248
Views
60
CrossRef citations to date
0
Altmetric
Original Article

Signal Transduction via CD44: Role of Plasma Membrane Microdomains

, &
Pages 455-469 | Published online: 30 Mar 2010

References

  • Borland G., Ross J. A., Guy K. Forms and functions of CD44. Immunology 1998; 93: 139–148
  • Lesley J., Hyman R., English N., Catterall J. B., Turner G. A. CD44 in inflammation and metastasis. Glycoconjugate Journal 1997; 14: 611–622
  • Naor D., Sionov R. V., Ish-Shalom D. CD44: structure, function, and association with the malignant process. Advances in Cancer Research 1997; 71: 241–319
  • Haynes B. F., Telen M. J., Hale L. P., Denning S. M. CD44-a molecule involved in leukocyte adherence and T-cell activation. Immunology Today 1989; 10: 423–428
  • Aruffo A. CD44: one ligand, two functions. Journal of Clinical Investigation 1996; 98: 2191–2192
  • Huet S., Groux H., Caillou B., Valentin H., Prieur A. M., Bernard A. CD44 contributes to T cell activation. Journal of Immunology 1989; 143: 798–801
  • Shimizu Y., Van Seventer G. A., Siraganian R., Wahl L., Shaw S. Dual role of the CD44 molecule in T cell adhesion and activation. Journal of Immunology 1989; 143: 2457–2463
  • Rothman B. L., Blue M. L., Kelley K. A., Wunderlich D., Mierz D. V., Aune T. M. Human T cell activation by OKT3 is inhibited by a monoclonal antibody to CD44. Journal of Immunology 1991; 147: 2493–2499
  • Denning S. M., Le P. T., Singer K. H., Haynes B. F. Antibodies against the CD44 p80, lymphocyte homing receptor molecule augment human peripheral blood T cell activation. Journal of Immunology 1990; 144: 7–15
  • Conrad P., Rothman B. L., Kelley K. A., Blue M. L. Mechanism of peripheral T cell activation by coengagement of CD44 and CD2. Journal of Immunology 1992; 149: 1833–1839
  • Pierres A., Lipcey C., Mawas C., Olive D. A unique CD44 monoclonal antibody identifies a new T cell activation pathway. European Journal of Immunology 1992; 22: 413–417
  • Guo Y. J., Lin S. C., Wang J. H., Bigby M., Sy M. S. Palmitoylation of CD44 interferes with CD3-mediated signaling in human T lymphocytes. International Immunology 1994; 6: 213–221
  • Galluzzo E., Albi N., Fiorucci S., Merigiola C., Ruggeri L., Tosti A., Grossi C. E., Velardi A. Involvement of CD44 variant isoforms in hyaluronate adhesion by human activated T cells. European Journal of Immunology 1995; 25: 2932–2939
  • Galandrini R., Albi N., Tripodi G., Zarcone D., Terenzi A., Moretta A., Grossi C. E., Velardi A. Antibodies to CD44 trigger effector functions of human T cell clones. Journal of Immunology 1993; 150: 4225–4235
  • Naujokas M. F., Morin M., Anderson M. S., Peterson M., Miller J. The chondroitin sulfate form of invariant chain can enhance stimulation of T cell responses through interaction with CD44. Cell 1993; 74: 257–268
  • Guo Y. J., Ma J., Wong J. H., Lin S. C., Chang H. C., Bigby M., Sy M. S. Monoclonal anti-CD44 antibody acts in synergy with anti-CD2 but inhibits anti-CD3 or T cell receptor-mediated signaling in murine T cell hybridomas. Cellular Immunology 1993; 152: 186–199
  • Sommer F., Huber M., Rollinghoff M., Lohoff M. CD44 plays a co-stimulatory role in murine T cell activation: ligation of CD44 selectively co-stimulates IL-2 production, but not proliferation in TCR-stimulated murine Thl cells. International Immunology 1995; 7: 1779–1786
  • Ayroldi E., Cannarile L., Migliorati G., Bartoli A., Nicoletti I., Riccardi C. CD44 (Pgp-1) inhibits CD3 and dexamethasone-induced apoptosis. Blood 1995; 86: 2672–2678
