Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 36, 2018 - Issue 1
532
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Nanoparticles considered as mixtures for toxicological research

, &

References

  • Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–627. doi:10.1126/science.1114397.
  • FDA. Over-the-counter drug products containing colloidal silver ingredients or silver salts. Fed Regist, Rules Regul. 1999;64:6.
  • Kramer DB, Xu S, Kesselheim AS. Regulation of medical devices in the United States and European Union. New Engl J Med. 2012;366:848–855. doi:10.1056/NEJMhle1113918.
  • United States Food and Drug Administration. Classify Your Medical Device. 2016. Retrieved from https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/ClassifyYourDevice/ucm051530.htm
  • Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol. 2012;258:151–165. doi:10.1016/j.taap.2011.11.010.
  • Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6:2295–2350. doi:10.3390/ma6062295.
  • Kim YS, Kim JS, Cho HS, Rha, DS, Kim, JM, Park, JD, Choi, BS, Lim, R, Chang, HK, Chung, YH. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2008;20:575–583. doi:10.1080/08958370701874663.
  • van der Zande M, Vandebriel RJ, Van Doren E, Kramer, E, Herrera Rivera, Z, Serrano-Rojero, CS, Gremmer, ER, Mast, J, Peters, RJ, Hollman, PC. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6:7427–7442. doi:10.1021/nn302649p.
  • Gao Y, Liu N, Chen C, Luo, Y, Li, Y, Zhang, Z, Zhao, Y, Zhao, B, Iida, A, Chai, Z. Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. J Anal Atom Spectrom. 2008;23:1121–1124. doi:10.1039/b802338g.
  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;87:1181–1200. doi:10.1007/s00204-013-1079-4.
  • Fukui H, Horie M, Endoh S, Kato, H, Fujita, K, Nishio, K, Komaba, LK, Maru, J, Miyauhi, A, Nakamura, A. Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem Biol Interact. 2012;198:29–37. doi:10.1016/j.cbi.2012.04.007.
  • Labouta HI, Schneider M. Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomed: Nanotechnol Biol Med. 2013;9:39–54. doi:10.1016/j.nano.2012.04.004.
  • Botelho DJ, Leo BF, Massa CB, Sarkar, S, Tetley, TD, Chung, KF, Chen, S, Ryan, MP, Porter, AE, Zhang, J, Schwander, SK, Gow, AJ. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity. Nanotoxicology. 2016;10:118–127.
  • McQuillan JS, Groenaga Infante H, Stokes E, Shaw AM. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology. 2012;6:857–866. doi:10.3109/17435390.2011.626532.
  • He X, Pan Y, Zhang J, Li, Y, Ma, Y, Zhang, P, Ding, Y, Zhang, J, Wu, Z, Zhao, Y, Chai, Z, Zhang, Z. Quantifying the total ionic release from nanoparticles after particle-cell contact. Environ Pollut. 2015;196:194–200. doi:10.1016/j.envpol.2014.09.021.
  • Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res. 2010;12:2313–2333. doi:10.1007/s11051-010-9911-8.
  • Song XL, Li B, Xu K, Liu, J, Ju, W, Wang, J, Liu, XD, Li, J, Qi, YF. Cytotoxicity of water-soluble mPEG-SH-coated silver nanoparticles in HL-7702 cells. Cell Biol Toxicol. 2012;28:225–237. doi:10.1007/s10565-012-9218-x.
  • Prasannaraj G, Sahi SV, Ravikumar S, Venkatachalam P. Enhanced cytotoxicity of biomolecules loaded metallic silver nanoparticles against human liver (HepG2) and prostate (PC3) cancer cell lines. J Nanosci Nanotechnol. 2016;16:4948–4959. doi:10.1166/jnn.2016.12336.
  • Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett. 2008;463:145–149. doi:10.1016/j.cplett.2008.08.039.
  • Tarantola M, Pietuch A, Schneider D, Rother, J, Sunnick, E, Rosman, C, Pierrat, S, Sönnichsen, C, Wegener, J, Janshoff, A. Toxicity of gold-nanoparticles: synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology. 2011;5:254–268. doi:10.3109/17435390.2010.528847.
  • Sussman EM, Casey BJ, Dutta D, Dair BJ. Different cytotoxicity responses to antimicrobial nanosilver coatings when comparing extract-based and direct-contact assays. J Appl Toxicol. 2015;35:631–639. doi:10.1002/jat.3104.
