251
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Novel cationic cellulose-based nanocomposites for targeted delivery of methotrexate to breast cancer cells

, , &
Pages 99-115 | Received 11 Jan 2019, Accepted 03 Sep 2019, Published online: 11 Oct 2019

References

  • Greco, F.; Vicent, M. J. Combination Therapy: Opportunities and Challenges for Polymer-Drug Conjugates as Anticancer Nanomedicines. Adv. Drug Deliv. Rev. 2009, 61, 1203–1213. DOI: 10.1016/j.addr.2009.05.006.
  • Vogus, D. R.; Krishnan, V.; Mitragotri, S. A Review on Engineering Polymer Drug Conjugates to Improve Combination Chemotherapy. Curr. Opin. Colloid Interface Sci. 2017, 31, 75–85. DOI: 10.1016/j.cocis.2017.08.002.
  • Allen, T. M.; Cullis, P. R. Drug Delivery Systems: Entering the Mainstream. Science 2004, 303, 1818–1822. DOI: 10.1126/science.1095833.
  • Win, K. Y.; Feng, S. S. Effects of Particle Size and Surface Coating on Cellular Uptake of Polymeric Nanoparticles for Oral Delivery of Anticancer Drugs. Biomaterials 2005, 26, 2713–2722. DOI: 10.1016/j.biomaterials.2004.07.050.
  • Bertino, J. R. Chemical Action and Pharmacology of Methotrexate, Azathioprine and Cyclophosphamide in Man. Arthritis Rheum. 1973, 16, 79–83. DOI: 10.1002/art.1780160113.
  • Kinsella, A. R.; Smith, D.; Pickard, M. Resistance to Chemotherapeutic Antimetabolites: A Function of Salvage Pathway Involvement and Cellular Response to DNA Damage. Br. J. Cancer 1997, 75, 935–945. DOI: 10.1038/bjc.1997.164.
  • Verstappen, C. C. P.; Heimans, J. J.; Hoekman, K.; Postma, T. J. Neurotoxic Complications of Chemotherapy in Patients with Cancer: clinical Signs and Optimal Management. Drugs 2003, 63, 1549–1563. DOI: 10.2165/00003495-200363150-00003.
  • Fleet, R.; McLeary, J. B.; Grumel, V.; Weber, W. G.; Matahwa, H.; Sanderson, R. D. RAFT Mediated Polysaccharide Copolymers. Eur. Polym. J. 2008, 44, 2899–2911. DOI: 10.1016/j.eurpolymj.2008.06.042.
  • Prendergast, G. C.; Jaffee, E. M. Cancer Immunotherapy: Immune Suppression and Tumor Growth, San Diego, CA: Elsevier, 2013.
  • Benedetti, M. S.; Whomsley, R.; Poggesi, I.; Cawello, W.; Mathy, F. X.; Delporte, M. L.; Papeleu, P.; Watelet, J. B. Drug Metabolism and Pharmacokinetics. Drug Metab. Rev. 2009, 41, 344–390. DOI: 10.1080/10837450902891295.
  • Smith, D. A.; Beaumont, K.; Maurer, T. S.; Di, L. Relevance of Half-Life in Drug Design. J. Med. Chem. 2018, 61, 4273–4282. DOI: 10.1021/acs.jmedchem.7b00969.
  • Commandeur, S.; Van Beusekom, H. M. M.; Van Der Giessen, W. J. Polymers, Drug Release, and Drug-Eluting Stents. J. Interv. Cardiol. 2006, 19, 500–506. DOI: 10.1111/j.1540-8183.2006.00198.x.
  • Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. Polymeric Systems for Controlled Drug Release. Chem. Rev. 1999, 99, 3181–3198.
  • Hickey, J. W.; Santos, J. L.; Williford, J. M.; Mao, H. Q. Control of Polymeric Nanoparticle Size to Improve Therapeutic Delivery. J. Control. Release 2015, 219, 535–547.
  • Zheng, H.; Huang, Z.; Che, S. Mesostructured Chitosan-Silica Hybrid as a Biodegradable Carrier for a pH-Responsive Drug Delivery System. Dalton Trans. 2012, 41, 5038–5044. DOI: 10.1039/c2dt12347a.
