95
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in the management of higher-risk myelodysplastic syndromes: future prospects

ORCID Icon, ORCID Icon, , ORCID Icon, &
Received 06 Mar 2024, Accepted 12 Apr 2024, Published online: 07 May 2024

References

  • Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–2088. doi:10.1182/blood.V89.6.2079
  • Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–2465. doi:10.1182/blood-2012-03-420489
  • Bernard E, Tuechler H, Greenberg PL, et al. Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 2022;1(7):EVIDoa2200008. doi:10.1056/EVIDoa2200008
  • Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496–2506. doi:10.1056/NEJMoa1013343
  • Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–247. doi:10.1038/leu.2013.336
  • Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–3627; quiz 3699. doi:10.1182/blood-2013-08-518886
  • Malcovati L, Stevenson K, Papaemmanuil E, et al. SF3B1-mutant MDS as a distinct disease subtype: a proposal from the international working group for the prognosis of MDS. Blood. 2020;136(2):157–170. doi:10.1182/blood.2020004850
  • Yu J, Li Y, Li T, et al. Gene mutational analysis by NGS and its clinical significance in patients with myelodysplastic syndrome and acute myeloid leukemia. Exp Hematol Oncol. 2020;9:2. doi:10.1186/s40164-019-0158-5
  • Ogawa S. Genetics of MDS. Blood. 2019;133(10):1049–1059. doi:10.1182/blood-2018-10-844621
  • Makishima H, Yoshizato T, Yoshida K, et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 2017;49(2):204–212. doi:10.1038/ng.3742
  • Maurya N, Mohanty P, Dhangar S, et al. Comprehensive analysis of genetic factors predicting overall survival in myelodysplastic syndromes. Sci Rep. 2022;12(1):5925. doi:10.1038/s41598-022-09864-9
  • Urrutia S, Sasaki K, Kanagal-Shamanna R, et al. Impact of spliceosome mutations on the prognosis of myelodysplastic syndrome (MDS). Blood. 2022;140(Supplement 1):6952–6954. doi:10.1182/blood-2022-165488
  • Kim T, Tyndel MS, Kim HJ, et al. The clonal origins of leukemic progression of myelodysplasia. Leukemia. 2017;31(9):1928–1935. doi:10.1038/leu.2017.17
  • Takahashi K, Jabbour E, Wang X, et al. Dynamic acquisition of FLT3 or RAS alterations drive a subset of patients with lower risk MDS to secondary AML. Leukemia. 2013;27(10):2081–2083. doi:10.1038/leu.2013.165
  • Walter MJ, Shen D, Ding L, et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med. 2012;366(12):1090–1098. doi:10.1056/NEJMoa1106968
  • Bernard E. Molecular International Prognosis Scoring System for Myelodysplastic Syndromes. ASH; 2021 [cited 2022 Apr 4]. Available from: https://ash.confex.com/ash/2021/webprogram/Paper150554.html.