  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol. 2007;127:143–153. doi:10.1038/sj.jid.5700508.
  • Rai A, Pinto S, Evangelista MB, Gil, H, Kallip, S, Ferreira, MGS, Ferreira, L. High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells. Acta Biomater. 2016;33:64–74. doi:10.1016/j.actbio.2016.01.035.
  • Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small. 2010;6:12–21. doi:10.1002/smll.200901158.
  • Zhang Y, Li X, Yu H. Toxicity of nanoparticle surface coating agents: structure-cytotoxicity relationship. J Environ Sci Health – Part C Environ Carcino Ecotoxicol Rev. 2016;34:204–215. doi:10.1080/10590501.2016.1202762.
  • Zhang W, Jiang P, Chen W, Zheng, B, Mao, Z, Antipov, A, Correia, M, Larsen, EH, Gao, C. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells. J Nanosci Nanotechnol. 2016;16:5489–5497. doi:10.1166/jnn.2016.11753.
  • Asati A, Santra S, Kaittanis C, Perez JM. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano. 2010;4:5321–5331. doi:10.1021/nn100816s.
  • De Matteis V, Malvindi MA, Galeone A, Brunetti, V, De Luca, E, Kote, S, Kshirsagar, P, Sabella, S, Bardi, G, Pompa, PP. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol. Nanomed: Nanotechnol Biol Med. 2015;11:731–739. doi:10.1016/j.nano.2014.11.002.
  • Walkey CD, Olsen JB, Song F, Liu, R, Guo, H, Olsen, DWH, Cohen, Y, Emili, A, Chan, WCW. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 2014;8:2439–2455. doi:10.1021/nn406018q.
  • Miclǎuş T, Bochenkov VE, Ogaki R, Howard KA, Sutherland DS. Spatial mapping and quantification of soft and hard protein coronas at silver nanocubes. Nano Lett. 2014;14:2086–2093. doi:10.1021/nl500277c.
  • Lesniak A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials. 2010;31:9511–9518. doi:10.1016/j.biomaterials.2010.09.049.
  • Gebauer JS, Malissek M, Simon S, Knauer, SK, Maskos, M, Stauber, RH, Peukert, W, Treuel, L. Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir. 2012;28:9673–9679. doi:10.1021/la301104a.
  • Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VF. Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe 3O 4, CoO, and CeO 2) nanoparticles. Small. 2011;7:3479–3486. doi:10.1002/smll.201101511.
  • Munro C, Smith W, Garner M, Clarkson J, White P. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir. 1995;11:3712–3720. doi:10.1021/la00010a021.
  • Chen X, Hu Y, Gao J, Zhang Y, Li S. Interaction of melamine molecules with silver nanoparticles explored by surface-enhanced Raman scattering and density functional theory calculations. Appl Spectrosc. 2013;67:491–497. doi:10.1366/12-06838.
  • Joshi P, Shewale V, Pandey R, Shanker V, Hussain S, Karna SP. Tryptophan-gold nanoparticle interaction: a first-principles quantum mechanical study. J Phys Chem C. 2011;115:22818–22826. doi:10.1021/jp2070437.
  • Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm. 2009;72:370–377. doi:10.1016/j.ejpb.2008.08.009.
  • Kittler S, Greulich C, Diendorf J, Koller M, Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater. 2010;22:4548–4554. doi:10.1021/cm100023p.
  • Lowry GV, Espinasse BP, Badireddy AR, Richardson, CJ, Reinsch, BC, Bryant, LD, Bone, AJ, Deonarine, A, Chae, S, Therezien, M. Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol. 2012;46:7027–7036. doi:10.1021/es204608d.
  • Benhacine F, Hadj-Hamou A, Habi A. Development of long-term antimicrobial poly (ϵ-caprolactone)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use. Polym Bull. 2016;73:1207–1227. doi:10.1007/s00289-015-1543-9.
  • Mann S, Heywood BR, Rajam S, Birchall JD. Controlled crystallization of CaCO 3 under stearic acid monolayers. Nature. 1988;334:692–695. doi:10.1038/334692a0.
  • De Yoreo JJ, Vekilov PG. Principles of crystal nucleation and growth. Rev Mineral Geochem. 2003;54:57–93. doi:10.2113/0540057.
