165
Views
1
CrossRef citations to date
0
Altmetric
Articles

Interaction of apoptosis and pluripotency related transcripts for developmental potential of ovine embryos produced in vitro at different oxygen concentrations

, , &

References

  • Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fert. 1993;99(2):673–679.
  • Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update. 2016;22(1):2–22.
  • Dalvit GC, Cetica PD, Pintos LN, Beconi MT. Reactive oxygen species in bovine embryo in vitro production. Biocell. 2005;29(2):209–212.
  • Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–950.
  • Mishra A, Reddy IJ, Gupta PSP, Mondal S. Developmental regulation and modulation of apoptotic genes expression in sheep oocytes and embryos cultured in vitro with L-carnitine. Reprod Dom Anim. 2016;51(6):1020–1029.
  • Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. Detection of reactive oxygen species (ROS) and apoptosis in human fragmentated embryos. Hum Reprod. 1998;13(4):998–1002.
  • Simon MC, Keith B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol. 2008;9(4):285–296.
  • Yoon SB, Choi SA, Sim BW, et al. Developmental competence of bovine early embryos depends on the coupled response between oxidative and endoplasmic reticulum stress. Biol Reprod. 2014;90(5):1–10.
  • Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10(1):49–80.
  • Johnson MH, Nasr-Esfahani MH. Radical solutions and culture problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro. Bioessays. 1994;16(1):31–38.
  • Elamaran G, Singh KP, Singh MK, et al. Oxygen concentration and cysteamine supplementation during in vitro production of buffalo bubalus bubalis embryos affect mRNA expression of BCL-2, BCL-XL, MCL-1, BAX and BID. Reprod Dom Anim. 2012;47(6):1027–1036.
  • Guerin P, Mouatassim SEl, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reprod Update. 2001;7(2):175–189.
  • Wrenzycki C, Herrmann D, Niemann H. Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology. 2007;68:S77–S83.
  • Mishra A, Reddy IJ, Dhali A, Javvaji PK. L-ergothioneine improves the developmental potential of in vitro sheep embryos without influencing OCTN1-mediated cross-membrane transcript expression. Zygote. 2018;26(2):149–161.
  • Mishra A, Reddy IJ, Gupta PSP, Mondal S. L-carnitine mediated reduction in oxidative stress and alteration in transcripts level of antioxidant enzymes in sheep embryos produced in vitro. Reprod Dom Anim. 2016;51(2):311–321.
  • Mukherjee A, Malik H, Saha AP, et al. Resveratrol treatment during oocytes maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. J Assist Reprod Genet. 2014;31(2):229–239.
  • Ramesh Kumar G, Mishra A, Reddy IJ, Dhali A, Roy SC. Low oxygen tension activates glucose metabolism, improves antioxidant capacity and augment developmental potential of ovine embryos in vitro. Anim Prod Sci. 2019. doi:10.1071/AN18713.
  • Banwell KM, Lane M, Russell DL, Kind KL, Thompson JG. Oxygen concentration during mouse oocyte in vitro maturation affects embryo and fetal development. Hum Reprod. 2007;22(10):2768–2775.
  • Park JI, Hong JY, Hong HY, Hwang WS, Lim JM, Lee ES. High oxygen tension during in vitro oocyte maturation improves in vitro development of porcine oocytes after fertilization. Anim Reprod Sci. 2005;87(1–2):133–141.
  • Correa GA, Rumpf R, Mundima TCD, Franco MM, Dodeb M. Oxygen tension during in vitro culture of bovine embryos: effect in production and expression of genes related to oxidative stress. Anim Reprod Sci. 2008;104:132–142.
  • Antunes G, Chaveiro A, Santos P, Marques A, Jin HS, Moreira da Silva F. Influence of apoptosis in bovine embryo’s development. Reprod Dom Anim. 2010;45(1):26–32.
  • Exley GE, Tang C, McElhinny AS, Warner CM. Expression of caspase and Bcl-2 apoptotic family members in mouse preimplantation embryos. Biol Reprod. 1999;61(1):231–239.
  • Gutierrez-Adan A, Rizos D, Fair T, et al. Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol Reprod Dev. 2004;68:441–448.