  • Merz AMA, Sébert M, Sonntag J, et al. Phase to phase: navigating drug combinations with hypomethylating agents in higher-risk MDS trials for optimal outcomes. Cancer Treat Rev. 2024;123:102673. doi:10.1016/j.ctrv.2023.102673
  • Khoury JD, Solary E, Abla O, et al. The 5th edition of the world health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–1719. doi:10.1038/s41375-022-01613-1
  • Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200–1228. doi:10.1182/blood.2022015850
  • Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 2020;20(8):471–480. 2020/05/15 ed. doi:10.1038/s41568-020-0262-1
  • Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002;2(8):594–604. doi:10.1038/nrc864
  • Bernard E, Nannya Y, Hasserjian RP, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020;26(10):1549–1556. doi:10.1038/s41591-020-1008-z
  • Haase D, Stevenson KE, Neuberg D, et al. TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia. 2019;33(7):1747–1758. doi:10.1038/s41375-018-0351-2
  • Montalban-Bravo G, Takahashi K, Patel K, et al. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Oncotarget. 2018;9(11):9714–9727. doi:10.18632/oncotarget.23882
  • Guess T, Potts CR, Bhat P, et al. Distinct patterns of clonal evolution drive myelodysplastic syndrome progression to secondary acute myeloid leukemia. Blood Cancer Discov. 2022;3(4):316–329. doi:10.1158/2643-3230.BCD-21-0128
  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–232. doi:10.1016/S1470-2045(09)70003-8
  • Lübbert M, Suciu S, Baila L, et al. Low-Dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European organisation for research and treatment of cancer leukemia group and the German MDS study group. J Clin Oncol. 2011;29(15):1987–1996. doi:10.1200/JCO.2010.30.9245
  • Diesch J, Zwick A, Garz AK, et al. A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics. 2016;8(1):71. doi:10.1186/s13148-016-0237-y
  • Garcia JS, Swords RT, Roboz GJ, et al. A systematic review of higher-risk myelodysplastic syndromes clinical trials to determine the benchmark of azacitidine and explore alternative endpoints for overall survival. Leuk Res. 2021;104:106555. doi:10.1016/j.leukres.2021.106555
  • Silverman LR, Fenaux P, Mufti GJ, et al. Continued azacitidine therapy beyond time of first response improves quality of response in patients with higher-risk myelodysplastic syndromes. Cancer. 2011;117(12):2697–2702. doi:10.1002/cncr.25774
  • Garcia-Manero G, Griffiths EA, Steensma DP, et al. Oral cedazuridine/decitabine for MDS and CMML: a phase 2 pharmacokinetic/pharmacodynamic randomized crossover study. Blood. 2020;136(6):674–683. doi:10.1182/blood.2019004143
  • Garcia-Manero G, McCloskey J, Scott BL, et al. Development of oral azacitidine with cedazuridine for myelodysplastic syndrome (MDS) and myeloproliferative neoplasms (MPN) including CMML (chronic myelomonocytic leukemia) by targeting pharmacokinetic AUC equivalence Vs subcutaneous azacitidine. Blood. 2023;142(Supplement 1):3245–3245. doi:10.1182/blood-2023-178024
  • Garcia-Manero G, Sasaki K, Montalban-Bravo G, et al. A phase II study of nivolumab or ipilimumab with or without azacitidine for patients with myelodysplastic syndrome (MDS). Blood. 2018;132(Supplement 1):465–465. doi:10.1182/blood-2018-99-119424
  • Ades L, Watts JM, Radinoff A, et al. Phase II study of pevonedistat (P) + azacitidine (A) versus a in patients (pts) with higher-risk myelodysplastic syndromes (MDS)/chronic myelomonocytic leukemia (CMML), or low-blast acute myelogenous leukemia (LB AML) (NCT02610777). J Clin Oncol. 2020;38(15_suppl):7506–7506. doi:10.1200/JCO.2020.38.15_suppl.7506
  • Zeidan AM, Ando K, Rauzy O, et al. Sabatolimab plus hypomethylating agents in previously untreated patients with higher-risk myelodysplastic syndromes (STIMULUS-MDS1): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Haematol. 2024;11(1)2023/12/09 ed.:e38–e50. doi:10.1016/S2352-3026(23)00333-2