  • Gebauer D, Völkel A, Cölfen H. Stable prenucleation calcium carbonate clusters. Science. 2008;322:1819–1822. doi:10.1126/science.1164271.
  • Meldrum FC, Sear RP. Now you see them. Science. 2008;322:1802–1803. doi:10.1126/science.1167221.
  • Deng H, Wang X-M, Du C, Shen X-C, Cui F-Z. Combined effect of ion concentration and functional groups on surface chemistry modulated CaCO 3 crystallization. CrystEngComm. 2012;14:6647–6653. doi:10.1039/c2ce25731a.
  • Deng H, Shen X-C, Wang X-M, Du C. Calcium carbonate crystallization controlled by functional groups: a mini-review. Front Mater Sci. 2013;7:62–68. doi:10.1007/s11706-013-0191-y.
  • Deng H, Wang S, Wang X, Du, C, Shen, X, Wang, Y, Cui, F. Two competitive nucleation mechanisms of calcium carbonate biomineralization in response to surface functionality in low calcium ion concentration solution. Regenerative Biomater. 2015;2:187–195. doi:10.1093/rb/rbv010.
  • Tao AR, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small. 2008;4:310–325. doi:10.1002/smll.200701295.
  • Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM. Shape control in gold nanoparticle synthesis. Chem Soc Rev. 2008;37:1783–1791. doi:10.1039/b711490g.
  • Wu Y, Jiang P, Jiang M, Wang, T-W, Guo, C-F, Xie, S-S, Wang, Z-L. The shape evolution of gold seeds and gold@ silver core? shell nanostructures. Nanotechnology. 2009;20:305602. doi:10.1088/0957-4484/20/30/305602.
  • Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed. 2006;45:4597–4601. doi:10.1002/anie.200601277.
  • Ahmad N, Sharma S, Alam MK, Singh, V, Shamsi, S, Mehta, B, Fatma, A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B: Biointerf. 2010;81:81–86. doi:10.1016/j.colsurfb.2010.06.029.
  • Chen S, Carroll DL. Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett. 2002;2:1003–1007. doi:10.1021/nl025674h.
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–1720. doi:10.1128/AEM.02218-06.
  • Wang Z. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B. 2000;104:1153–1175. doi:10.1021/jp993593c.
  • Wang ZL, Feng X. Polyhedral shapes of CeO2 nanoparticles. J Phys Chem B. 2003;107:13563–13566. doi:10.1021/jp036815m.
  • Wu H-X, Cao W-M, Li Y, Liu, G, Wen, Y, Yang, H-F, Yang, S-P. In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim Acta. 2010;55:3734–3740. doi:10.1016/j.electacta.2010.02.017.
  • Wu H-Q, Wei X-W, Shao M-W, Gu J-S, Qu M-Z. Synthesis of copper oxide nanoparticles using carbon nanotubes as templates. Chem Phys Lett. 2002;364:152–156. doi:10.1016/S0009-2614(02)01301-5.
  • Tian N, Zhou Z-Y, Sun S-G. Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles. J Phys Chem C. 2008;112:19801–19817. doi:10.1021/jp804051e.
  • Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2011;112:2373–2433.
  • Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–668. doi:10.1021/nl052396o.
  • Simon-Deckers A, Loo S, Mayne-L'hermite M, Herlin-Boime, N, Menguy, N, Reynaud, C, Gouget, B, Carrière, M. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol. 2009;43:8423–8429. doi:10.1021/es9016975.
  • Ivanova OS, Zamborini FP. Size-dependent electrochemical oxidation of silver nanoparticles. J Am Chem Soc. 2010;132:70–72. doi:10.1021/ja908780g.
  • Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev. 2008;60:1289–1306. doi:10.1016/j.addr.2008.03.013.
  • Deng H, Yu H. A mini review on controlling the size of ag nanoclusters by changing the stabilizer to ag ratio and by changing DNA sequence. Adv Nat Sci. 2015;8:1–9.
  • Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol. 2010;44:1260–1266. doi:10.1021/es902240k.
  • Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res. 2001;34:181–190. doi:10.1021/ar000110a.
  • Deng H, McShan D, Zhang Y, Sinha, SS, Arslan, Z, Ray, PC, Yu, H. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol. 2016;50:8840–8848. doi:10.1021/acs.est.6b00998.
  • Smith DK, Korgel BA. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir. 2008;24:644–649. doi:10.1021/la703625a.