  • Yuan YM, Rajamahendran R. Expression of Bcl-2 and Bax proteins in relation to quality of bovine oocytes and embryos produced in vitro. Anim Reprod Sci. 2002;70:159–169.
  • Chakravarthi VP, Kon SSR, Siva Kumar AVN, Bhaskar M, Rao VH. Quantitative expression of antiapoptotic and proapoptotic genes in sheep ovarian follicles grown in vivo or cultured in vitro. Theriogenology 2015;83:590–595.
  • Gandolfi F, Moor RM. Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells. J Reprod Fert. 1987;81(1):23–28.
  • Vandaele L, Mateusen B, Maes DG, de Kruif A, Van Soom A. Temporal detection of caspase-3 and -7 in bovine in vitro produced embryos of different developmental capacity. Reproduction 2007;133(4):709–718.
  • Paunesku T, Mittal S, Protic M, et al. Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int J Radiat Biol. 2001;77(10):1007–1021.
  • Liu B, Chen Y, St Clair DK. ROS and p53: a versatile partnership. Free Radic Biol Med. 2008;44(8):1529–1535.
  • Wang F, Tian X, Zhang L, Tan D, Reiter RJ, Liu G. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J Pineal Res. 2013;55(3):267–274.
  • Favetta LA, St John EJ, King WA, Betts DH. High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic Biol Med. 2007;42(8):1201–1210.
  • Li P, Tong C, Mehrian-Shai R, et al. Germline competent embryonic stem cells derived from rat blastocysts. Cell 2008;135(7):1299–1310.
  • Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, SchöLer H, Niemann H. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod. 2000;63(6):1698–1705.
  • Keramari M, Razavi J, Ingman KA, et al. Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS One. 2010;5(11):e13952.
  • Du Puy L, Lopes SM, Haagsman HP, Roelen BA. Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology 2011;75(3):513–526.
  • Yu X-L, Zhao X-E, Wang H-Y, Ma B-H. Expression patterns of OCT4, NANOG, and SOX2 in goat preimplantation embryos from in vivo and in vitro. J Int Agri. 2015;14(7):1398–1406.
  • Goentoro L, Shoval O, Kirschner MW, Alon U. The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol Cell. 2009;36(5):894–899.
  • Niwa H, Toyooka Y, Shimosato D, et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 2005;123(5):917–929.
  • Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005;122(6):947–956.
  • Guo YL, Chakraborty S, Rajan SS, Wang R, Huang F. Effects of oxidative stress on mouse embryonic stem cell proliferation, apoptosis, senescence, and self-renewal. Stem Cells Dev. 2010;19(9):1321–1331.
  • Mishra A, Reddy IJ, Gupta PSP, Mondal S. Expression of apoptotic and antioxidant enzyme genes in sheep oocytes and in vitro produced embryos. Anim Biotechnol. 2017;28(1):18–25.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–428.
  • Takahashi M, Keicho K, Takahashi H, Ogawa H, Schulte RM, Okano A. Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by comet assay. Theriogenology. 2000;54(1):137–145.
  • Gardner DK. The impact of physiological oxygen during culture, and vitrification for cryopreservation, on the outcome of extended culture in human IVF. Reprod Biomed Online. 2016;32(2):137–141.
  • Sutton-McDowall ML, Gosnell M, Anwer AG, et al. Hyperspectral microscopy can detect metabolic heterogeneity within bovine post-compaction embryos incubated under two oxygen concentrations (7% versus 20%). Hum Reprod. 2017;32(10):2016–2025.
  • Adams JM, Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol. 2007;19(5):488–496.
  • Hardy K. Cell death in the mammalian blastocyst. Mol Hum Reprod. 1997;3(10):919–925.
  • Zhang GM, Gu CH, Zhang YL, et al. Age-associated changes in gene expression of goat oocytes. Theriogenology 2013;80(4):328–336.
  • Takahashi T, Inaba Y, Somfai T, et al. Supplementation of culture medium with L-carnitine improves development cryotolerance of bovine embryos produced in vitro. Reprod Fertil Dev. 2013;25(4):589–599.