  • Sallman DA, Al Malki MM, Asch AS, et al. Magrolimab in combination with azacitidine in patients with higher-risk myelodysplastic syndromes: final results of a phase Ib study. J Clin Oncol. 2023;41(15):2815–2826. doi:10.1200/JCO.22.01794
  • Garcia-Manero G. Current status of phase 3 clinical trials in high-risk myelodysplastic syndromes: pitfalls and recommendations. Lancet Haematol. 2023;10(1):e71–e78. doi:10.1016/S2352-3026(22)00265-4
  • Bazinet A, Bravo GM. New approaches to myelodysplastic syndrome treatment. Curr Treat Options Oncol. 2022;23(5):668–687. doi:10.1007/s11864-022-00965-1
  • Tsao T, Shi Y, Kornblau S, et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Ann Hematol. 2012;91(12):1861–1870. doi:10.1007/s00277-012-1537-8
  • Konopleva M, Letai A. BCL-2 inhibition in AML: an unexpected bonus? Blood. 2018;132(10):1007–1012. doi:10.1182/blood-2018-03-828269
  • DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617–629. doi:10.1056/NEJMoa2012971
  • Bazinet A, Darbaniyan F, Jabbour E, et al. Azacitidine plus venetoclax in patients with high-risk myelodysplastic syndromes or chronic myelomonocytic leukaemia: phase 1 results of a single-Centre, dose-escalation, dose-expansion, phase 1-2 study. Lancet Haematol. 2022;9(10):e756–e765. doi:10.1016/S2352-3026(22)00216-2
  • Garcia JS, Platzbecker U, Odenike O, et al. Efficacy and safety of venetoclax in combination with azacitidine for the treatment of patients with treatment-naive, higher-risk myelodysplastic syndromes. Blood. 2023;142(Supplement 1):319–319. doi:10.1182/blood-2023-189446
  • Bataller A, Montalban-Bravo G, Bazinet A, et al. Oral decitabine plus cedazuridine and venetoclax in patients with higher-risk myelodysplastic syndromes or chronic myelomonocytic leukaemia: a single-Centre, phase 1/2 study. Lancet Haematol. 2024;11;0. Available from: (3)[Internet].:e186–e195. https://www.thelancet.com/journals/lanhae/article/PIIS2352-3026(/fulltext. doi:10.1016/S2352-3026(23)00367-8
  • Zeidan AM, Garcia JS, Fenaux P, et al. Phase 3 VERONA study of venetoclax with azacitidine to assess change in complete remission and overall survival in treatment-naïve higher-risk myelodysplastic syndromes. J Clin Oncol. 2021;39(15_suppl):TPS7054–TPS7054. doi:10.1200/JCO.2021.39.15_suppl.TPS7054
  • Estey E, Thall P, Beran M, et al. Effect of diagnosis (refractory anemia with excess blasts, refractory anemia with excess blasts in transformation, or acute myeloid leukemia [AML]) on outcome of AML-type chemotherapy. Blood. 1997;90(8):2969–2977. doi:10.1182/blood.V90.8.2969
  • Peterlin P, Le Bris Y, Turlure P, et al. CPX-351 in higher risk myelodysplastic syndrome and chronic myelomonocytic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Haematol. 2023;10(7):e521–e529. doi:10.1016/S2352-3026(23)00090-X
  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–2405. doi:10.1182/blood-2016-03-643544
  • DiNardo CD, Jabbour E, Ravandi F, et al. IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression. Leukemia. 2016;30(4):980–984. doi:10.1038/leu.2015.211
  • Patnaik MM, Hanson CA, Hodnefield JM, et al. Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo clinic study of 277 patients. Leukemia. 2012;26(1):101–105. doi:10.1038/leu.2011.298
  • Dinardo C, Roboz G, M. Watts J, et al. P724: updated substudy results for ivosidenib in idh1-mutant relapsed/refractory myelodysplastic syndrome. Hemasphere. 2023;7(S3):e75740ab. doi:10.1097/01.HS9.0000969800.75740.ab
  • Stein EM, Fathi AT, DiNardo CD, et al. Enasidenib in patients with mutant IDH2 myelodysplastic syndromes: a phase 1 subgroup analysis of the multicentre, AG221-C-001 trial. Lancet Haematol. 2020;7(4):e309–e319. doi:10.1016/S2352-3026(19)30284-4