  • Seth A., Gote L., Nagarkatti M., Nagarkatti P. S. T-cell-receptor-independent activation of cytolytic activity of cytotoxic T lymphocytes mediated through CD44 and gp90MEL-14. Proceedings of the National Academy of Sciences USA 1991; 88: 7877–7881
  • Tan P. H., Santos E. B., Rossbach H. C., Sandmaier B. M. Enhancement of natural killer activity by an antibody to CD44. Journal of Immunology 1993; 150: 812–820
  • Galandrini R., De Maria R., Piccoli M., Frati L., Santoni A. CD44 triggering enhances human NK cell cytotoxic functions. Journal of Immunology 1994; 153: 4399–4407
  • Pericle F., Sconocchia G., Titus J. A., Segal D. M. CD44 is a cytotoxic triggering molecule on human polymorphonuclear cells. Journal of Immunology 1996; 157: 4657–4663
  • Toyama-Sorimachi N., Sorimachi H., Tobita Y., Kitamura F., Yagita H., Suzuki K., Miyasaka M. A novel ligand for CD44 is serglycin, a hematopoietic cell lineage- specific proteoglycan. Possible involvement in lymphoid cell adherence and activation. Journal of Biological Chemistry 1995; 270: 7437–7444
  • Webb D. S., Shimizu Y., Van Seventer G. A., Shaw S., Gerrard T. L. LFA-3, CD44, and CD45: physiologic triggers of human monocyte TNF and IL-1 release. Science 1990; 249: 1295–1297
  • Gruber M. F., Webb D. S., Gerrard T. L. Stimulation of human monocytes via CD45, CD44, and LFA-3 triggers macrophage-colony-stimulating factor production. Synergism with lipopolysaccharide and IL-1 beta. Journal of Immunology 1992; 148: 1113–1118
  • Chong A. S., Boussy I. A., Graf L. H., Scuderi P. Stimulation of IFN-gamma, TNF-alpha, and TNF-beta secretion in IL-2- activated T cells: costimulatory roles for LFA-1, LFA-2, CD44, and CD45 molecules. Cellular Immunology 1992; 144: 69–79
  • Haegel-Kronenberger H., de la Salle H., Bohbot A., Oberling F., Cazenave J. P., Hanau D. Adhesive and/or signaling functions of CD44 isoforms in human dendritic cells. Journal of Immunology 1998; 161: 3902–3911
  • Noble P. W., Lake F. R., Henson P. M., Riches D. W. Hyaluronate activation of CD44 induces insulin-like growth factor- expression by a tumor necrosis factor-alpha-dependent mechanism in murine macrophages. Journal of Clinical Investigation 1993; 91: 2368–2377
  • Rafi A., Nagarkatti M., Nagarkatti P. S. Hyaluronate-CD44 interactions can induce murine B-cell activation. Blood 1997; 89: 2901–2908
  • McKee C. M., Penno M. B., Cowman M., Burdick M. D., Strieter R. M., Bao C., Noble P. W. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. Journal of Clinical Investigation 1996; 98: 2403–2413
  • McKee C. M., Lowenstein C. J., Horton M. R., Wu J., Bao C., Chin B. Y., Choi A. M., Noble P. W. Hyaluronan fragments induce nitric-oxide synthase in murine macrophages through a nuclear factor kappaB-dependent mechanism. Journal of Biological Chemistry 1997; 272: 8013–8
  • Horton M. R., McKee C. M., Bao C., Liao F., Farber J. M., Hodge-DuFour J., Pure E., Oliver B. L., Wright T. M., Noble P. W. Hyaluronan fragments synergize with interferon-gamma to induce the C-X-C chemokines mig and interferon-inducible protein-10 in mouse macrophages. Journal of Biological Chemistry 1998; 273: 35088–94
  • West D. C., Kumar S. The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Experimental Cell Research 1989; 183: 179–196
  • Slevin M., Krupinski J., Kumar S., Gaffney J. Angiogenic oligosaccharides of hyaluronan induce protein tyrosine kinase activity in endothelial cells and activate a cytoplasmic signal transduction pathway resulting in proliferation. Laboratory Investigation 1998; 78: 987–1003
  • Fujii K., Tanaka Y., Hubscher S., Saito K., Ota T., Eto S. Cross-Linking of CD44 on Rheumatoid Synovial Cells Up-Regulates VCAM-1. Journal of Immunology 1999; 162: 2391–2398
