263
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Novel approaches for the treatment of NHL: Proteasome inhibition and immune modulation

&
Pages 59-66 | Published online: 01 Jul 2009

References

  • Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 2005; 8: 407–419
  • Chauhan D, Chao T H, Catley L, Nicholson B, Velankar M, Hideshima T, et al. In vitro and in vivo proteasome activity profiles of bortezomib and a novel proteasome inhibitor NPI-0052. Blood 2005; 106: 3363 (abstract).
  • Miller C P, Ban K, Ruiz S L, Neuteboom S T, Palladino M A, McConkey D, et al. The novel, orally active proteasome inhibitor, NPI-0052, induces apoptosis in leukemia lymphoma cell lines and patient specimens. Blood 2005; 106: 241 (abstract).
  • Suzuki E, Jazirehi A, Palladino M A, Bonavida B. Chemosensitization of drug and rituximab-resistant daudi B-NHL clones to drug-induced apoptosis by the proteasome inhibitor NPI-0052. Blood 2005; 106: 1521(abstract).
  • Demo S D, Kirk C J, Aujay M A, Buchholz T J, Dajee M, Ho M N, et al. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 2007; 67: 6383–6391
  • Pahler J C, Ruiz S, Niemer I, Calvert L R, Andreeff M, Keating M, et al. Effects of the proteasome inhibitor, bortezomib, on apoptosis in isolated lymphocytes obtained from patients with chronic lymphocytic leukemia. Clin Cancer Res 2003; 9: 4570–4577
  • Chauhan D, Catley L, Velankar M, Letai A, Hideshima T, Podar K, et al. Requirement of caspase-8 versus caspase-9 during apoptosis in multiple myeloma cells induced by bortezomib or a novel proteasome inhibitor NPI-0052. Blood 2005; 106: 3378 (abstract).
  • O'Connor O A, Moskowitz C, Wright J, MacGregor-Cortelli B, Straus D, Furst D, et al. Phase II clinical experience with the proteasome inhibitor PS-341 in patients with indolent lymphomas. Blood 2002; 100: 3063, (abstract)
  • Belch A, Kouroukis T, Crump M, Sehn L, Gascoyne R, Klasa R, et al. Phase II trial of bortezomib in mantle cell lymphoma. Blood 2004; 104: 608(abstract).
  • Goy A, Younes A, McLaughlin P, Pro B, Romaguera J E, Hagemeister F, et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma. J Clin Oncol 2005; 23: 667–675
  • Goy A, Bernstein S H, Kahl B S, Epner E, Leonard J P, Stadtmauer E A, et al. Bortezomib in patients with relapsed or refractory mantle cell lymphoma (MCL): preliminary results of the PINNACLE study. J Clin Oncol 2005; 23: 6563. (abstract)
  • O'Connor O A, Wright J, Moskowitz C, Straus D, Portlock C S, Hamlin P, et al. Targeting the proteasome pathway with bortezomib in patients with mantle cell (MCL) and follicular lymphoma (FL) produces prolonged progression free survival among responding patients: results of a multicenter phase II experience. Ann Oncol 2005; 16: 99. (abstract)
  • Strauss S, Maharaj L, Hoare S, Trehu E, Boral A, Schenkein D, et al. Bortezomib (Velcade) in patients with relapsed/refractory lymphoma: potential correlation of TNF-alpha response and in vitro sensitivity with clinical activity. Ann Oncol 2005; 16: 97. (abstract)
  • Dimopoulos M A, Anagnostopoulos A, Kyrtsonis M C, Castritis E, Bitsaktsis A, Pangalis G A. Treatment of relapsed or refractory Waldenstrom's macroglobulinemia with bortezomib. Haematologica 2005; 90: 1655–1658
  • Goy A, Bernstein S H, Kahl B S, Djulbegovic B, Robertson M J, Boral A, et al. Bortezomib in relapse or refractory mantle cell lymphoma (MCL): results of the PINNACLE study. J Clin Oncol 2006; 24: 7512. (ASCO Meeting abstract)
  • Fisher R I, Bernstein S H, Kahl B S, Djulbegovic B, Robertson M J, de V S, et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 2006; 24: 4867–4874
  • Richardson P G, Sonneveld P, Schuster M W, Irwin D, Stadtmauer E A, Facon T, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005; 352: 2487–2498
  • NCCN. NCCN Clinical Practice Guidelines in oncology: non-Hodgkin's lymphomas (v3.2007). 2007
  • Greco F A, Spigel D R, Barton J H, Farley C, Schreeder M T, Hermann R C, et al. Weekly bortezomib in the treatment of patients (pts) with previously treated multiple myeloma: a phase II trial of the Minnie Pearl cancer research network. J Clin Oncol 2006; 24: 7547. (ASCO Meeting abstract)
  • Gerecitano J, Portlock C S, Noy A, Hamlin P, Moskowitz C, Straus D, et al. The schedule dependent combination of bortezomib (Bor) with rituximab (R), cyclophosphamide (C) and prednisone (P) produces minimal toxicity, even at relatively high doses of proteasome inhibitor, inpatients with relapsed/refractory indolent B-cell lymphoproliferative disorders. Blood 2006; 108: 2759. (abstract)
  • Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D. The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 2006; 107: 257–264
