55
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Nanoclay reinforced chitosan nanocomposites—state-of-the-art and technological imprints

Pages 376-397 | Received 06 Mar 2024, Accepted 07 Apr 2024, Published online: 18 Apr 2024

References

  • Elghaoui, H.; Hrichi, S.; Raihane, M.; Arous, M.; Bouharras, F. Z.; Verdejo, R.; Beniazza, R.; Ilsouk, M.; Lopez-Manchado, M. A.; Lahcini, M. Structure, Thermal and Mechanical Properties of Poly (ε-Caprolactone)/Organomodified Clay Bionanocomposites Prepared in Open Air by in Situ Polymerization. J. Macromol. Sci. A 2020, 57, 865–875. DOI: 10.1080/10601325.2020.1800412.
  • Gürses, A.; Güneş, K. Preparation of Polyethylene Clay Composites via Melt Intercalation Using Hydrophobic and Superhydrophobic Organoclays and Comparison of Their Textural, Mechanical and Thermal Properties. Polymers 2024, 16, 272. DOI: 10.3390/polym16020272.
  • Necolau, M. I.; Bălănucă, B.; Frone, A. N.; Radu, IN.; Grădişteanu-Pîrcălăbioru, G.; Damian, C. M. Combined Thermomechanical Effect of Graphene Oxide and Montmorillonite on Biobased Epoxy Network Formation for Coatings. ACS Omega 2024, 9, 8297–8307. DOI: 10.1021/acsomega.3c09059.
  • Idumah, C. I.; Okonkwo, U.; Obele, C. Recently Emerging Advancements in Montmorillonite Polymeric Nanoarchitectures and Applications. Clean. Mater. 2022, 4, 100071. DOI: 10.1016/j.clema.2022.100071.
  • Ejeta, L. O. Nanoclay/Organic Filler-Reinforced Polymeric Hybrid Composites as Promising Materials for Building, Automotive, and Construction Applications-A State-of-the-Art Review. Compos. Interfaces 2023, 30, 1363–1386. DOI: 10.1080/09276440.2023.2220217.
  • Tripathi, M.; Singh, B. Synthesis of Green Nanocomposite Material for Engineering Application. In Sustainable Nanotechnology for Environmental Remediation. Elsevier: Amsterdam, 2022, pp 135–157.
  • Shokrani, H.; Shokrani, A.; Jouyandeh, M.; Seidi, F.; Gholami, F.; Kar, S.; Munir, M. T.; Kowalkowska-Zedler, D.; Zarrintaj, P.; Rabiee, N.; Saeb, M. R. Green Polymer Nanocomposites for Skin Tissue Engineering. ACS Appl. Bio. Mater. 2022, 5, 2107–2121. DOI: 10.1021/acsabm.2c00313.
  • Zeshan, M.; Amjed, N.; Ashraf, H.; Farooq, A.; Akram, N.; Zia, K. M. A Review on the Application of Chitosan-Based Polymers in Liver Tissue Engineering. Int. J. Biol. Macromol. 2024, 262, 129350. DOI: 10.1016/j.ijbiomac.2024.129350.
  • Shahid-Ul-Islam; Butola, B. S. Recent Advances in Chitosan Polysaccharide and Its Derivatives in Antimicrobial Modification of Textile Materials. Int J. Biol. Macromol. 2018, 121, 905–912. DOI: 10.1016/j.ijbiomac.2018.10.102.
  • Safdar, R.; Omar, A. A.; Arunagiri, A.; Regupathi, I.; Thanabalan, M. Potential of Chitosan and Its Derivatives for Controlled Drug Release Applications–A Review. J. Drug Delivery Sci. Technol. 2018, 49, 642–659. DOI: 10.1016/j.jddst.2018.10.020.
  • Kurniasih, M.; Dewi, R. S.; Purwati, P.; Hermawan, D.; Aboul-Enein, H. Y. Synthesis, Characterization and Antifungal Activity of N-Methyl Chitosan and Its Application on the Gauze. CBC 2018, 14, 347–356. DOI: 10.2174/1573407213666170420171005.
  • Abere, D.; Oyatogun, G.; Oluwasegun, K.; Ayodele, T.; Ajayi, S.; Ohwoekevwo, J.; Adejo, O. Synthesis and Characterization of Alumina-ChitosanHydroxyapatite Biocomposites for Load Bearing Application. Eur. Sci. J. 2018, 14, 145.
