310
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Machine learning to predict high-dose methotrexate-related neutropenia and fever in children with B-cell acute lymphoblastic leukemia

ORCID Icon, , , , , & show all
Pages 2502-2513 | Received 14 Sep 2020, Accepted 27 Mar 2021, Published online: 26 Apr 2021

References

  • Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.
  • Jordaens S, Cooksey L, Bonney S, et al. Serum profiling identifies ibrutinib as a treatment option for young adults with B-cell acute lymphoblastic leukaemia. Br J Haematol. 2020;189(3):500–512.
  • Larsen EC, Devidas M, Chen S, et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic leukemia: a report from Children's Oncology Group Study AALL0232. J Clin Oncol. 2016;34(20):2380–2388.
  • Bhojwani D, Sabin ND, Pei D, et al. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol. 2014;32(9):949–959.
  • Trama A, Botta L, Foschi R, et al. Survival of European adolescents and young adults diagnosed with cancer in 2000-07: population-based data from EUROCARE-5. Lancet Oncol. 2016;17(7):896–906.
  • Howard SC, McCormick J, Pui CH, et al. Preventing and managing toxicities of high-dose methotrexate. Oncologist. 2016;21(12):1471–1482.
  • Huang X, Fang Q, Rao T, et al. Leucovorin ameliorated methotrexate induced intestinal toxicity via modulation of the gut microbiota. Toxicol Appl Pharmacol. 2020;391:114900.
  • Yousef AM, Farhad R, Alshamaseen D, et al. Folate pathway genetic polymorphisms modulate methotrexate-induced toxicity in childhood acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2019;83(4):755–762.
  • Kapoor G, Sinha R, Abedin S. Experience with high dose methotrexate therapy in childhood acute lymphoblastic leukemia in a tertiary care cancer centre of a developing country. Pediatr Blood Cancer. 2012;59(3):448–453.
  • Gervasini G, de Murillo SG, Jiménez M, et al. Effect of polymorphisms in transporter genes on dosing, efficacy and toxicity of maintenance therapy in children with acute lymphoblastic leukemia. Gene. 2017;628:72–77.
  • van Tilburg CM, Sanders EA, Nibbelke EE, et al. Impact of reduced chemotherapy treatment for good risk childhood acute lymphoblastic leukaemia on infectious morbidity*. Br J Haematol. 2011;152(4):433–440.
  • O’Connor D, Bate J, Wade R, et al. Infection-related mortality in children with acute lymphoblastic leukemia: an analysis of infectious deaths on UKALL2003. Blood. 2014;124(7):1056–1061.
  • Nearing JT, Connors J, Whitehouse S, et al. Infectious complications are associated with alterations in the gut microbiome in pediatric patients with acute lymphoblastic leukemia. Front Cell Infect Microbiol. 2019;9:28.
  • Razali RH, Noorizhab MNF, Jamari H, et al. Association of ABCC2 with levels and toxicity of methotrexate in Malaysian Childhood acute lymphoblastic leukemia (ALL). Pediatr Hematol Oncol. 2020;37(3):185–197.
  • Zgheib NK, Akra-Ismail M, Aridi C, et al. Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in Lebanese children with acute lymphoblastic leukemia. Pharmacogenet Genomics. 2014;24(8):387–396.
  • Tantawy AA, El-Bostany EA, Adly AA, et al. Methylene tetrahydrofolate reductase gene polymorphism in Egyptian children with acute lymphoblastic leukemia. Blood Coagul Fibrinolysis. 2010;21:28–34.
  • Aráoz HV, D'Aloi K, Foncuberta ME, et al. Pharmacogenetic studies in children with acute lymphoblastic leukemia in Argentina. Leuk Lymphoma. 2015;56(5):1370–1378.
  • Li X, Sui Z, Jing F, et al. Identifying risk factors for high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia. Cancer Manag Res. 2019;11:6265–6274.
  • Giletti A, Esperon P. Genetic markers in methotrexate treatments. Pharmacogenomics J. 2018;18(6):689–703.
  • Cao M, Guo M, Wu DQ, et al. Pharmacogenomics of methotrexate: current status and future outlook. Curr Drug Metab. 2018;19(14):1182–1187.