  • Huert S, Heinzerline J, Anguiano-Hernandez Y, et al. Modification of gene products involved in resistance to apoptosis in metastatic colon cancer cells: roles of Fas, Apaf-1, NFjB, IAPs, Smac/DIABLO, and AIF. J Surg Res. 2007;142:184–194.
  • Vandaele L, Goossens K, Peelman L, Soom AV. mRNA expression of Bcl-2, Bax, caspase-3 and -7 cannot be used as a marker for apoptosis in bovine blastocysts. Anim Reprod Sci. 2008;106(1–2):168–173.
  • Trinei M, Giorgio M, Cicalese A, et al. A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 2002;21(24):3872–3878.
  • Jurisicova A, Latham KE, Casper RF, Casper RF, Varmuza SL. Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol Reprod Dev. 1998;51(3):243–253.
  • Frenkel J, Sherman D, Fein A, et al. Accentuated apoptosis in normally developing p53 knockout mouse embryos following genotoxic stress. Oncogene. 1999;18(18):2901–2907.
  • Lichnovsky V, Kolar Z, Murray P, et al. Differences in p53 and Bcl-2 expression in relation to cell proliferation during the development of human embryos. Mol Pathol. 1998;51(3):131–137.
  • Hu D-B, Li Z-S, Ali I, Xu L-J, Fang N-Z. Effect of potential role of p53 on embryo development arrest induced by H2O2 in mouse. In vitro Cell Dev Biol Animal. 2017;53(4):344–353.
  • Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science 2010;330(6003):517–521.
  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17(1):126–140.
  • Guo Y, Einhorn L, Kelley M, et al. Redox regulation of the embryonic stem cell transcription factor oct-4 by thioredoxin. Stem Cells. 2004;22(3):259–264.
  • Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379–391.
  • Boiani M, Eckardt S, Scholer HR, McLaughlin KJ. Oct4 distribution and level in mouse clones: Consequences for pluripotency. Genes Dev. 2002;16(10):1209–1219.
  • Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Nat Acad Sci. 2005;102(13):4783–4788.
  • Adelman DM, Maltepe E, Simon MC. Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev. 1999;13(19):2478–2483.
  • Covello KL, Kehler J, Yu H, et al. HIF-2 regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006;20(5):557–570.
  • Semenza GL. HIF-1 and human disease: one highly involved factor. Genes Dev. 2000;14(16):1983–1991.
  • Halliwell B. Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. Br J Exp Path. 1989;70:737–757.
  • Gutierrez-Adan A, Oter M, Martinez-Madrid B, Pintado B, De La Fuente J. Differential expression of two genes located on the X chromosome between male and female in vitro produced bovine embryos at the blastocyst stage. Mol Reprod Dev. 2000;55:146–151.
  • Leite RF, Annes K, Ispada J, et al. Oxidative stress alters the profile of transcription factors related to early development on in vitro produced embryos. Oxi Med Cell Long. 2017;2017:1502489.
  • Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38(4):431–440.
  • Chen X, Xu H, Yuan P, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008;133(6):1106–1117.
  • Goissis MD, Cibelli JB. Functional characterization of SOX2 in bovine preimplantation embryos. Biol Reprod. 2014; 90(2):1–10.
  • Osorno R, Tsakiridis A, Wong F, et al. The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression. Development 2012;139(13):2288–2298.
  • Solari C, Vázquez Echegaray C, Cosentino MS, et al. Manganese superoxide dismutase gene expression is induced by Nanog and Oct4, essential pluripotent stem cells’ transcription factors. PLoS One. 2015;10(12):e0144336.
  • Solari C, Petrone MV, Vazquez Echegaray C, et al. Superoxide dismutase 1 expression is modulated by the core pluripotency transcription factors Oct4, Sox2 and Nanog in embryonic stem cells. Mech Dev. 2018;154:116–121.
  • Sadeesh EM, Sikka P, Balhara AK, Balhara S. Developmental competence and expression profile of genes in buffalo (Bubalus bubalis) oocytes and embryos collected under different environmental stress. Cytotechnology 2016;68(6):2271–2285.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.