cancer [comment]. Science 1994; 266: 2011–2015
  • Lozzio C B, Lozzio B B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975; 45: 321–334
  • Rosenfeld C, Goutner A, Choquet C, Venuat A M, Kayibanda B, Pico J L, et al. Phenotypic characterisation of a unique non-T, non-B acute lymphoblastic leukaemia cell line. Nature 1977; 267: 841–843
  • Namba M, Nishitani K, Hyodoh F, Fukushima F, Kimoto T. Neoplastic transformation of human diploid fibroblasts (KMST-6) by treatment with 60Co gamma rays. Int J Cancer 1985; 35: 275–280
  • Yamada O, Akiyama M, Kawauchi K, Adachi T, Yamada H, Kanda N, et al. Overexpression of telomerase confers a survival advantage through suppression of TRF1 gene expression while maintaining differentiation characteristics in K562 cells. Cell Transplant 2003; 12: 365–377
  • Wick M, Zubov D, Hagen G. Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 1999; 232: 97–106
  • Akiyama M, Yamada O, Akita S, Urashima M, Horiguchi-Yamada J, Ohno T, et al. Ectopic expression of c-myc fails to overcome downregulation of telomerase activity induced by herbimycin A, but ectopic hTERT expression overcomes it. Leukemia 2000; 14: 1260–1265
  • Yamada O, Motoji T, Mizoguchi H. Up-regulation of telomerase activity in human lymphocytes. Biochim Biophys Acta 1996; 1314: 260–266
  • Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A, et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 1999; 13: 1825–1832
  • Holt S E, Glinsky V V, Ivanova A B, Glinsky G V. Resistance to apoptosis in human cells conferred by telomerase function and telomere stability. Mol Carcinogen 1999; 25: 241–248
  • Fu W, Begley J G, Killen M W, Mattson M P. Anti-apoptotic role of telomerase in pheochromocytoma cells. J Biol Chem 1999; 274: 7264–7271
  • Zhu J, Wang H, Bishop J M, Blackburn E H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening [see Comment]. Proc Natl Acad Sci USA 1999; 96: 3723–3728
  • Kawauchi K, Ihjima K, Yamada O. IL-2 increases human telomerase reverse transcriptase activity transcriptionally and posttranslationally through phosphatidylinositol 3′-kinase/Akt, heat shock protein 90, and mammalian target of rapamycin in transformed NK cells. J Immunol 2005; 174: 5261–5269
  • Tatematsu K, Nakayama J, Danbara M, Shionoya S, Sato H, Omine M, et al. A novel quantitative ‘stretch PCR assay’, that detects a dramatic increase in telomerase activity during the progression of myeloid leukemias. Oncogene 1996; 13: 2265–2274
  • Hochhaus A, Kreil S, Corbin A S, La Rosee P, Muller M C, Lahaye T, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16: 2190–2196
  • Druker B J. Inhibition of the Bcr-Abl tyrosine kinase as a therapeutic strategy for CML. Oncogene 2002; 21: 8541–8546
  • Gorre M E, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao P N, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification [comment]. Science 2001; 293: 876–880
  • Hochhaus A, La Rosee P. Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance. Leukemia 2004; 18: 1321–1331
  • Hochhaus A, Melo J V. The molecular biology of chronic myeloid leukaemia. Leukemia 1996; 10B: 751–756
  • Sattler M, Salgia R. Activation of hematopoietic growth factor signal transduction pathways by the human oncogene BCR/ABL. Cyto Growth Factor Rev 1997; 8: 63–79
  • Barnes D J, Palaiologou D, Panousopoulou E, Schultheis B, Yong A S, Wong A, et al. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res 2005; 65: 8912–8919
  • Donato N J, Wu J Y, Stapley J, Gallick G, Lin H, Arlinghaus R, et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003; 101: 690–698
  • Martinelli G, Soverini S, Rosti G, Baccarani M. Dual tyrosine kinase inhibitors in chronic myeloid leukemia. Leukemia 2005; 19: 1872–1879
  • Tauchi T, Ohyashiki K. The second generation of BCR-ABL tyrosine kinase inhibitors. Int J Hematol 2006; 83: 294–300
  • Stewart S A, Hahn W C, O'Connor B F, Banner E N, Lundberg A S, Modha P, et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci USA 2002; 99: 12606–12611
  • Akiyama M, Yamada O, Kanda N, Akita S, Kawano T, Ohno T, et al. Telomerase overexpression in K562 leukemia cells protects against apoptosis by serum deprivation and double-stranded DNA break inducing agents, but not against DNA synthesis inhibitors. Cancer Lett 2002; 178: 187–197
  • Chen Z, Koeneman K S, Corey D R. Consequences of telomerase inhibition and combination treatments for the proliferation of cancer cells. Cancer Res 2003; 63: 5917–5925
  • Hofmann W K, de Vos S, Elashoff D, Gschaidmeier H, Hoelzer D, Koeffler H P, et al. Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study [comment]. Lancet 2002; 359: 481–486
  • Cortes J, Kantarjian H. New targeted approaches in chronic myeloid leukemia. J Clin Oncol 2005; 23: 6316–6324
  • Van Etten R A. Oncogenic signaling: new insights and controversies from chronic myeloid leukemia. J Exp Med 2007; 204: 461–465

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.