  • Weber G. F., Ashkar S., Glimcher M. J., Cantor H. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science 1996; 271: 509–512
  • Lesley J., Hyman R., Kincade P. W. CD44 and its interaction with extracellular matrix. Advances in Immunology 1993; 54: 271–335
  • Yashiro Y., Tai X. G., Toyo-Oka K., Park C. S., Abe R., Hamaoka T., Kobayashi M., Neben S., Fujiwara H. A fundamental difference in the capacity to induce proliferation of naive T cells between CD28 and other co-stimulatory molecules. European Journal of Immunology 1998; 28: 926–935
  • Sconocchia G., Titus J. A., Segal D. M. CD44 is a cytotoxic triggering molecule in human peripheral blood NK cells. Journal of Immunology 1994; 153: 5473–5481
  • Tan P. H., Liu Y., Santos E. B., Sandmaier B. M. Mechanisms of enhancement of natural killer activity by an antibody to CD44: increase in conjugate formation and release of tumor necrosis factor alpha. Cellular Immunology 1995; 164: 255–264
  • Galandrini R., Piccoli M., Frati L., Santoni A. Tyrosine kinase-dependent activation of human NK cell functions upon triggering through CD44 receptor. European Journal of Immunology 1996; 26: 2807–2811
  • Aruffo A., Stamenkovic I., Melnick M., Underhill C. B., Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990; 61: 1303–1313
  • Lesley J., Kincade P. W., Hyman R. Antibody-induced activation of the hyaluronan receptor function of CD44 requires multivalent binding by antibody. European Journal of Immunology 1993; 23: 1902–1909
  • Pure E., Camp R. L., Peritt D., Panettieri R. A., Jr., Lazaar A. L., Nayak S. Defective phosphorylation and hyaluronate binding of CD44 with point mutations in the cytoplasmic domain. Journal of Experimental Medicine 1995; 181: 55–62
  • Lokeshwar V. B., Fregien N., Bourguignon L. Y. Ankyrin-binding domain of CD44(GP85) is required for the expression of hyaluronic acid-mediated adhesion function. Journal of Cell Biology 1994; 126: 1099–1109
  • Liu D., Sy M. S. A cysteine residue located in the transmembrane domain of CD44 is important in binding of CD44 to hyaluronic acid. Journal of Experimental Medicine 1996; 183: 1987–1994
  • Liu D., Sy M. S. Phorbol myristate acetate stimulates the dimerization of CD44 involving a cysteine in the transmembrane domain. Journal of Immunology 1997; 159: 2702–2711
  • DeGrendele H. C., Kosfiszer M., Estess P., Siegelman M. H. CD44 activation and associated primary adhesion is inducible via T cell receptor stimulation. Journal of Immunology 1997; 159: 2549–2553
  • Noble P. W., McKee C. M., Cowman M., Shin H. S. Hyaluronan fragments activate an NF-kappa B/I-kappa B alpha autoregulatory loop in murine macrophages. Journal of Experimental Medicine 1996; 183: 2373–8
  • Underhill C. B., Chi-Rosso G., Toole B. P. Effects of detergent solubilization on the hyaluronate-binding protein from membranes of simian virus 40-transformed 3T3 cells. Journal of Biological Chemistry 1983; 258: 8086–8091
  • Galandrini R., Albi N., Vecchiarelli A., Tognellini R., Zarcone D., Grossi C. E., Velardi A. Ligation of the lymphocyte homing receptor CD44 triggers T-helper and cytolytic functions of human T cells. Cytotechnology 1993; 11: S100–S102
  • Sconocchia G., Titus J. A., Segal D. M. Signaling pathways regulating CD44-dependent cytolysis in natural killer cells. Blood 1997; 90: 716–725
  • Skubitz K. M., Campbell K. D., Skubitz A. P. Tyrosine kinase activity is associated with CD44 in human neutrophils. FEBS Letters 1998; 439: 97–100
