Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 36, 2018 - Issue 1
724
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Toxicity of engineered nanomaterials mediated by nano–bio–eco interactions

, , &

References

  • Vance ME, Kuiken T, Vejerano EP, et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015:1769. doi:10.3762/bjnano.6.181.
  • He X, Hwang H-M. Nanotechnology in food science: Functionality, applicability, and safety assessment. J Food and Drug Anal. 2016;24(4):671–681. doi:10.1016/j.jfda.2016.06.001.
  • He X, Aker WG, Huang M-J, D. Watts J, Hwang H-M. Metal oxide nanomaterials in nanomedicine: Applications in photodynamic therapy and potential toxicity. Curr Top Med Chem. 2015;15(18):1887–900. doi:10.2174/1568026615666150506145251.
  • He X, Aker WG, Pelaez M, Lin Y, Dionysiou DD, Hwang H-m. Assessment of nitrogen–fluorine-codoped TiO2 under visible light for degradation of BPA: Implication for field remediation. J Photochem Photobiol A: Chem. 2016;314:81–92. doi:10.1016/j.jphotochem.2015.08.014.
  • Keller AA, McFerran S, Lazareva A, Suh S. Global life cycle releases of engineered nanomaterials. J Nanopart Res. 2013;15(6):1692. doi:10.1007/s11051-013-1692-4.
  • Pourzahedi L, Vance ME, Eckelman MJ. Life cycle assessment and release studies for 15 nanosilver-enabled consumer products: Investigating hotspots and patterns of contribution. Environ Sci Technol. 2017;51(12):7148–7158. doi:10.1021/acs.est.6b05923.
  • Zion Market Research. Nanomaterials market (metal oxide, metals, chemicals & polymers and others) for construction, chemical products, packaging, consumer goods, electrical and electronics, energy, health care, transportation and other applications: Global market perspective, comprehensive analysis and forecast, 2016–2022. 2017.
  • Zhang H, Taujale S, Huang J, Lee GJ. Effects of NOM on oxidative reactivity of manganese dioxide in binary oxide mixtures with goethite or hematite. Langmuir. 2015;31(9):2790–2799. doi:10.1021/acs.langmuir.5b00101.
  • McShan D, Zhang Y, Deng H, Ray PC, Yu H. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33(3):369–384. doi:10.1080/10590501.2015.1055165.
  • Ray PC, Yu H, Fu PP. Nanogold-based sensing of environmental toxins: Excitement and challenges. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2011;29(1):52–89. doi:10.1080/10590501.2011.551315.
  • He W, Wamer W, Xia Q, Yin JJ, Fu PP. Enzyme-like activity of nanomaterials. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2014;32(2):186–211. doi:10.1080/10590501.2014.907462.
  • Hu XG, Zhou QX. Health and ecosystem risks of graphene. Chem Rev. 2013;113(5):3815–3835. doi:10.1021/cr300045n.
  • Umebayashi T, Yamaki T, Tanaka S, Asai K. Visible light-induced degradation of methylene blue on S-doped TiO2. Chem Lett. 2003;32(4):330–331. doi:10.1246/cl.2003.330.
  • Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett. 2003;32(4):364–365. doi:10.1246/cl.2003.364.
  • He X, Aker WG, Hwang H-M. An in vivo study on the photo-enhanced toxicities of S-doped TiO2 nanoparticles to zebrafish embryos (Danio rerio) in terms of malformation, mortality, rheotaxis dysfunction, and DNA damage. Nanotoxicology. 2014;8(S1):185–195. doi:10.3109/17435390.2013.874050.
  • Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: Challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27(1):1–35. doi:10.1080/10590500802708267.
  • He X, Aker WG, Fu PP, Hwang H-M. Toxicity of engineered metal oxide nanomaterials mediated by nano–bio–eco–interactions: A review and perspective. Environ Sci: Nano. 2015;2:564–582.
  • He X, Aker WG, Leszczynski J, Hwang H-M. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. J Food and Drug Anal. 2014;22(1):128–146. doi:10.1016/j.jfda.2014.01.011.
  • Cerrillo C, Barandika G, Igartua A, Areitioaurtena O, Mendoza G. Key challenges for nanotechnology: Standardization of ecotoxicity testing. J Environ Sci Health C: Environ Carcinog Ecotoxicol Rev. 2017;35(2):104–126. doi:10.1080/10590501.2017.1298361.