  • DiNardo CD, Venugopal S, Lachowiez C, et al. Targeted therapy with the mutant IDH2 inhibitor enasidenib for high-risk IDH2-mutant myelodysplastic syndrome. Blood Adv. 2023;7(11):2378–2387. doi:10.1182/bloodadvances.2022008378
  • Daver N, Strati P, Jabbour E, et al. FLT3 mutations in myelodysplastic syndrome and chronic myelomonocytic leukemia. Am J Hematol. 2013;88(1):56–59. doi:10.1002/ajh.23345
  • Bains A, Luthra R, Medeiros LJ, et al. FLT3 and NPM1 mutations in myelodysplastic syndromes. Am J Clin Pathol. 2011;135(1):62–69. doi:10.1309/AJCPEI9XU8PYBCIO
  • Issa GC, Aldoss I, DiPersio J, et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature. 2023;615(7954):920–924. doi:10.1038/s41586-023-05812-3
  • Montalban-Bravo G, Kanagal-Shamanna R, Benton CB, et al. Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Adv. 2020;4(3):482–495. doi:10.1182/bloodadvances.2019001101
  • Lehmann S, Bykov VJN, Ali D, et al. Targeting p53 in vivo: a first-in-Human study with p53-Targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 2012;30(29):3633–3639. doi:10.1200/JCO.2011.40.7783
  • Sallman DA, DeZern AE, Garcia-Manero G, et al. Eprenetapopt (APR-246) and azacitidine in TP53-Mutant myelodysplastic syndromes. J Clin Oncol. 2021;39(14):1584–1594. doi:10.1200/JCO.20.02341
  • Cluzeau T, Sebert M, Rahmé R, et al. Eprenetapopt plus azacitidine in TP53-Mutated myelodysplastic syndromes and acute myeloid leukemia: a phase II study by the groupe francophone des myélodysplasies (GFM). J Clin Oncol. 2021;39(14):1575–1583. doi:10.1200/JCO.20.02342
  • Bolon YT, Atshan R, Allbee-Johnson M, et al. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR summary slides, The US Summary Slides. 2022.
  • D'Souza A, Lee S, Zhu X, et al. Current use and trends in hematopoietic cell transplantation in the United States. Biol Blood Marrow Transplant. 2017;23(9):1417–1421. doi:10.1016/j.bbmt.2017.05.035
  • Cutler CS, Lee SJ, Greenberg P, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104(2):579–585. doi:10.1182/blood-2004-01-0338
  • Koreth J, Pidala J, Perez WS, et al. Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis. J Clin Oncol. 2013;31(21):2662–2670. doi:10.1200/JCO.2012.46.8652
  • Robin M, Porcher R, Ruggeri A, et al. HLA-Mismatched donors in patients with myelodysplastic syndrome: an EBMT registry analysis. Biol Blood Marrow Transplant. 2019;25(1):114–120. doi:10.1016/j.bbmt.2018.08.026
  • Kröger N, Iacobelli S, Franke GN, et al. Dose-reduced versus standard conditioning followed by allogeneic stem-cell transplantation for patients with myelodysplastic syndrome: a prospective randomized phase III study of the EBMT (RICMAC trial). J Clin Oncol. 2017;35(19):2157–2164. doi:10.1200/JCO.2016.70.7349
  • Nakamura R, Saber W, Martens MJ, et al. Biologic assignment trial of reduced-intensity hematopoietic cell transplantation based on donor availability in patients 50-75 years of age with advanced myelodysplastic syndrome. J Clin Oncol. 2021;39(30):3328–3339. doi:10.1200/JCO.20.03380
  • Muffly L, Pasquini MC, Martens M, et al. Increasing use of allogeneic hematopoietic cell transplantation in patients aged 70 years and older in the United States. Blood. 2017;130(9):1156–1164. doi:10.1182/blood-2017-03-772368
  • Carré M, Porcher R, Finke J, et al. Role of age and hematopoietic cell transplantation-specific comorbidity index in myelodysplastic patients undergoing an allotransplant: a retrospective study from the chronic malignancies working party of the European group for blood and marrow transplantation. Biol Blood Marrow Transplant. 2020;26(3):451–457. doi:10.1016/j.bbmt.2019.10.015