  • Taher T. E., Smit L., Griffioen A. W., Schilder-Tol E. J., Borst J., Pals S. T. Signaling through CD44 is mediated by tyrosine kinases. Association with p561ck in T lymphocytes. Journal of Biological Chemistry 1996; 271: 2863–2867
  • Ilangumaran S., Briol A., Hoessli D. C. CD44 selectively associates with active Src family protein tyrosine kinases Lck and Fyn in glycosphingolipid-rich plasma membrane domains of human peripheral blood lymphocytes. Blood 1998; 91: 3901–3908
  • Bourguignon L. Y., Zhu H., Chu A., Iida N., Zhang L., Hung M. C. Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. Journal of Biological Chemistry 1997; 272: 27913–27918
  • Pawson T. Protein modules and signalling networks. Nature 1995; 373: 573–80
  • Tarone G., Ferracini R., Galetto G., Comoglio P. A cell surface integral membrane glycoprotein of 85,000 mol wt (gp85) associated with triton X-100-insoluble cell skeleton. Journal of Cell Biology 1984; 99: 512–9
  • Lacy B. E., Underhill C. B. The hyaluronate receptor is associated with actin filaments. Journal of Cell Biology 1987; 105: 1395–1404
  • Carter W. G., Wayner E. A. Characterization of the class III collagen receptor, a phosphorylated, transmembrane glycoprotein expressed in nucleated human cells. Journal of Biological Chemistry 1988; 263: 4193–201
  • Kalomiris E. L., Bourguignon L. Y. Mouse T lymphoma cells contain a transmembrane glycoprotein (GP85) that binds ankyrin. Journal of Cell Biology 1988; 106: 319–27
  • Neame S. J., Isacke C. M. The cytoplasmic tail of CD44 is required for basolateral localization in epithelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts. Journal of Cell Biology 1993; 121: 1299–1310
  • Tsukita S., Oishi K., Sato N., Sagara J., Kawai A. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. Journal of Cell Biology 1994; 126: 391–401
  • Perschl A., Lesley J., English N., Hyman R., Trowbridge I. S. Transmembrane domain of CD44 is required for its detergent insolubility in fibroblasts. Journal of Cell Science 1995; 108: 1033–1041
  • Neame S. J., Uff C. R., Sheikh H., Wheatley S. C., Isacke C. M. CD44 exhibits a cell type dependent interaction with triton X-100 insoluble, lipid rich, plasma membrane domains. Journal of Cell Science 1995; 108: 3127–3135
  • Simons K., Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569–572
  • Brown D. A., London E. Functions of lipid rafts in biological membranes. Annual Reviews in Cell and Developmental Biology 1998; 14: 111–136
  • Low M. G. The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochimica Biophysica Acta 1989; 988: 427–54
  • Robinson P. J. Phosphatidylinositol membrane anchors and T-cell activation. Immunology Today 1991; 12: 35–41
  • Hoessli D., Rungger-Brandle E. Association of specific cell-surface glycoproteins with a triton X-100-resistant complex of plasma membrane proteins isolated from T-lymphoma cells (P1798). Experimental Cell Research 1985; 156: 239–50
  • Cinek T., Horejsi V. The nature of large non-covalent complexes containing glycosyl- phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. Journal of Immunology 1992; 149: 2262–70
  • Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992; 68: 533–44
  • Hoessli D. C., Rungger-Brandle E. Isolation of plasma membrane domains from murine T lymphocytes. Proceedings of the National Academy of Sciences USA 1983; 80: 439–43
  • Brown D. A., London E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes?. Biochemical and Biophysical Research Communications 1997; 240: 1–7
  • Brown R. E. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. Journal of Cell Science 1998; 111: 1–9
  • Varma R., Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 1998; 394: 798–801