  • Deng, Z.; Zhen, Z.; Hu, X.; Wu, S.; Xu, Z.; Chu, P. K. Hollow Chitosan Silica Nanospheres as pH-Sensitive Targeted Delivery Carriers in Breast Cancer Therapy. Biomaterials 2011, 32, 4976. DOI: 10.1016/j.biomaterials.2011.03.050.
  • Mahmoodzadeh, F.; Abbasian, M.; Jaymand, M.; Amirshaghaghi, A. A Novel Dual Stimuli-Responsive Thiol-End Capped ABC Triblock Copolymer: Synthesis. Polym. Int. 2017, 66, 1651–1661. DOI: 10.1002/pi.5428.
  • Mondelaers, D.; Vanhoyland, G.; Van Den Rul, H.; D’Haen, J.; Van Bael, M. K.; Mullens, J.; Van Poucke, L. C. Synthesis of ZnO Nanopowder via an Aqueous Acetate-Citrate Gelation Method. Mater. Res. Bull. 2002, 37, 901–914. DOI: 10.1016/S0025-5408(02)00727-4.
  • Yu, K.; Jin, Z.; Liu, X.; Zhao, J.; Feng, J. Shape Alterations of ZnO Nanocrystal Arrays Fabricated from NH3 Á H 2 O Solutions. 2007, 253, 4072–4078. DOI: 10.1016/j.apsusc.2006.09.001.
  • Xi, J.; Qin, J.; Fan, L. Chondroitin Sulfate Functionalized Mesostructured Silica Nanoparticles as Biocompatible Carriers for Drug Delivery. Int. J. Nanomed. 2012, 7, 5235–5247.
  • Shlieout, G.; Arnold, K.; Müller, G. Powder and Mechanical Properties of Microcrystalline Cellulose with Different Degrees of Polymerization. AAPS PharmSciTech 2002, 3, 45. DOI: 10.1208/pt030211.
  • Salama, A.; El-Sakhawy, M.; Kamel, S. Carboxymethyl Cellulose Based Hybrid Material for Sustained Release of Protein Drugs. Int. J. Biol. Macromol. 2016, 93, 1647–1652. ‏ DOI: 10.1016/j.ijbiomac.2016.04.029.
  • Elumalai, R.; Patil, S.; Maliyakkal, N.; Rangarajan, A.; Kondaiah, P.; Raichur, A. M. Protamine-Carboxymethyl Cellulose Magnetic Nanocapsules for Enhanced Delivery of Anticancer Drugs against Drug Resistant Cancers. Nanomedicine 2015, 11, 969–981. ‏ DOI: 10.1016/j.nano.2015.01.005.
  • Zare-Akbari, Z.; Farhadnejad, H.; Furughi-Nia, B.; Abedin, S.; Yadollahi, M.; Khorsand-Ghayeni, M. PH-Sensitive Bionanocomposite Hydrogel Beads Based on Carboxymethyl Cellulose/ZnO Nanoparticle as Drug Carrier. Int. J. Biol. Macromol. 2016, 93, 1317–1327. DOI: 10.1016/j.ijbiomac.2016.09.110.
  • Roy, D.; Guthrie, J. T.; Perrier, S. Graft Polymerization: Grafting Poly (Styrene) from Cellulose via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules 2005, 38, 10363–10372. DOI: 10.1021/ma0515026.
  • Karaj-Abad, S. G.; Abbasian, M.; Jaymand, M. Grafting of Poly[(Methyl Methacrylate)-Block-Styrene] onto Cellulose via Nitroxide-Mediated Polymerization, and Its Polymer/Clay Nanocomposite. Carbohydr. Polym. 2016, 152, 297–305. DOI: 10.1016/j.carbpol.2016.07.017.
  • Isogai, A.; Kato, Y. Preparation of Polyuronic Acid from Cellulose by TEMPO-Mediated Oxidation. Cellulose 1998, 5, 153–164.
  • Fraczyk, J.; Walczak, M.; Kaminski, Z. J. New Methodology for Automated SPOT Synthesis of Peptides on Cellulose Using 1,3,5-Triazine Derivatives as Linkers and as Coupling Reagents. J. Pep. Sci. 2018, 24, e3063. DOI: 10.1002/psc.3063.