  • McClune BL, Weisdorf DJ, Pedersen TL, et al. Effect of age on outcome of reduced-intensity hematopoietic cell transplantation for older patients with acute myeloid leukemia in first complete remission or with myelodysplastic syndrome. J Clin Oncol. 2010;28(11):1878–1887. doi:10.1200/JCO.2009.25.4821
  • Modi D, Deol A, Kim S, et al. Age does not adversely influence outcomes among patients older than 60 years who undergo allogeneic hematopoietic stem cell transplant for AML and myelodysplastic syndrome. Bone Marrow Transplant. 2017;52(11):1530–1536. doi:10.1038/bmt.2017.182
  • Itonaga H, Ishiyama K, Aoki K, et al. Increased opportunity for prolonged survival after allogeneic hematopoietic stem cell transplantation in patients aged 60–69 years with myelodysplastic syndrome. Ann Hematol. 2019;98(6):1367–1381. doi:10.1007/s00277-019-03653-7
  • Sorror ML, Maris MB, Storb R, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106(8):2912–2919. doi:10.1182/blood-2005-05-2004
  • Penack O, Peczynski C, Mohty M, et al. Association of pre-existing comorbidities with outcome of allogeneic hematopoietic cell transplantation. A retrospective analysis from the EBMT. Bone Marrow Transplant. 2022;57(2):183–190. doi:10.1038/s41409-021-01502-8
  • DeFilipp Z, Ciurea SO, Cutler C, et al. Hematopoietic cell transplantation in the management of myelodysplastic syndrome: an evidence-based review from the American society for transplantation and cellular therapy committee on practice guidelines. Transplant Cell Ther. 2023;29(2):71–81. doi:10.1016/j.jtct.2022.11.014
  • Bejanyan N, Zhang M, Bo-Subait K, et al. Myeloablative conditioning for allogeneic transplantation results in superior disease-free survival for acute myelogenous leukemia and myelodysplastic syndromes with low/intermediate but not high disease risk index: a center for international blood and marrow transplant research study. Transplant Cell Ther. 2021;27(1):68.e1-68–e9. doi:10.1016/j.bbmt.2020.09.026
  • Martino R, Henseler A, van Lint M, et al. Long-term follow-up of a retrospective comparison of reduced-intensity conditioning and conventional high-dose conditioning for allogeneic transplantation from matched related donors in myelodysplastic syndromes. Bone Marrow Transplant. 2017;52(8):1107–1112. doi:10.1038/bmt.2017.19
  • Luger SM, Ringdén O, Zhang MJ, et al. Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transplant. 2011;47(2):203–211. doi:10.1038/bmt.2011.69
  • Scott BL, Pasquini MC, Fei M, et al. Myeloablative versus reduced-intensity conditioning for hematopoietic cell transplantation in acute myelogenous leukemia and myelodysplastic syndromes—long-term follow-up of the BMT CTN 0901 clinical trial. Transplant Cell Ther. 2021;27(6):483.e1-483–e6. doi:10.1016/j.jtct.2021.02.031
  • Saber W, Cutler CS, Nakamura R, et al. Impact of donor source on hematopoietic cell transplantation outcomes for patients with myelodysplastic syndromes (MDS). Blood. 2013;122(11):1974–1982. doi:10.1182/blood-2013-04-496778
  • Grunwald MR, Zhang MJ, Elmariah H, et al. Alternative donor transplantation for myelodysplastic syndromes: haploidentical relative and matched unrelated donors. Blood Adv. 2021;5(4):975–983. doi:10.1182/bloodadvances.2020003654
  • Raj K, Eikema D-J, Sheth V, et al. Comparison of outcomes for HLA-matched sibling and haplo-identical donors in myelodysplastic syndromes: report from the chronic malignancies working party of EBMT. Blood Cancer J. 2022;12(9):140–140. doi:10.1038/s41408-022-00729-y
  • Wang Y, Wang H-X, Lai Y-R, et al. Haploidentical transplant for myelodysplastic syndrome: registry-based comparison with identical sibling transplant. Leukemia. 2016;30(10):2055–2063. doi:10.1038/leu.2016.110
  • Nazha A, Komrokji R, Meggendorfer M, et al. Personalized prediction model to risk stratify patients with myelodysplastic syndromes. J Clin Oncol. 2021;39(33):3737–3746. doi:10.1200/JCO.20.02810