  • Friedrichson T., Kurzchalia T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 1998; 394: 802–805
  • Anderson R. G. The caveolae membrane system. Annual Reviews in Biochemistry 1998; 67: 199–225
  • Schnitzer J. E., McIntosh D. P., Dvorak A. M., Liu J., Oh P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 1995; 269: 1435–1439
  • Ilangumaran S., Briol A., Hoessli D. C. Distinct interactions among GPI-anchored, transmembrane and membrane associated intracellular proteins, and sphingolipids in lymphocyte and endothelial cell plasma membranes. Biochimica Biophysica Acta 1997; 1328: 227–236
  • Field K. A., Holowka D., Baird B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proceedings of the National Academy of Sciences USA 1995; 92: 9201–9205
  • Montixi C., Langlet C., Bernard A. M., Thimonier J., Dubois C., Wurbel M. A., Chauvin J. P., Pierres M., He H. T. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO Journal 1998; 17: 5334–48
  • Deans J. P., Robbins S. M., Polyak M. J., Savage J. A. Rapid redistribution of CD20 to a low density detergent-insoluble membrane compartment. Journal of Biological Chemistry 1998; 273: 344–348
  • Polyak M. J., Tailor S. H., Deans J. P. Identification of a cytoplasmic region of CD20 required for its redistribution to a detergent-insoluble membrane compartment. Journal of Immunology 1998; 161: 3242–3248
  • Melkonian K. A., Ostermeyer A. G., Chen J. Z., Roth M. G., Brown D. A. Role of Lipid Modifications in Targeting Proteins to Detergent-resistant Membrane Rafts. Many raft proteins are acylated, while few are prenylated. Journal of Biological Chemistry 1999; 274: 3910–3917
  • Shenoy-Scaria A. M., Gauen L. K., Kwong J., Shaw A. S., Lublin D. M. Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p56lck and p59fyn mediates interaction with glycosylphosphatidylinositol-anchored proteins. Molecular and Cellular Biology 1993; 13: 6385–6392
  • Kabouridis P. S., Magee A. I., Ley S. C. S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO Journal 1997; 16: 4983–4998
  • Stefanova I., Horejsi V., Ansotegui I. J., Knapp W., Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 1991; 254: 1016–9
  • Minoguchi K., Swaim W. D., Berenstein E. H., Siraganian R. P. Src family tyrosine kinase p53/561yn, a serine kinase and Fc epsilon RI associate with alpha-galactosyl derivatives of ganglioside GD1b in rat basophilic leukemia RBL-2H3 cells. Journal of Biological Chemistry 1994; 269: 5249–54
  • Kasahara K., Watanabe Y., Yamamoto T., Sanai Y. Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae- like domains. Journal of Biological Chemistry 1997; 272: 29947–29953
  • Harder T., Scheiffele P., Verkade P., Simons K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. Journal of Cell Biology 1998; 141: 929–942
  • Ilangumaran S., Arni S., van Echten-Deckert G., Borisch B., Hoessli D. C. Microdomain-dependent regulation of Lck and fyn protein tyrosine kinases in T lymphocyte plasma membranes. Molecular Biology of the Cell 1999, In press
  • Xavier R., Brennan T., Li Q., McCormack C., Seed B. Membrane compartmentation is required for efficient T cell activation. Immunity 1998; 8: 723–732
  • Zhang W., Sloan-Lancaster J., Kitchen J., Trible R. P., Samelson L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 1998; 92: 83–92
  • Zhang W., Trible R. P., Samelson L. E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 1998; 9: 239–246
  • Viola A., Schroeder S., Sakakibara Y., Lanzavecchia A. T Lymphocyte Costimulation Mediated by Reorganization of Membrane Microdomains. Science 1999; 283: 680–682