  • Hu YH, Zhou L, Wang SS, et al. Methotrexate disposition in pediatric patients with acute lymphoblastic leukemia: what have we learnt from the genetic variants of drug transporters. Curr Pharm Des. 2019;25(6):627–634.
  • Huang Z, Tong HF, Qian JC, et al. Association of folypolyglutamate synthetase (FPGS) gene polymorphism with blood drug concentration as well as adverse reactions of methotrexate in children with acute leukaemia. Biomed Res. 2017;28:478–483.
  • Liu SG, Li ZG, Cui L, et al. Effects of methylenetetrahydrofolate reductase gene polymorphisms on toxicities during consolidation therapy in pediatric acute lymphoblastic leukemia in a Chinese population. Leuk Lymphoma. 2011;52(6):1030–1040.
  • Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–1358.
  • Naushad SM, Dorababu P, Rupasree Y, et al. Classification and regression tree-based prediction of 6-mercaptopurine-induced leucopenia grades in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2019;83(5):875–880.
  • Kang X, Zheng L, Zeng W, et al. Risk factors for post-ERCP pancreatitis in high-risk patients receiving post-procedure rectal indomethacin. J Gastrointest Surg. 2018;22(11):1903–1910.
  • Oyaga-Iriarte E, Insausti A, Sayar O, et al. Prediction of irinotecan toxicity in metastatic colorectal cancer patients based on machine learning models with pharmacokinetic parameters. J Pharmacol Sci. 2019;140(1):20–25.
  • Rajula HSR, Verlato G, Manchia M, et al. Comparison of conventional statistical methods with machine learning in medicine: diagnosis, Drug Development, and Treatment. Medicina. 2020;56:455.
  • Li Q, Fan QL, Han QX, et al. Machine learning in nephrology: scratching the surface. Chin Med J (Engl). 2020;133:687–698.
  • Khoury N, Attal F, Amirat Y, et al. Data-driven based approach to aid Parkinson's disease diagnosis. Sensors (Basel). 2019;19(2):242.
  • Cherkassky V. The nature of statistical learning theory. IEEE Trans Neural Netw. 1997;8(6):1564.
  • Ben-Hur A, Weston J. A user's guide to support vector machines. Methods Mol Biol. 2010;609:223–239.
  • Mansour NA, Saleh AI, Badawy M, et al. Accurate detection of Covid-19 patients based on Feature Correlated Naïve Bayes (FCNB) classification strategy. J Ambient Intell Humaniz Comput. 2021;1–33.
  • Wilson TJ, Howe BM, Stewart SA, et al. Clinicoradiological features of intraneural perineuriomas obviate the need for tissue diagnosis. J Neurosurg. 2018;129(4):1034–1040.
  • Nithya B, Ilango V. Evaluation of machine learning based optimized feature selection approaches and classification methods for cervical cancer prediction. SN Appl Sci. 2019;1(6):1–16.
  • Liu MM, Wen L, Liu YJ, et al. Application of data mining methods to improve screening for the risk of early gastric cancer. BMC Med Inform Decis Mak. 2018;18(Suppl 5):121.
  • Li XY, Li JQ, Luo XQ, et al. Reduced intensity of early intensification does not increase the risk of relapse in children with standard risk acute lymphoblastic leukemia - a multi-centric clinical study of GD-2008-ALL protocol. BMC Cancer. 2021;21(1):59.
  • Yuan X, Yu U, Chen S, et al. Case report: myeloid sarcoma development during treatment for B cell lymphoblastic lymphoma in a Boy with KRAS/NRAS gene mutations. OTT. 2021;14:347–353.
  • Gervasini G, Mota-Zamorano S. Clinical implications of methotrexate pharmacogenetics in childhood acute lymphoblastic leukaemia. Curr Drug Metab. 2019;20(4):313–330.
  • Zhou H, Li L, Yang P, et al. Optimal predictor for 6-mercaptopurine intolerance in Chinese children with acute lymphoblastic leukemia: NUDT15, TPMT, or ITPA genetic variants? BMC Cancer. 2018;18(1):516.
  • Yang JJ, Landier W, Yang W, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol. 2015;33(11):1235–1242.
  • Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of America. Clin Infect Dis. 2011;52:e56-93.