  • Bersanelli M, Travaglino E, Meggendorfer M, et al. Classification and personalized prognostic assessment on the basis of clinical and genomic features in myelodysplastic syndromes. J Clin Oncol. 2021;39(11):1223–1233. doi:10.1200/JCO.20.01659
  • Lindsley RC, Saber W, Mar BG, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376(6):536–547. doi:10.1056/NEJMoa1611604
  • Bejar R, Stevenson KE, Caughey B, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 2014;32(25):2691–2698. doi:10.1200/JCO.2013.52.3381
  • Della Porta MG, Gallì A, Bacigalupo A, et al. Clinical effects of driver somatic mutations on the outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2016;34(30):3627–3637. doi:10.1200/JCO.2016.67.3616
  • Versluis J, Saber W, Tsai HK, et al. Allogeneic hematopoietic cell transplantation improves outcome in myelodysplastic syndrome across high-risk genetic subgroups: genetic analysis of the blood and marrow transplant clinical trials network 1102 study. J Clin Oncol. 2023;41(28):4497–4510. JCO.23.00866. doi:10.1200/JCO.23.00866
  • Liu L, Jia M, Sun L, et al. Meta-analysis of the benefit of hypomethylating agents before allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes. Clin Exp Med. 2021;21(4):537–543. doi:10.1007/s10238-021-00712-0
  • Schroeder T, Wegener N, Lauseker M, et al. Comparison between upfront transplantation and different pretransplant cytoreductive treatment approaches in patients with high-risk myelodysplastic syndrome and secondary acute myelogenous leukemia. Biol Blood Marrow Transplant. 2019;25(8):1550–1559. doi:10.1016/j.bbmt.2019.03.011
  • Potter VT, Iacobelli S, van Biezen A, et al. Comparison of intensive chemotherapy and hypomethylating agents before allogeneic stem cell transplantation for advanced myelodysplastic syndromes: a study of the myelodysplastic syndrome subcommittee of the chronic malignancies working party of the European society for blood and marrow transplant research. Biol Blood Marrow Transplant. 2016;22(9):1615–1620. doi:10.1016/j.bbmt.2016.05.026
  • de Lima M, Giralt S, Thall PF, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome. Cancer. 2010;116(23):5420–5431. doi:10.1002/cncr.25500
  • Oran B, de Lima M, Garcia-Manero G, et al. A phase 3 randomized study of 5-azacitidine maintenance vs observation after transplant in high-risk AML and MDS patients. Blood Adv. 2020;4(21):5580–5588. doi:10.1182/bloodadvances.2020002544
  • Pusic I, Choi J, Fiala MA, et al. Maintenance therapy with decitabine after allogeneic stem cell transplantation for acute myelogenous leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2015;21(10):1761–1769. doi:10.1016/j.bbmt.2015.05.026
  • Kungwankiattichai S, Ponvilawan B, Roy C, et al. Maintenance with hypomethylating agents after allogeneic stem cell transplantation in acute myeloid leukemia and myelodysplastic syndrome: a systematic review and meta-analysis. Front Med (Lausanne). 2022;9:801632–801632. doi:10.3389/fmed.2022.801632
  • Garcia-Manero G, Fenaux P, Al-Kali A, et al. Rigosertib versus best supportive care for patients with high-risk myelodysplastic syndromes after failure of hypomethylating drugs (ONTIME): a randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17(4):496–508. doi:10.1016/S1470-2045(16)00009-7
  • Zeidan AM, Platzbecker U, Bewersdorf JP, et al. Consensus proposal for revised international working group response criteria for higher risk myelodysplastic syndromes. Blood. 2023;141(17):2047–2061. blood.2022018604. doi:10.1182/blood.2022018604
  • Urrutia S, Bose P, Alvarado Y, et al. Prospective performance of the international working group 2023 and the international prognostic scoring system - molecular in a phase II trial of guadecitabine in higher-risk myelodysplastic syndrome or chronic myelomonocytic leukemia. Blood Neoplasia. 2024;1(1):100008. doi:10.1016/j.bneo.2024.100008