  • Sperling A. I., Sedy J. R., Manjunath N., Kupfer A., Ardman B., Burkhardt J. K. TCR signaling induces selective exclusion of CD43 from the T cell- antigen-presenting cell contact site. Journal of Immunology 1998; 161: 6459–62
  • Okkenhaug K., Rottapel R. Grb2 forms an inducible protein complex with CD28 through a Src homology 3 domain-proline interaction. Journal of Biological Chemistry 1998; 273: 21194–202
  • Stauffer T. P., Meyer T. Compartmentalized IgE receptor-mediated signal transduction in living cells. Journal of Cell Biology 1997; 139: 1447–1454
  • Clausse B., Fizazi K., Walczak V., Tetaud C., Wiels J., Tursz T., Busson P. High concentration of the EBV latent membrane protein 1 in glycosphingolipid-rich complexes from both epithelial and lymphoid cells. Virology 1997; 228: 285–93
  • Kenney J. L., Guinness M. E., Curiel T., Lacy J. Antisense to the epstein-barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) suppresses LMP-1 and bcl-2 expression and promotes apoptosis in EBV-immortalized B cells. Blood 1998; 92: 1721–7
  • Busch L. K., Bishop G. A. The EBV transforming protein, latent membrane protein I, mimics and cooperates with CD40 signaling in B lymphocytes. Journal of Immunology 1999; 162: 2555–2561
  • Bourguignon L. Y., Kalomiris E. L., Lokeshwar V. B. Acylation of the lymphoma transmembrane glycoprotein, GP85, may be required for GP85-ankyrin interaction. Journal of Biological Chemistry 1991; 266: 11761–5
  • Stulnig T. M., Berger M., Sigmund T., Stockinger H., Horejsi V., Waldhausl W. Signal transduction via glycosyl phosphatidylinositol-anchored proteins in T cells is inhibited by lowering cellular cholesterol. Journal of Biological Chemistry 1997; 272: 19242–7
  • Stulnig T. M., Berger M., Sigmund T., Raederstorff D., Stockinger H., Waldhausl W. Polyunsaturated fatty acids inhibit T cell signal transduction by modification of detergent-insoluble membrane domains. Journal of Cell Biology 1998; 143: 637–644
  • DeGrendele H. C., Estess P., Picker L. J., Siegelman M. H. CD44 and its ligand hyaluronate mediate rolling under physiologic flow: a novel lymphocyte-endothelial cell primary adhesion pathway. Journal of Experimental Medicine 1996; 183: 1119–1130
  • DeGrendele H. C., Estess P., Siegelman M. H. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 1997; 278: 672–675
  • Clark R. A., Alon R., Springer T. A. CD44 and hyaluronan-dependent rolling interactions of lymphocytes on tonsillar stroma. Journal of Cell Biology 1996; 134: 1075–1087
  • Balazs E. A., Watson D., Duff I. F., Roseman S. Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritis human fluids. Arthritis and Rheumatology 1967; 10: 357–76
  • Saari H., Konttinen Y. T., Tulamo R. M., Antti-Poika I., Honkanen V. Concentration and degree of polymerization of hyaluronate in equine synovial fluid. American journal of Veterinary Research 1989; 50: 2060–3
  • Mikecz K., Brennan F. R., Kim J. H., Giant T. T. Anti-CD44 treatment abrogates tissue oedema and leukocyte infiltration in murine arthritis. Nature Medicine 1995; 1: 558–563
  • Verdrengh M., Holmdahl R., Tarkowski A. Administration of antibodies to hyaluronanreceptor (CD44) delays the start and ameliorates the severity of collagen 11 arthritis. Scandinavian Journal of Immunology 1995; 42: 353–358
  • Okamoto T., Schlegel A., Scherer P. E., Lisanti M. P. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. Journal of Biological Chemistry 1998; 273: 5419–5422
  • Hakomori S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Research 1996; 56: 5309–5318

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.