  • Roy, D.; Guthrie, J. T.; Perrier, S. Synthesis of Natural–Synthetic Hybrid Materials from Cellulose via the RAFT Process. Soft Matter 2008, 4, 145–155. DOI: 10.1039/B711248N.
  • Liu, B.; Yang, D.; Man, H.; Liu, Y.; Chen, H.; Xu, H.; Wang, W.; Bai, L. A Green Pickering Emulsion Stabilized by Cellulose Nanocrystals via RAFT Polymerization. Cellulose 2018, 25, 77–85. DOI: 10.1007/s10570-017-1559-4.
  • Abbasian, M.; Mahmoodzadeh, F.; Salehi, R.; Amirshaghaghi, A. Chemo-Photothermal Therapy of Cancer Cells Using Gold Nanorod-Cored Stimuli-Responsive Triblock Copolymer. New J. Chem. 2017, 41, 12777–12788. DOI: 10.1039/C7NJ02504A.
  • Wang, Z.; Crandall, C.; Prautzsch, V. L.; Sahadevan, R.; Menkhaus, T. J.; Fong, H. Electrospun Regenerated Cellulose Nanofiber Membranes Surface-Grafted with Water-Insoluble Poly(HEMA) or Water-Soluble Poly(AAS) Chains via the ATRP Method for Ultrafiltration of Water. ACS Appl. Mater. Interfaces 2017, 9, 4272–4278. DOI: 10.1021/acsami.6b16116.
  • Östmark, E.; Harrisson, S.; Wooley, K. L.; Malmström, E. E. Comb Polymers Prepared by ATRP from Hydroxypropyl Cellulose. Biomacromolecules 2007, 8, 1138–1148. DOI: 10.1021/bm061043w.
  • Meng, T.; Gao, X.; Zhang, J.; Yuan, J.; Zhang, Y.; He, J. Graft Copolymers Prepared by Atom Transfer Radical Polymerization (ATRP) from Cellulose. Polymer (Guildf) 2009, 50, 447–454. DOI: 10.1016/j.polymer.2008.11.011.
  • Caykara, T. Polymer and Biopolymer Brushes: For Materials Science and Biotechnology, Hoboken, NJ: Wiley, 2017; pp. 97–121.
  • Garrett, E. T.; Pei, Y.; Lowe, A. B. Microwave-Assisted Synthesis of Block Copolymer Nanoparticles via RAFT with Polymerization-Induced Self-Assembly in Methanol. Polym. Chem. 2016, 7, 297–301. DOI: 10.1039/C5PY01672J.
  • Abbasian, M.; Mahmoodzadeh, F. Synthesis of Antibacterial Silver-Chitosan-Modified Bionanocomposites by RAFT Polymerization and Chemical Reduction Methods. J. Elastomers Plast. 2017, 49, 173–193. DOI: 10.1177/0095244316644858.
  • Zeinali, E.; Haddadi-Asl, V.; Roghani-Mamaqani, H. Nanocrystalline Cellulose Grafted Random Copolymers of N-Isopropylacrylamide and Acrylic Acid Synthesized by RAFT Polymerization: effect of Different Acrylic Acid Contents on LCST Behavior. RSC Adv. 2014, 4, 31428–31442. DOI: 10.1039/C4RA05442C.
  • Wang, Z. L. Zinc Oxide Nanostructures: Growth, Properties and Applications. J. Phys.: Condens. Matter 2004, 16, R829–R858. DOI: 10.1088/0953-8984/16/25/R01.
  • Chen, B-a.; Mao, P-p.; Cheng, J.; Gao, F.; Xia, G-h.; Xu, W-l.; Shen, H-l.; Ding, J-h.; Gao, C.; Sun, Q.; et al. Reversal of Multidrug Resistance by Magnetic Fe3O4 Nanoparticle Copolymerizating Daunorubicin and MDR1 shRNA Expression Vector in Leukemia Cells. Int. J. Nanomed. 2010, 5, 437.
  • Sun, C.; Lee, J. S. H.; Zhang, M. Magnetic Nanoparticles in MR Imaging and Drug Delivery. Adv. Drug Deliv. Rev. 2008, 60, 1252–1265. DOI: 10.1016/j.addr.2008.03.018.