  • Greenberg PL, Stone RM, Al-Kali A, et al. NCCN guidelines® insights: myelodysplastic syndromes, version 3.2022: featured updates to the NCCN guidelines. J Natl Compr Canc Netw. 2022;20(2):106–117. doi:10.6004/jnccn.2022.0009
  • Beran M, Shen Y, Kantarjian H, et al. High-dose chemotherapy in high-risk myelodysplastic syndrome. Cancer. 2001;92(8):1999–2015. doi:10.1002/1097-0142(20011015)92:8<1999::AID-CNCR1538>3.0.CO;2-B
  • Wattel E, Preudhomme C, Hecquet B, et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood. 1994;84(9):3148–3157. doi:10.1182/blood.V84.9.3148.3148
  • Takahashi K, Patel K, Bueso-Ramos C, et al. Clinical implications of TP53 mutations in myelodysplastic syndromes treated with hypomethylating agents. Oncotarget. 2016;7(12):14172–14187. doi:10.18632/oncotarget.7290
  • Welch JS, Petti AA, Miller CA, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375(21):2023–2036. doi:10.1056/NEJMoa1605949
  • Jung S-H, Kim Y-J, Yim S-H, et al. Somatic mutations predict outcomes of hypomethylating therapy in patients with myelodysplastic syndrome. Oncotarget. 2016;7(34):55264–55275. doi:10.18632/oncotarget.10526
  • Zeidan AM, Bewersdorf JP, Hasle V, et al. Prognostic implications of Mono-hit and multi-hit TP53 alterations in patients with acute myeloid leukemia and higher risk myelodysplastic syndromes treated with azacitidine-based therapy. Leukemia. 2023;37(1):240–243. doi:10.1038/s41375-022-01766-z
  • Urrutia S, Chien KS, Li Z, et al. Performance of IPSS-M in patients with myelodysplastic syndrome after hypomethylating agent failure. Am J Hematol. 2023;98(10):E281–E284. doi:10.1002/ajh.27043
  • Mossner M, Jann J-C, Wittig J, et al. Mutational hierarchies in myelodysplastic syndromes dynamically adapt and evolve upon therapy response and failure. Blood. 2016;128(9):1246–1259. doi:10.1182/blood-2015-11-679167
  • Ganan-Gomez I, Yang H, Ma F, et al. Stem cell architecture drives myelodysplastic syndrome progression and predicts response to venetoclax-based therapy. Nat Med. 2022;28(3):557–567. doi:10.1038/s41591-022-01696-4
  • Rodriguez-Sevilla JJ, Adema V, Garcia-Manero G, et al. Emerging treatments for myelodysplastic syndromes: biological rationales and clinical translation. Cell Rep Med. 2023;4(2):100940. doi:10.1016/j.xcrm.2023.100940
  • Gener-Ricos G, Bataller A, Almanza-Huante E, et al. NPM1-Mutated myeloid neoplasms: updated outcomes with high-intensive chemotherapy regardless of the blast percentage. Blood. 2023;142(Supplement 1):957–957. doi:10.1182/blood-2023-187676
  • Montalban-Bravo G, Kanagal-Shamanna R, Sasaki K, et al. NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Adv. 2019;3(6):922–933. doi:10.1182/bloodadvances.2018026989
  • Jabbour E, Faderl S, Sasaki K, et al. Phase 2 study of low-dose clofarabine plus cytarabine for patients with higher-risk myelodysplastic syndrome who have relapsed or are refractory to hypomethylating agents. Cancer. 2017;123(4):629–637. doi:10.1002/cncr.30383
  • Zeidan AM, Borate U, Pollyea DA, et al. A phase 1b study of venetoclax and azacitidine combination in patients with relapsed or refractory myelodysplastic syndromes. Am J Hematol. 2023;98(2):272–281. doi:10.1002/ajh.26771
  • Rahmani NE, Ramachandra N, Sahu S, et al. ASXL1 mutations are associated with distinct epigenomic alterations that lead to sensitivity to venetoclax and azacytidine. Blood Cancer J. 2021;11(9):157. doi:10.1038/s41408-021-00541-0
  • Festuccia M, Baker K, Gooley TA, et al. Hematopoietic cell transplantation in myelodysplastic syndromes after treatment with hypomethylating agents. Biol Blood Marrow Transplant. 2017;23(9):1509–1514. doi:10.1016/j.bbmt.2017.05.034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.