  • Wiesner MR, Lowry GV, Jones KL, et al. Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol. 2009;43:6458–6462. doi:10.1021/es803621k.
  • He X, McAlliser D, Aker WG, Hwang H-M. Assessing the effect of different natural dissolved organic matters on the cytotoxicity of titanium dioxide nanoparticles with bacteria. J Environ Sci. 2016;48:230–236. doi:10.1016/j.jes.2016.02.012.
  • Baun A, Hartmann NB, Grieger K, Kusk KO. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing. Ecotoxicology. 2008;17(5):387–395. doi:10.1007/s10646-008-0208-y.
  • Pathakoti K, Huang MJ, Watts JD, He X, Hwang HM. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. J Photochem Photobiol B: Biol. 2014;130:234–240. doi:10.1016/j.jphotobiol.2013.11.023.
  • Puzyn T, Rasulev B, Gajewicz A, et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol. 2011;6(3):175–178. doi:10.1038/nnano.2011.10.
  • Kiser MA, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K. Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol. 2009;43(17):6757–6763. doi:10.1021/es901102n.
  • Ge Y, Schimel J, Holden P. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol. 2011;45(4):1659–1664. doi:10.1021/es103040t.
  • Heitbrink WA, Lo L-M, Dunn KH. Exposure controls for nanomaterials at three manufacturing sites. J Occup Environ Hyg. 2015;12(1):16–28. doi:10.1080/15459624.2014.930559.
  • Barnard AS. One-to-one comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. Nat Nanotechnology. 2010;5:271–274. doi:10.1038/nnano.2010.25.
  • Weir A, Westerhoff P, Fabricius L, Hristovski K, Goetz Nv. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46(4):2242–2250. doi:10.1021/es204168d.
  • Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P. The release of nanosilver from consumer products used in the home. J Environ Qual. 2010;39(6):1875–1882. doi:10.2134/jeq2009.0363.
  • Keller AA, Lazareva A. Predicted releases of engineered nanomaterials: From global to regional to local. Environ Sci Technol Lett. 2013;1(1):65–70. doi:10.1021/ez400106t.
  • Caballero-Guzman A, Sun T, Nowack B. Flows of engineered nanomaterials through the recycling process in Switzerland. Waste Manage. 2015;36:33–43. doi:10.1016/j.wasman.2014.11.006.
  • Sun TY, Gottschlk F, Hungerbühler K, Nowack B. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut. 2014(185):69–76. doi:10.1016/j.envpol.2013.10.004.
  • Keller AA, Lazareva A. Predicted releases of engineered nanomaterials: From global to regional to local. Environ Sci Technol Lett. 2014;1(1):65–70. doi:10.1021/ez400106t.
  • Song R, Qin Y, Suh S, Keller AA. Dynamic model for the stocks and release flows of engineered nanomaterials. Environ Sci Technol. 2017; In Press. doi:10.1021/acs.est.7b01907.
  • Liu HH, Cohen Y. Multimedia environmental distribution of engineered nanomaterials. Environ Sci Technol. 2014;46(6):3281–3292. doi:10.1021/es405132z.
  • Dumont E, Johnson AC, Keller VD, Williams RJ. Nano silver and nano zinc-oxide in surface waters—Exposure estimation for Europe at high spatial and temporal resolution. Environ Pollut. 2015;196:341–349. doi:10.1016/j.envpol.2014.10.022.
  • Maynard AD, Aitken RJ. Assessing exposure to airborne nanomaterials: Current abilities and future requirements. Nanotoxicology. 2007;1(1):26–41. doi:10.1080/17435390701314720.
  • Johnson DR, Methner MM, Kennedy AJ, Steevens JA. Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ Health Perspect. 2010;118(1):49.
  • NIOSH. Building a safety program to protect the nanotechnology workforce: A guide for small to medium-sized enterprises. In: U.S. department of health and human services CfDCaP, national institute for occupational safety and health, editor. 2016.
  • Coll C, Notter D, Gottschalk F, Sun T, Som C, Nowack B. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology. 2016;10(4):436–444. doi:10.3109/17435390.2015.1073812.