  • Hideshima T, Mitsiades C, Akiyama M, Hayashi T, Chauhan D, Richardson P, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003; 101: 1530–1534
  • Bartlett J B, Dredge K, Dalgleish A G. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 2004; 4: 314–322
  • Kumar S, Rajkumar S V. Thalidomide and lenalidomide in the treatment of multiple myeloma. Eur J Cancer 2006; 42: 1612–1622
  • Marriott J B, Dredge K, Dalgleish A G. Thalidomide derived immunomodulatory drugs (IMiDs) as potential therapeutic agents. Curr Drug Targets Immune Endocr Metab Disord 2003; 3: 181–186
  • Richardson P G, Schlossman R L, Weller E, Hideshima T, Mitsiades C, Davies F, et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 2002; 100: 3063–3067
  • Davies F E, Raje N, Hideshima T, Lentzsch S, Young G, Tai Y T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001; 98: 210–216
  • Gupta D, Treon S P, Shima Y, Hideshima T, Podar K, Tai Y T, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 2001; 15: 1950–1961
  • Hideshima T, Chauhan D, Shima Y, Raje N, Davies F E, Tai Y T, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000; 96: 2943–2950
  • Gandhi A K, Kang J, Naziruddin S, Parton A, Schafer P H, Stirling D I. Lenalidomide inhibits proliferation of Namalwa CSN.70 cells and interferes with Gab1 phosphorylation and adaptor protein complex assembly. Leuk Res 2006; 30: 849–858
  • Verhelle D, Corral L G, Wong K, Mueller J H, Moutouh-de P L, Jensen-Pergakes K, et al. Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells. Cancer Res 2007; 67: 746–755
  • Moreira A L, Sampaio E P, Zmuidzinas A, Frindt P, Smith K A, Kaplan G. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 1993; 177: 1675–1680
  • Fujita J, Mestre J R, Zeldis J B, Subbaramaiah K, Dannenberg A J. Thalidomide and its analogues inhibit lipopolysaccharide-mediated Iinduction of cyclooxygenase-2. Clin Cancer Res 2001; 7: 3349–3355
  • Dredge K, Horsfall R, Robinson S P, Zhang L H, Lu L, Tang Y, et al. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc Res 2005; 69: 56–63
  • Mitsiades N, Mitsiades C S, Poulaki V, Chauhan D, Richardson P G, Hideshima T, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002; 99: 4525–4530
  • Schafer P H, Gandhi A K, Loveland M A, Chen R S, Man H W, Schnetkamp P P, et al. Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs. J Pharmacol Exp Ther 2003; 305: 1222–1232
  • Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 2005; 128: 192–203
  • Corral L G, Haslett P A, Muller G W, Chen R, Wong L M, Ocampo C J, et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol 1999; 163: 380–386
  • Wu L, Schafer P, Muller G, Stirling D, Bartlett J B. Lenalidomide strongly enhances natural killer (NK) cell mediated antibody-dependent cellular cytotoxicity (ADCC) of rituximab treated non-Hodgkin's lymphoma cell lines in vitro. Blood 2006; 108: 3714. (abstract)
  • Kay N E. The angiogenic status of B-CLL B cells: role of the VEGF receptors. Leuk Res 2004; 28: 221–222
  • Mitsiades C S, Mitsiades N. CC-5013 (Celgene). Curr Opin Invest Drugs 2004; 5: 635–647
  • Hernandez-Ilizaliturri F J, Jupudy V, Ostberg J, Oflazoglu E, Huberman A, Repasky E, et al. Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin's lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res 2003; 9: 5866–5873
  • Hernandez-Ilizaliturri F J, Reddy N, Holkova B, Ottman E, Czuczman M S. Immunomodulatory drug CC-5013 or CC-4047 and rituximab enhance antitumor activity in a severe combined immunodeficient mouse lymphoma model. Clin Cancer Res 2005; 11: 5984–5992
  • Reddy N, Hernandez-Ilizaliturri F J, Deeb G, Roth M, Vaughn M, Knight J, et al. Immunomodulatory drugs stimulate natural killer-cell function, alter cytokine production by dendritic cells, and inhibit angiogenesis enhancing the anti-tumour activity of rituximab in vivo. Br J Haematol 2008; 140: 36–45
  • Suvas S, Singh V, Sahdev S, Vohra H, Agrewala J N. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J Biol Chem 2002; 277: 7766–7775
  • Chanan-Khan A, Miller K C, DiMceli L, Padmanabhan S, Lawrence D, Bernstein Z P, et al. Results of phase II study of lenalidomide (L) (Revlimid) in patients with relapsed or refractory chronic lymphocytic leukemia (CLL). Blood 2005; 106: 447
  • Witzig T E, Vose J M, Kaplan H P, Wolf J L, Pietronigro D, Takeshita K, et al. Early results from a phase II study of lenalidomide monotherapy in relapsed/refractory indolent non-Hodgkin's lymphoma. Blood 2006; 108: 2482. (abstract)
  • Wiernik P H, Lossos I, Tuscano J, Justice G, Vose J, Pietronigro D, et al. Preliminary results from a phase II study of lenalidomide monotherapy in relapsed/refractory aggressive non-Hodgkin's lymphoma. Blood 2006; 108: 531. (abstract)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.