  • Isomaa B, Reuter J, Djupsund B. The subacute and chronic toxicity of cetyltrimethylammonium bromide (CTAB), a cationic surfactant, in the rat. Arch Toxicol. 1976;35:91–96. doi:10.1007/BF00372762.
  • Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small. 2009;5:701–708. doi:10.1002/smll.200801546.
  • Hauck TS, Ghazani AA, Chan WC. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small. 2008;4:153–159. doi:10.1002/smll.200700217.
  • Zhang Y, Newton B, Lewis E, Fu, PP, Kafoury, R, Ray, PC, Yu, H. Cytotoxicity of organic surface coating agents used for nanoparticles synthesis and stability. Toxicol in Vitro. 2015;29:762–768. doi:10.1016/j.tiv.2015.01.017.
  • Park YC, Smith JB, Pham T, Whitaker, RD, Sucato, CA, Hamilton, JA, Bartolak-Suki, E, Wong, JY. Effect of PEG molecular weight on stability, T2contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs). Colloids Surf B: Biointerf. 2014;119:106–114. doi:10.1016/j.colsurfb.2014.04.027.
  • Ould-Moussa N, Safi M, Guedeau-Boudeville MA, Montero D, Conjeaud H, Berret JF. In vitro toxicity of nanoceria: effect of coating and stability in biofluids. Nanotoxicology. 2014;8:799–811.
  • Verma A, Uzun O, Hu Y, Hu, Y, Han, H-S, Watson, N, Chen, S, Irvine, DJ, Stellacci, F. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater. 2008;7:588–595. doi:10.1038/nmat2202.
  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45:283–287. doi:10.1021/es1034188.
  • Yazici H, Alpaslan E, Webster TJ. The role of dextran coatings on the cytotoxicity properties of ceria nanoparticles toward bone cancer cells. JOM. 2015;67:804–810. doi:10.1007/s11837-015-1336-5.
  • Wani A, Muthuswamy E, Savithra GHL, Mao G, Brock S, Oupický D. Surface functionalization of mesoporous silica nanoparticles controls loading and release behavior of mitoxantrone. Pharm Res. 2012;29:2407–2418. doi:10.1007/s11095-012-0766-9.
  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. Nano Lett. 2007;7:1344–1348. doi:10.1021/nl070375j.
  • Tejamaya M, Römer I, Merrifield RC, Lead JR. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol. 2012;46:7011–7017. doi:10.1021/es2038596.
  • Sanchís J, Olmos M, Vincent P, Farré M, Barceló D. New insights on the influence of organic co-contaminants on the aquatic toxicology of carbon nanomaterials. Environ Sci Technol. 2016;50:961–969. doi:10.1021/acs.est.5b03966.
  • Gutierrez L, Aubry C, Cornejo M, Croue JP. Citrate-coated silver nanoparticles interactions with effluent organic matter: influence of capping agent and solution conditions. Langmuir. 2015;31:8865–8872. doi:10.1021/acs.langmuir.5b02067.
  • Kanel SR, Flory J, Meyerhoefer A, Fraley JL, Sizemore IE, Goltz MN. Influence of natural organic matter on fate and transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling. J Nanopart Res. 2015;17:154. doi:10.1007/s11051-015-2956-y.
  • Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 2014;22:64–75. doi:10.1016/j.jfda.2014.01.005.
  • McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J. Food Drug Anal. 2014;22:116–127. doi:10.1016/j.jfda.2014.01.010.
  • Li Y, Niu J, Shang E, Crittenden JC. Influence of dissolved organic matter on photogenerated reactive oxygen species and metal-oxide nanoparticle toxicity. Water Res. 2016;98:9–18.
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83. doi:10.1016/j.biotechadv.2008.09.002.
  • Jacob C, Giles GI, Giles NM, Sies H. Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed. 2003;42:4742–4758. doi:10.1002/anie.200300573.
  • Krishnaraj C, Jagan E, Rajasekar S, Selvakumar P, Kalaichelvan P, Mohan N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B: Biointerf. 2010;76:50–56. doi:10.1016/j.colsurfb.2009.10.008.
  • Hebeish A, El-Naggar M, Fouda MM, Ramadan M, Al-Deyab SS, El-Rafie M. Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydr Polym. 2011;86:936–940. doi:10.1016/j.carbpol.2011.05.048.