  • Al-Kattan A, Wichser A, Zuin S, et al. Behavior of TiO2 released from nano-TiO2-containing paint and comparison to pristine nano-TiO2. Environ Sci Technol. 2014;48(12):6710–6718. doi:10.1021/es5006219.
  • Gondikas AP, von der Kammer F, Reed RB, Wagner S, Ranville JF, Hofmann T. Release of TiO2 nanoparticles from sunscreens into surface waters: a one-source survey at the old danube recreational lake. Environ Sci Technol. 2014;48(10):5415–5422. doi:10.1021/es405596y.
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol. 2009;43(24):9216–9222. doi:10.1021/es9015553.
  • Quadros ME, Pierson R, Tulve NS, et al. Release of silver from nanotechnology-based consumer products for children. Environ Sci Technol. 2013;47(15):8894–8901. doi:10.1021/es4015844.
  • Fernández-Rosas E, Vilar G, Janer G, et al. Influence of nanomaterial compatibilization strategies on polyamide nanocomposites properties and nanomaterial release during the use phase. Environ Sci Technol. 2016;50(5):2584–2594. doi:10.1021/acs.est.5b05727.
  • Selck H, Handy RD, Fernandes TF, Klaine SJ, Petersen EJ. Nanomaterials in the aquatic environment: A European Union–United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead. Environ Toxicol chem. 2016;35(5):1055–1067. doi:10.1002/etc.3385.
  • Tiede K, Hanssen SF, Westerhoff P, et al. How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology. 2016;10(1):102–110.
  • Musee N. Nanowastes and the environment: Potential new waste management paradigm. Environ Int. 2011;37(1):112–128. doi:10.1016/j.envint.2010.08.005.
  • Wang ZL, Jiang T, Xu L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy. 2017;39:9–23. doi:10.1016/j.nanoen.2017.06.035.
  • Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A. Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng. 2014;8(4):471–482. doi:10.1007/s11783-014-0654-0.
  • Shin TH, Cheon J. Synergism of nanomaterials with physical stimuli for biology and medicine. Acc Chem Res. 2017;50(3):567–572. doi:10.1021/acs.accounts.6b00559.
  • Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014;114(21):10869–10939. doi:10.1021/cr400532z.
  • Quinones M, Zhang Y, Riascos P, et al. Effects of light energy and reducing agents on C60-mediated photosensitizing reactions. J Photochem Photobiol: Chem. 2014;90:374–379. doi:10.1111/php.12206.
  • Yin Z, Zhu J, He Q, et al. Graphene-based materials for solar cell applications. Adv Energy Mater. 2014;4(1):1300574. doi:10.1002/aenm.201300574.
  • Kamat PV, Tvrdy K, Baker DR, Radich JG. Beyond photovoltaics: Semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev. 2010;110(11):6664–6688. doi:10.1021/cr100243p.
  • Guo S, Wang E. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today. 2011;6(3):240–264. doi:10.1016/j.nantod.2011.04.007.
  • Pan Z, Mora-Seró I, Shen Q, et al. High-efficiency “green” quantum dot solar cells. J Am Chem Soc. 2014;135(25):9203–9210. doi:10.1021/ja504310w.
  • Di Paola A, García-López E, Marcì G, Palmisano L. A survey of photocatalytic materials for environmental remediation. J Hazard Mater. 2012;211:3–29. doi:10.1016/j.jhazmat.2011.11.050.
  • He X, Sanders S, Aker WG, Lin Y, Douglas J, Hwang H-m. Assessing the effects of surface-bound humic acid on the phototoxicity of anatase and rutile TiO2 nanoparticles in vitro. J Environ Sci. 2016;42:50–60. doi:10.1016/j.jes.2015.05.028.
  • Hu XG, Zhou M, Zhou QX. Ambient water and visible-light irradiation drive changes in graphene morphology, structure, surface chemistry, aggregation and toxicity. Environ Sci Technol. 2015;49(6):3410–3418 doi:10.1021/es503003y.
  • Deng H, Zhang Y, Yu H. Nanoparticles considered as mixtures for toxicological research. J Environ Sci Health Part C. 2017; In Press.
  • Zhang L, Li J, Yang K, Liu J, Lin D. Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples. Environ Pollut. 2016;211:132–140. doi:10.1016/j.envpol.2015.12.041.