  • Wu, B.; Torres-Duarte, C.; Cole, B. J. Copper Oxide and Zinc Oxide Nanomaterials Act as Inhibitors of Multidrug Resistance Transport in Sea Urchin Embryos: Their Role as Chemosensitizers. Environ. Sci. Technol. 2015, 49, 5760–5770. DOI: 10.1021/acs.est.5b00345.
  • Alimohammadi, S.; Salehi, R.; Amini, N.; Davaran, S. Synthesis and Physicochemical Characterization of Biodegradable PLGA-Based Magnetic Nanoparticles Containing Amoxicilin. Bull. Korean Chem. Soc. 2012, 33, 3225–3232. DOI: 10.5012/bkcs.2012.33.10.3225.
  • Salehi, R.; Rasouli, S.; Hamishehkar, H. Smart Thermo/pH Responsive Magnetic Nanogels for the Simultaneous Delivery of Doxorubicin and Methotrexate. Int. J. Pharm. 2015, 487, 274–284. DOI: 10.1016/j.ijpharm.2015.04.051.
  • Li, Y. Q.; Fu, S. Y.; Mai, Y. W. Preparation and Characterization of Transparent ZnO/Epoxy Nanocomposites with High-UV Shielding Efficiency. Polymer (Guildf) 2006, 47, 2127–2132. DOI: 10.1016/j.polymer.2006.01.071.
  • Abbasian, M.; Aali, N. K.; Shoja, S. E. Synthesis of Poly (Methyl Methacrylate)/Zinc Oxide Nanocomposite with Core-Shell Morphology by Atom Transfer Radical Polymerization. J. Macromol. Sci. Part A 2013, 50, 966–975. DOI: 10.1080/10601325.2013.813814.
  • Sadr, S. H.; Davaran, S.; Alizadeh, E.; Salehi, R.; Ramazani, A. PLA-Based Magnetic Nanoparticles Armed with Thermo/pH Responsive Polymers for Combination Cancer Chemotherapy. J. Drug Deliv. Sci. Technol. 2018, 45, 240–254. DOI: 10.1016/j.jddst.2018.03.019.
  • Hosseini Sadr, S.; Davaran, S.; Alizadeh, E.; Salehi, R.; Ramazani, A. Enhanced Anticancer Potency by Thermo/pH-Responsive PCL-Based Magnetic Nanoparticles. J. Biomater. Sci. Polym. Ed. 2018, 29, 277–308. DOI: 10.1080/09205063.2017.1414482.
  • Sofla, S. F. I.; Abbasian, M.; Mirzaei, M. Synthesis and Micellar Characterization of Novel pH-Sensitive Thiol-Ended Triblock Copolymer via Combination of RAFT and ROP Processes. Int. J. Polym. Mater. Polym. Biomater 2018, 68, 297–307.
  • Zeynabad, F. B.; Salehi, R.; Mahkam, M. Design of pH-Responsive Antimicrobial Nanocomposite as Dual Drug Delivery System for Tumor Therapy. Appl. Clay Sci. 2017, 141, 23–35. DOI: 10.1016/j.clay.2017.02.015.
  • Rahimi, M.; Safa, K. D.; Salehi, R. o-Delivery of Doxorubicin and Methotrexate by Dendritic Chitosan-g-mPEG as a Magnetic Nanocarrier for Multi-Drug Delivery in Combination Chemotherapy. Polym. Chem. 2017, 8, 7333–7350. DOI: 10.1039/C7PY01701D.
  • Ahmadkhani, L.; Akbarzadeh, A.; Abbasian, M. Development and Characterization Dual Responsive Magnetic Nanocomposites for Targeted Drug Delivery Systems. Artif. Cells Nanomed. Biotechnol. 2017, 46, 1052–1063.
  • Bhattacharya, D.; Behera, B.; Sahu, S. K.; Ananthakrishnan, R.; Maiti, T. K.; Pramanik, P. Design of Dual Stimuli Responsive Polymer Modified Magnetic Nanoparticles for Targeted anti-Cancer Drug Delivery and Enhanced MR Imaging. New J. Chem. 2016, 40, 545–557. DOI: 10.1039/C5NJ02504D.