  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol. 2011;90:1609–1624. doi:10.1007/s00253-011-3249-8.
  • Sotiriou GA, Meyer A, Knijnenburg JTN, Panke S, Pratsinis SE. Quantifying the origin of released Ag+ ions from nanosilver. Langmuir. 2012;28:15929–15936. doi:10.1021/la303370d.
  • Palza H, Delgado K, Pinochet I. Improving the metal ion release from nanoparticles embedded in a polypropylene matrix for antimicrobial applications. J Appl Polym Sci. 2014;132. doi:10.1002/app.41232.
  • Krsti J, Spasojevi J, Radosavljevi A, Peri-Gruji, A, D Strok Signuri, M, Kačarevi-Popovi, Z, Popovic, SSS. In vitro silver ion release kinetics from nanosilver/poly(vinyl alcohol) hydrogels synthesized by gamma irradiation. J Appl Polym Sci. 2014;131:40321. doi:10.1002/app.40321.
  • Haider MS, Shao GN, Imran SM, Park, SS, Abbas, N, Tahir, MS, Hussain, M, Bae, W, Kim, HT. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater Sci Eng C. 2016;62:732–745. doi:10.1016/j.msec.2016.02.025.
  • Fortunati E, Latterini L, Rinaldi S, Kenny JM, Armentano I. PLGA/Ag nanocomposites: in vitro degradation study and silver ion release. J Mater Sci: Mater Med. 2011;22:2735–2744.
  • Dobias J, Bernier-Latmani R. Silver release from silver nanoparticles in natural waters. Environ Sci Technol. 2013;47:4140–4146. doi:10.1021/es304023p.
  • Fujiwara K, Sotiriou GA, Pratsinis SE. Enhanced Ag+ ion release from aqueous nanosilver suspensions by absorption of ambient CO2. Langmuir. 2015;31:5284–5290. doi:10.1021/la504946g.
  • Liu J, Hurt RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol. 2010;44:2169–2175. doi:10.1021/es9035557.
  • Hahn A, Fuhlrott J, Loos A, Barcikowski S. Cytotoxicity and ion release of alloy nanoparticles. J Nanopart Res. 2012;14:686. doi:10.1007/s11051-011-0686-3.
  • Katsumiti A, Arostegui I, Oron M, Gilliland D, Valsami-Jones E, Cajaraville MP. Cytotoxicity of Au, ZnO and SiO2 NPs using in vitro assays with mussel hemocytes and gill cells: Relevance of size, shape and additives. Nanotoxicology. 2016;10:185–193.
  • Majedi SM, Lee HK. Recent advances in the separation and quantification of metallic nanoparticles and ions in the environment. TrAC – Trends in Anal Chem. 2016;75:183–196. doi:10.1016/j.trac.2015.08.009.
  • Garner KL, Keller AA. Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanopart Res. 2014;16:2503. doi:10.1007/s11051-014-2503-2.
  • Shaymurat T, Gu J, Xu C, Yang, Z, Zhao, Q, Liu, Y, Liu, Y. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology. 2012;6:241–248. doi:10.3109/17435390.2011.570462.
  • Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol. 2008;42:5580–5585. doi:10.1021/es800422x.
  • Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 2007;150:243–250. doi:10.1016/j.envpol.2007.01.016.
  • Stampoulis D, Sinha SK, White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol. 2009;43:9473–9479. doi:10.1021/es901695c.
  • Yang L, Watts DJ. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett. 2005;158:122–132. doi:10.1016/j.toxlet.2005.03.003.
  • Geisler-Lee J, Wang Q, Yao Y, Zhang, W, Geisler, M, Li, K, Huang, Y, Chen, Y, Kolmakov, A, Ma, X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology. 2012;7:323–337. doi:10.3109/17435390.2012.658094.
  • Gubbins EJ, Batty LC, Lead JR. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut. 2011;159:1551–1559. doi:10.1016/j.envpol.2011.03.002.
  • Slomberg DL, Schoenfisch MH. Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol. 2012;46:10247–10254.
  • Ma H, Williams PL, Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ Pollut. 2013;172:76–85. doi:10.1016/j.envpol.2012.08.011.
  • Speranza A, Crinelli R, Scoccianti V, Taddei, AR, Iacobucci, M, Bhattacharya, P, Ke, PC. In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environ Pollut. 2013;179:258–267. doi:10.1016/j.envpol.2013.04.021.
  • Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. 2015;10:339–354. doi:10.1016/j.nantod.2015.04.002.
  • Ivask A, Elbadawy A, Kaweeteerawat C, Boren, D, Fischer, H, Ji, Z, Chang, CH, Liu, R, Tolaymat, T, Telesca, D, Zink, JI, Cohen, Y, Holden, PA, Godwin, HA. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano. 2014;8:374–386. doi:10.1021/nn4044047.
  • Zhang Y, Shareena Dasari TP, Deng H, Yu H. Antimicrobial activity of gold nanoparticles and ionic gold. J Environ Sci Health, Part C. 2015;33:286–327. doi:10.1080/10590501.2015.1055161.
  • Dasari T, Deng H, McShan D, Yu H, Ray P. Nanosilver-based antibacterial agents for food safety. In: Paresh C. Ray, ed. Food Poison: Outbreaks, Bacterial Sources Adverse Health Eff. 2014;(pp. 35–62) Hauppauge, NY: NOVA Science Publishers.
  • McShan D, Zhang Y, Deng H, Ray PC, Yu H. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104. J Environ Sci Health, Part C. 2015;33:369–384. doi:10.1080/10590501.2015.1055165.
  • Deng H, Gao Y, Dasari TPS, Ray PC, Yu H. A facile 3d construct of graphene oxide embedded with silver nanoparticles and its potential application as water filter. J Miss Acad Sci. 2016;2:190–197.
  • Lv J, Zhang S, Luo L, Han, W, Zhang, J, Yang, K, Christie, P. Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environ Sci Technol. 2012;46:7215–7221. doi:10.1021/es301027a.
  • Zhang H, Gilbert B, Huang F, Banfield JF. Water-driven structure transformation in nanoparticles at room temperature. Nature. 2003;424:1025–1029. doi:10.1038/nature01845.
  • Huang F, Gilbert B, Zhang H, Banfield JF. Reversible, surface-controlled structure transformation in nanoparticles induced by an aggregation state. Phys Rev Lett. 2004;92:155501. doi:10.1103/PhysRevLett.92.155501.
  • Zhang H, Banfield JF. Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations. Nano Lett. 2004;4:713–718. doi:10.1021/nl035238a.
  • Mann S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater. 2009;8:781–792. doi:10.1038/nmat2496.
  • Banerjee R, Jayakrishnan R, Ayyub P. Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. J Phys: Condense Matter. 2000;12:10647.
  • Li Y, Wei B, Liang J, Yu Q, Wu D. Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon. 1999;37:493–497. doi:10.1016/S0008-6223(98)00218-8.
  • Toimil‐Molares ME, Röntzsch L, Sigle W, Heinig KH, Trautmann C, Neumann R. Pipetting nanowires: in situ visualization of solid‐state nanowire‐to‐nanoparticle transformation driven by surface diffusion‐mediated capillarity. Adv Funct Mater. 2012;22:695–701. doi:10.1002/adfm.201102260.
  • Inasawa S, Sugiyama M, Yamaguchi Y. Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting. J Phys Chem B. 2005;109:3104–3111. doi:10.1021/jp045167j.
  • Chen Y, Gu X, Nie C-G, Jiang Z-Y, Xie Z-X, Lin C-J. Shape controlled growth of gold nanoparticles by a solution synthesis. Chem Commun. 2005;4181–4183. doi:10.1039/b504911c.
  • Wu H-Y, Liu M, Huang MH. Direct synthesis of branched gold nanocrystals and their transformation into spherical nanoparticles. J Phys Chem B. 2006;110:19291–19294. doi:10.1021/jp063711d.
  • Barakat M, Hayes G, Shah SI. Effect of cobalt doping on the phase transformation of TiO2 nanoparticles. J Nanosci nanotechnol. 2005;5:759–765. doi:10.1166/jnn.2005.087.
  • Hamadanian M, Reisi-Vanani A, Majedi A. Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu, S-codoped TiO 2 nanoparticles. Appl Surf Sci. 2010;256:1837–1844. doi:10.1016/j.apsusc.2009.10.016.
  • Gilbert B, Zhang H, Huang F, Finnegan MP, Waychunas GA, Banfield JF. Special phase transformation and crystal growth pathways observed in nanoparticles†. Geochem Trans. 2003;4:1–8.