  • Yu S, Liu J, Yin Y, Shen M. Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects. J Environ Sci. 2017; In Press. doi:10.1016/j.jes.2017.06.021.
  • Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol. 2008;42(24):9005–9013. doi:10.1021/es801777n.
  • Hyung H, Kim JH. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters. Environ Sci Technol. 2008;42(12):4416–4421. doi:10.1021/es702916h.
  • Zhao T, Zhou T, Yao Q, Hao C, Chen X. Metal nanoclusters: Applications in environmental monitoring and cancer therapy. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33(2):168–187. doi:10.1080/10590501.2015.1030490.
  • Linard EN, van den Hurk P, Karanfil T, Apul OG, Klaine SJ. Influence of carbon nanotubes on the bioavailability of fluoranthene. Environ. Toxicol Chem. 2015;34(3):658–666. doi:10.1002/etc.2853.
  • Parks AN, Chandler GT, Portis LM, et al. Effects of single-walled carbon nanotubes on the bioavailability of PCBs in field-contaminated sediments. Nanotoxicology. 2014;8(S1):111–117. doi:10.3109/17435390.2013.858794.
  • Liu JY, Hurt RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol. 2010;44:2169–2175. doi:10.1021/es9035557.
  • Kent RD, Vikesland PJ. Dissolution and persistence of copper-based nanomaterials in undersaturated solutions with respect to cupric solid phases. Environ Sci Technol. 2016;50(13):6772–6781. doi:10.1021/acs.est.5b04719.
  • Gunsolus IL, Mousavi MP, Hussein K, Bühlmann P, Haynes CL. Effects of humic and fulvic acids on silver nanoparticle stability, dissolution, and toxicity. Environ Sci Technol. 2015;49(13):8078–8086. doi:10.1021/acs.est.5b01496.
  • Velicogna JR, Ritchie EE, Scroggins RP, Princz JI. A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils. Nanotoxicology. 2016;10(8):1144–1151. doi:10.1080/17435390.2016.1181807.
  • Hassink J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and soil. 1997;191(1):77–87. doi:10.1023/A:1004213929699.
  • Azimzada A, Tufenkji N, Wilkinson KJ. Transformations of silver nanoparticles in wastewater effluents: Links to Ag bioavailability. Environ Sci: Nano. 2017;4(6):1339–1349.
  • Carbone S, Hertel-Aas T, Joner EJ, Oughton DH. Bioavailability of CeO2 and SnO2 nanoparticles evaluated by dietary uptake in the earthworm Eisenia fetida and sequential extraction of soil and feed. Chemosphere. 2016;162:16–22. doi:10.1016/j.chemosphere.2016.07.044.
  • Reinsch BC, Forsberg B, Penn RL, Kim CS, Lowry GV. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ Sci Technol. 2010;44(9):3455–3461. doi:10.1021/es902924h.
  • Wu J, Li W, Fortner JD. Photoenhanced oxidation of C60 aggregates (nC60) by free chlorine in water. Environ Sci: Nano. 2017;4(1):117–126.
  • Hadjidemetriou M, Kostarelos K. Nanomedicine: Evolution of the nanoparticle corona. Nat Nanotechnol. 2017;12(4):288–2890. doi:10.1038/nnano.2017.61.
  • Raesch SS, Tenzer S, Storck W, et al. Proteomic and lipidomic analysis of nanoparticle corona upon contact with lung surfactant reveals differences in protein, but not lipid composition. ACS Nano. 2015;9(12):11872–11885. doi:10.1021/acsnano.5b04215.
  • Monopoli MP, Walczyk D, Campbell A, et al. Physical–chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc. 2011;133(8):2525–2534. doi:10.1021/ja107583h.
  • Lundqvist M, Augustsson C, Lilja M, et al. The nanoparticle protein corona formed in human blood or human blood fractions. PloS one. 2017;12(4):e0175871. doi:10.1371/journal.pone.0175871.
  • Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential Biomaterials. 2007;28:4600–4607.
  • Chandran P, Riviere JE, Monteiro-Riviere NA. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells. Nanotoxicology. 2017;11(4):507–519. doi:10.1080/17435390.2017.1314036.
  • Keleştemur S, Altunbek M, Culha M. Influence of EDC/NHS coupling chemistry on stability and cytotoxicity of ZnO nanoparticles modified with proteins. Appl Surf Sci. 2017;403:455–463. doi:10.1016/j.apsusc.2017.01.235.