  • Abbasian, M.; Pakzad, M.; Nazari, K. Synthesis of Cellulose-graft-Polychloromethylstyrene-graft-Polyacrylonitrile Terpolymer/Organoclay Bionanocomposite by Metal Catalyzed Living Radical Polymerization and Solvent Blending Method. Polym. Plastics Technol. Eng. 2017, 56, 857–865. DOI: 10.1080/03602559.2016.1146905.
  • Abbasian, M.; Niroomand, P.; Jaymand, M. Cellulose/Polyaniline Derivatives Nanocomposites: Synthesis and Their Performance in Removal of Anionic Dyes from Simulated Industrial Effluents. J. Appl. Polym. Sci. 2017, 134, 45352. ‏ DOI: 10.1002/app.45352.
  • Liu, C.; Guo, J.; Yang, W.; Hu, J.; Wang, C.; Fu, S. Magnetic Mesoporous Silica Microspheres with Thermo-Sensitive Polymer Shell for Controlled Drug Release. J. Mater. Chem. 2009, 19, 4764–4770. DOI: 10.1039/b902985k.
  • Lin, J.; Chen, H.; Ji, Y.; Zhang, Y. Functionally Modified Monodisperse Core-Shell Silica Nanoparticles: Silane Coupling Agent as Capping and Size Tuning Agent. Colloids Surf. A Physicochem. Eng. Asp. 2012, 411, 111–121. DOI: 10.1016/j.colsurfa.2012.06.047.
  • Rahimi, M.; Shafiei-Irannejad, V.; Safa, K. D.; Salehi, R. Multi-Branched Ionic Liquid-Chitosan as a Smart and Biocompatible Nanovehicle for Combination Chemotherapy with Stealth and Targeted Properties. Carbohydr. Polym. 2018, 196, 299–312. DOI: 10.1016/j.carbpol.2018.05.059.
  • Zakerzadeh, E.; Salehi, R.; Mahkam, M. Synthesis of New Antibacterial Cubane-Based Nanocomposite and Its Application in Combination Cancer Therapy. Anticancer Agents Med. Chem. 2018, 17, 1898–1914.
  • Salehi, R.; Hamishehkar, H.; Eskandani, M.; Mahkam, M.; Davaran, S. Development of Dual Responsive Nanocomposite for Simultaneous Delivery of Anticancer Drugs. J. Drug Target 2014, 22, 327–342.
  • Nodiţi, G.; Fulias, A.; Ledeti, I. Methotrexate as Coordination Complex Ligand: Study of Interaction with Zn(II). Digest J. Nanomater. Biostruct. 2014, 9, 251–260.
  • Abbasian, M.; Mahmoodzadeh, F.; Khalili, A.; Salehi, R. Chemotherapy of Breast Cancer Cells Using Novel pH-Responsive Cellulose-Based Nanocomposites. Adv. Pharm. Bull. 2019, 9, 122–131. DOI: 10.15171/apb.2019.015.
  • Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R. K. Interstitial pH and pO2 Gradients in Solid Tumors in Vivo: high-Resolution Measurements Reveal a Lack of Correlation. Nat. Med. 1997, 3, 177–182. DOI: 10.1038/nm0297-177.
  • Lee, E. S.; Na, K.; Bae, Y. H. Doxorubicin Loaded pH-Sensitive Polymeric Micelles for Reversal of Resistant MCF-7 Tumor. J. Control. Release 2005, 103, 405–418. DOI: 10.1016/j.jconrel.2004.12.018.
  • Liu, Y.; Cao, X.; Luo, M.; Le, Z.; Xu, W. Self-Assembled Micellar Nanoparticles of a Novel Star Copolymer for Thermo and pH Dual-Responsive Drug Release. J. Colloid. Interface Sci. 2009, 329, 244–252. DOI: 10.1016/j.jcis.2008.10.007.
  • Tannock, I. F.; Rotin, D. Acid pH in Tumors and Its Potential for Therapeutic Exploitation. Cancer Res. 1989, 49, 4373–4384.
  • Zhang, L.; Guo, R.; Yang, M.; Jiang, X.; Liu, B. Thermo and pH Dual-Responsive Nanoparticles for anti-Cancer Drug Delivery. Adv. Mater. 2007, 19, 2988–2992. DOI: 10.1002/adma.200601817.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.