  • Rajesh, R.; Ravichandran, Y. D.; Nambi Raj, N. A.; Senthilkumar, N. Development of a Biodegradable Composite (Hydroxyapatite-Chitosan-Coir Pith) as a Packing Material. Polym. Plast. Technol. Eng. 2014, 53, 1105–1110. DOI: 10.1080/03602559.2014.886075.
  • Naskar, S.; Sharma, S.; Kuotsu, K. Chitosan-Based Nanoparticles: An Overview of Biomedical Applications and Its Preparation. J. Drug Deliv. Sci. Technol. 2018, 49, 66–81. DOI: 10.1016/j.jddst.2018.10.022.
  • Başargan, T.; Nasün-Saygılı, G. Spray-Dried Mesoporous Hydroxyapatite–Chitosan Biocomposites. Polym. Plast. Technol. Eng. 2015, 54, 1172–1183. DOI: 10.1080/03602559.2014.1003235.
  • Triana-Guzmán, V. L.; Ruiz-Cruz, Y.; Romero-Peñaloza, E. L.; Zuluaga-Corrales, H. F.; Chaur-Valencia, M. N. New Chitosan-Imine Derivatives: From Green Chemistry to Removal of Heavy Metals from Water. Revista Facultad de Ingenieria Universidad de Antioquia 2018, 89, 34–43.
  • Fayomi, O.; Akande, I. Corrosion Protection Effect of Chitosan on the Performance Characteristics of A6063 Alloy. J. Bio- Tribo-Corr. 2018, 4, 73.
  • Mennas, N.; Lahreche, S.; Chouli, F.; Sabantina, L.; Benyoucef, A. Adsorption of Methylene Blue Dye by Cetyltrimethylammonium Bromide Intercalated Polyaniline-Functionalized Montmorillonite Clay Nanocomposite: Kinetics, Isotherms, and Mechanism Study. Polymers 2023, 15, 3518. DOI: 10.3390/polym15173518.
  • Kausar, A.; Ahmad, I.; Maaza, M.; Eisa, M. State-of-the-Art Nanoclay Reinforcement in Green Polymeric Nanocomposite: From Design to New Opportunities. Minerals 2022, 12, 1495. DOI: 10.3390/min12121495.
  • Kausar, A.; Ahmad, I.; Aldaghri, O.; Ibnaouf, K. H.; Eisa, M. Nanoclay-Reinforced Nanocomposite Nanofibers—Fundamentals and State-of-the-Art Developments. Minerals 2023, 13, 817. DOI: 10.3390/min13060817.
  • Daikh, S.; Ouis, D.; Benyoucef, A.; Mouffok, B. Equilibrium, Kinetic and Thermodynamic Studies for Evaluation of Adsorption Capacity of a New Potential Hybrid Adsorbent Based on Polyaniline and Chitosan for Acetaminophen. Chem. Phys. Lett. 2022, 798, 139565. DOI: 10.1016/j.cplett.2022.139565.
  • Zanini, N. C.; Ferreira, R. R.; Barbosa, R. F.; de Souza, A. G.; Camani, P. H.; Oliveira, S. A.; Mulinari, D. R.; Rosa, D. S. Two Different Routes to Prepare Porous Biodegradable Composite Membranes Containing Nanoclay. J. Appl. Polym. Sci. 2023, 140, e54630.
  • Wu, Q.; Liao, J.; Yang, H. Recent Advances in Kaolinite Nanoclay as Drug Carrier for Bioapplications: A Review. Adv. Sci. 2023, 10, 2300672. DOI: 10.1002/advs.202300672.
  • Shunmugasamy, V. C.; Xiang, C.; Gupta, N. Clay/polymer nanocomposites: Processing, properties, and applications. In Hybrid and Hierarchical Composite Materials. Springer: Cham, 2015, pp 161–200.
  • Mousavi, M.; Fini, E. H.; Hung, A. M. Underlying Molecular Interactions between Sodium Montmorillonite Clay and Acidic Bitumen. J. Phys. Chem. C 2019, 123, 15513–15522. DOI: 10.1021/acs.jpcc.9b01960.
  • Sudhakar, P.; Rao, R.; Dave, H.; Vasveliya, V. Clays and Their Polymer Nanocomposites. In Clay Composites: Environmental Applications. Springer: Cham, 2023, pp 319–340.
  • Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A Review of the Synthesis and Applications of Polymer–Nanoclay Composites. Appl. Sci. 2018, 8, 1696. DOI: 10.3390/app8091696.
  • Mazloomi, F.; Jalali, M. Effects of Vermiculite, Nanoclay and Zeolite on Ammonium Transport through Saturated Sandy Loam Soil: Column Experiments and Modeling Approaches. Catena 2019, 176, 170–180. DOI: 10.1016/j.catena.2019.01.014.