  • Mirshafiee V, Kim R, Park S, Mahmoudi M, Kraft ML. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials. 2016;75:295–304. doi:10.1016/j.biomaterials.2015.10.019.
  • Kokkinopoulou M, Simon J, Landfester K, Mailänder V, Lieberwirth I. Visualization of the Protein Corona: Towards a biomolecular understanding of nanoparticle-cell-interactions. Nanoscale. 2017;9:8858–8870. doi:10.1039/C7NR02977B.
  • Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102. doi:10.1016/j.ijpharm.2005.10.010.
  • Chen F, Wang G, Griffin JI, et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat Nanotechnology. 2017;12(4):387–393. doi:10.1038/nnano.2016.269.
  • Bisesi Jr JH, Robinson SE, Lavelle CM, et al. Influence of the gastrointestinal environment on the bioavailability of ethinyl estradiol sorbed to single-walled carbon nanotubes. Environ Sci Technol. 2017;51(2):948–957. doi:10.1021/acs.est.6b04728.
  • Horie M, Nishio K, Fujita K, et al. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol. 2009;22:543–553. doi:10.1021/tx800289z.
  • Wells MA, Abid A, Kennedy IM, Barakat AI. Serum proteins prevent aggregation of Fe2O3 and ZnO nanoparticles. Nanotoxicology. 2012;6:837–846. doi:10.3109/17435390.2011.625131.
  • Pisani C, Rascol E, Dorandeu C, et al. The species origin of the serum in the culture medium influences the in vitro toxicity of silica nanoparticles to HepG2 cells. PloS one. 2017;12(8):e0182906. doi:10.1371/journal.pone.0182906.
  • Babu EP, Subastri A, Suyavaran A, et al. Size dependent uptake and hemolytic effect of zinc oxide nanoparticles on erythrocytes and biomedical potential of ZnO–Ferulic acid conjugates. Sci Rep. 2017;7(1):4203. doi:10.1038/s41598-017-04440-y.
  • Huang H, Lai W, Cui M, et al. An evaluation of blood compatibility of silver nanoparticles. Sci Rep. 2016;6:25518. doi:10.1038/srep25518.
  • Jiang X, Wang T. Breaking of the phosphodiester bond: A key factor that induces hemolysis. ACS Appl Mater Interfaces. 2015;7(1):129–136. doi:10.1021/am503865g.
  • Karlsson HL, Cronholm P, Hedberg Y, et al. Cell membrane damage and protein interaction induced by copper containing nanoparticles—Importance of the metal release process. Toxicol Lett. 2013;313(1):59–69. doi:10.1016/j.tox.2013.07.012.
  • Avellan A, Schwab F, Masion A, et al. Nanoparticle uptake in plants: Gold nanomaterial localized in roots of arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ Sci Technol. 2017;51(15):8682–8691. doi:10.1021/acs.est.7b01133.
  • Tripathi DK, Singh S, Singh S, et al. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem. 2017;110:2–12. doi:10.1016/j.plaphy.2016.07.030.
  • Alalaiwe A, Roberts G, Carpinone P, Munson J, Roberts S. Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats. Drug Deliv. 2017;24(1):591–598. doi:10.1080/10717544.2017.1282554.
  • Zhou QX, Hu XG. Systemic stress and recovery patterns of rice roots in response to graphene oxide nanosheets. Environ Sci Technol. 2017;51(4):2022–2030. doi:10.1021/acs.est.6b05591.
  • Chen Y, Ren C, Ouyang S, Hu X, Zhou Q. Mitigation in multiple effects of graphene oxide toxicity in zebrafish embryogenesis driven by humic acid. Environ Sci Technol. 2015;49(16):10147–10154. doi:10.1021/acs.est.5b02220.
  • Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8(7):543–557. doi:10.1038/nmat2442.
  • Mahmoudi M, Bertrand N, Zope H, Farokhzad OC. Emerging understanding of the protein corona at the nano–bio interfaces. Nano Today. 2016;11(6):817–832. doi:10.1016/j.nantod.2016.10.005.
  • Dasari TP, Hwang H-M. The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage. Sci Total Environ. 2010;408:5817–5823. doi:10.1016/j.scitotenv.2010.08.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.