  • van Kooten Niekerk PB, Schmiegelow K, Schroeder H. Influence of methylene tetrahydrofolate reductase polymorphisms and coadministration of antimetabolites on toxicity after high dose methotrexate. Eur J Haematol. 2008;81:391–398.
  • Li MJ, Chang HH, Yang YL, et al. Infectious complications in children with acute lymphoblastic leukemia treated with the Taiwan Pediatric Oncology Group protocol: a 16-year tertiary single-institution experience. Pediatr Blood Cancer. 2017;64(10):e26535.
  • He H, Yang B, Garcia EA, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. IJCNN 2008 (IEEE World Congress on Computational Inteligence), IJCNN 2008. IEEE International Joint Conference on Neural Networks; 2008.
  • Chawla NV, Bowyer KW, Hall LO, et al. SMOTE: synthetic minority over-sampling technique. JAIR. 2002;16:321–357.
  • Han H, Wang WY, Mao BH. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. Lecture Notes in Computer Science. 2005;3644(1):878–887.
  • Jia C, Zuo Y. S-SulfPred: a sensitive predictor to capture S-sulfenylation sites based on a resampling one-sided selection undersampling-synthetic minority oversampling technique. J Theor Biol. 2017;422:84–89.
  • Koch G, Pfister M, Daunhawer I, et al. Pharmacometrics and machine learning partner to advance clinical data analysis. Clin Pharmacol Ther. 2020;107(4):926–933.
  • Yang T, Yang Y, Jia Y, et al. Dynamic prediction of hospital admission with medical claim data. BMC Med Inform Decis Mak. 2019;19(Suppl 1):18.
  • Sajith M, Pawar A, Bafna V, et al. Serum methotrexate level and side effects of high dose methotrexate infusion in pediatric patients with acute lymphoblastic leukaemia (ALL). Indian J Hematol Blood Transfus. 2020;36(1):51–58.
  • Liu SG, Gao C, Zhang RD, et al. Polymorphisms in methotrexate transporters and their relationship to plasma methotrexate levels, toxicity of high-dose methotrexate, and outcome of pediatric acute lymphoblastic leukemia. Oncotarget. 2017;8(23):37761–37772.
  • Ramsey LB, Bruun GH, Yang W, et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 2012;22(1):1–8.
  • van de Steeg E, Wagenaar E, van der Kruijssen CM, et al. Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J Clin Invest. 2010;120(8):2942–2952.
  • van de Steeg E, van der Kruijssen CM, Wagenaar E, et al. Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos. 2009;37(2):277–281.
  • Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, et al. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57(4):612–619.
  • Radtke S, Zolk O, Renner B, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood. 2013;121(26):5145–5153.
  • Ramsey LB, Panetta JC, Smith C, et al. Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood. 2013;121(6):898–904.
  • Treviño LR, Shimasaki N, Yang W, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009;27(35):5972–5978.
  • Li J, Wang XR, Zhai XW, et al. Association of SLCO1B1 gene polymorphisms with toxicity response of high dose methotrexate chemotherapy in childhood acute lymphoblastic leukemia. Int J Clin Exp Med. 2015;8:6109–6113.
  • Fontanella C, Bolzonello S, Lederer B, et al. Management of breast cancer patients with chemotherapy-induced neutropenia or febrile neutropenia. Breast Care (Basel). 2014;9(4):239–245.
  • Ammann RA, Bodmer N, Hirt A, et al. Predicting adverse events in children with fever and chemotherapy-induced neutropenia: the prospective multicenter SPOG 2003 FN study. J Clin Oncol. 2010;28(12):2008–2014.
  • Crawford J, Dale DC, Lyman GH. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer. 2004;100(2):228–237.
  • Castagnola E, Fontana V, Caviglia I, et al. A prospective study on the epidemiology of febrile episodes during chemotherapy-induced neutropenia in children with cancer or after hemopoietic stem cell transplantation. Clin Infect Dis. 2007;45(10):1296–1304.
  • Dale DC. How I diagnose and treat neutropenia. Curr Opin Hematol. 2016;23:1–4.
  • Xie C, Du R, Ho JW, et al. Effect of machine learning re-sampling techniques for imbalanced datasets in (18)F-FDG PET-based radiomics model on prognostication performance in cohorts of head and neck cancer patients. Eur J Nucl Med Mol Imaging. 2020;47(12):2826–2835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.