  • Zhang H, Banfield JF. Size dependence of the kinetic rate constant for phase transformation in TiO2 nanoparticles. Chem Mater. 2005;17:3421–3425. doi:10.1021/cm0508423.
  • Gondal M, Drmosh Q, Yamani Z, Saleh T. Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl Surf Sci. 2009;256:298–304. doi:10.1016/j.apsusc.2009.08.019.
  • Tang Z, Wang Y, Shanbhag S, Giersig M, Kotov NA. Spontaneous transformation of CdTe nanoparticles into angled Te nanocrystals: from particles and rods to checkmarks, X-marks, and other unusual shapes. J Am Chem Soc. 2006;128:6730–6736. doi:10.1021/ja0582096.
  • Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environ Sci Technol. 2010;44:5649–5654. doi:10.1021/es101072s.
  • Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett. 2012;208:286–292. doi:10.1016/j.toxlet.2011.11.002.
  • He X, Fu P, Aker WG, Hwang H-m Toxicity of engineered nanomaterials mediated by nano-bio-eco interactions. J. Environ Sci Health, Part C. 2018;36:1–22.
  • Kaegi R, Voegelin A, Ort C, Sinnet, B, Thalmann, B, Krismer, J, Hagendorfer, H, Elumelu, M, Mueller, E. Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res. 2013;47:3866–3877. doi:10.1016/j.watres.2012.11.060.
  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int. 2011;37:517–531. doi:10.1016/j.envint.2010.10.012.
  • Marambio-Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12:1531–1551. doi:10.1007/s11051-010-9900-y.
  • Levard C, Hotze EM, Lowry GV, Brown Jr GE. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012;46:6900–6914. doi:10.1021/es2037405.
  • Benn TM, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol. 2008;42:4133–4139. doi:10.1021/es7032718.
  • He X, G Aker W, Huang M-J, D Watts J, Hwang H-M. Metal oxide nanomaterials in nanomedicine: applications in photodynamic therapy and potential toxicity. Curr Top Med Chem. 2015;15:1887–1900. doi:10.2174/1568026615666150506145251.
  • He X, Sanders S, Aker WG, Lin Y, Douglas J, Hwang H-m. Assessing the effects of surface-bound humic acid on the phototoxicity of anatase and rutile TiO 2 nanoparticles in vitro. J Environ Sci. 2016;42:50–60. doi:10.1016/j.jes.2015.05.028.
  • Ding R, Lu G, Yan Z, Wilson M. Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. J Nanosci Nanotechnol. 2001;1:7–29. doi:10.1166/jnn.2001.012.
  • Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes–the route toward applications. Science. 2002;297:787–792. doi:10.1126/science.1060928.
  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;77:117–125.
  • Tsuzuki T, Robinson J, McCormick P. UV-shielding ceramic nanoparticles synthesised by mechanochemcial processing. J Aust Ceram Soc. 2002;38:15–19.
  • American Society of Healthsystem Pharmacists. AHFS drug information 2006, Bethesda, MD: American Society of Healthsystem Pharmacists; 2006.
  • Sajti CL, Sattari R, Chichkov BN, Barcikowski S. Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J Phys Chem C. 2010;114:2421–2427. doi:10.1021/jp906960g.
  • Hong Z, Liu A, Chen L, Chen X, Jing X. Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method. J Non-Cryst Solids. 2009;355:368–372. doi:10.1016/j.jnoncrysol.2008.12.003.
  • Sathiyamoorthi R, Shakkthivel P, Ramalakshmi S, Shul Y-G. Influence of Mg doping on the performance of LiNiO 2 matrix ceramic nanoparticles in high-voltage lithium-ion cells. J Power Sources. 2007;171:922–927. doi:10.1016/j.jpowsour.2007.06.023.
  • Lin W, Huang Y-w, Zhou X-D, Ma Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol. 2006;217:252–259. doi:10.1016/j.taap.2006.10.004.
  • Lam C-W, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:126–134.
  • Collins PG, Bradley K, Ishigami M, Zettl A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science. 2000;287:1801–1804. doi:10.1126/science.287.5459.1801.
  • Zhang X, Neiner D, Wang S, Louie AY, Kauzlarich SM. A new solution route to hydrogen-terminated silicon nanoparticles: synthesis, functionalization and water stability. Nanotechnology. 2007;18:095601. doi:10.1088/0957-4484/18/9/095601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.