  • Bokobza, L. Elastomer Nanocomposites: Effect of Filler–Matrix and Filler–Filler Interactions. Polymers 2023, 15, 2900. DOI: 10.3390/polym15132900.
  • Sabir, F.; Kanwal, H.; Laraib, U.; Simge, E. Functionalized Nanoparticles-Based Polymer Nanocomposites: Synthesis, Characterizations, and Biodegradability Aspects. In Biodegradable and Biocompatible Polymer Nanocomposites. Elsevier: Amsterdam, 2023, pp 205–240.
  • Wypych, F.; Bergaya, F.; Schoonheydt, R. A. From Polymers to Clay Polymer Nanocomposites’: ‘Developments in Clay Science. Elsevier: Amsterdam, 2018, pp 331–359.
  • Motawie, A.; Madany, M.; El-Dakrory, A.; Osman, H.; Ismail, E.; Badr, M.; El-Komy, D.; Abulyazied, D. Physico-Chemical Characteristics of Nano-Organo Bentonite Prepared Using Different Organo-Modifiers. Egypt. J. Pet. 2014, 23, 331–338. DOI: 10.1016/j.ejpe.2014.08.009.
  • Zawrah, M.; Khattab, R.; Saad, E.; Gado, R. Effect of Surfactant Types and Their Concentration on the Structural Characteristics of Nanoclay. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2014, 122, 616–623. DOI: 10.1016/j.saa.2013.11.076.
  • Misaelides, P. Clay Minerals and Zeolites for Radioactive Waste Immobilization and Containment: A Concise Verview. In Modified Clay and Zeolite Nanocomposite Materials. Elsevier: Amsterdam, 2019, pp 243–274.
  • Thakur, V.; Satapathy, B. K. Robust Tear-Resistant Blown Nanocomposite Films for Barrier Packaging: Role of Clay Platelet Thickness in Tear Mechanics and Barrier Performances. ACS Appl. Polym. Mater. 2023, 5, 6529–6539. DOI: 10.1021/acsapm.3c01099.
  • Peramune, D.; Peduruhewa, P.; Hewawardhana, S.; Perera, W. Y.; Sandaruwan, H.; Manatunga, D. C.; Dassanayake, R. S. Enriched Clay-Polymer Composites and Their Applications. In Clay Composites: Environmental Applications. Springer: Cham, 2023, pp 279–295.
  • Payandehpeyman, J.; Mazaheri, M. Geometrical and Physical Effects of Nanofillers on Percolation and Electrical Conductivity of Polymer Carbon-Based Nanocomposites: A General Micro-Mechanical Model. Soft Matter. 2023, 19, 530–539. DOI: 10.1039/d2sm01168a.
  • Silori, G. K.; Thoka, S.; Ho, K.-C. Morphological Features of SiO2 Nanofillers Address Poor Stability Issue in Gel Polymer Electrolyte-Based Electrochromic Devices. ACS Appl. Mater. Interfaces. 2023, 15, 25791–25805. DOI: 10.1021/acsami.3c04685.
  • Tullio, S.; Chalcraft, D. Converting Natural Nanoclay into Modified Nanoclay Augments the Toxic Effect of Natural Nanoclay on Aquatic Invertebrates. Ecotoxicol. Environ. Saf. 2020, 197, 110602. DOI: 10.1016/j.ecoenv.2020.110602.
  • Aghdam, A. A.; Niaki, M. H.; Sakkaki, M. Effect of Basalt Fibers on Fracture Properties of Nanoclay Reinforced Polymer Concrete after Exposure to Elevated Temperatures. J. Build. Eng. 2023, 76, 107329. DOI: 10.1016/j.jobe.2023.107329.
  • Barmouz, M.; Seyfi, J.; Givi, M. K. B.; Hejazi, I.; Davachi, S. M. A Novel Approach for Producing Polymer Nanocomposites by In-Situ Dispersion of Clay Particles via Friction Stir Processing. Mater. Sci. Eng. A 2011, 528, 3003–3006. DOI: 10.1016/j.msea.2010.12.083.
  • Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O. Swelling Behavior of Montmorillonite Cation Exchanged for ω-Amino Acids by∊-Caprolactam. J. Mater. Res. 1993, 8, 1174–1178. DOI: 10.1557/JMR.1993.1174.
  • Omanović-Mikličanin, E.; Badnjević, A.; Kazlagić, A.; Hajlovac, M. Nanocomposites: A Brief Review. Health Technol. 2020, 10, 51–59. DOI: 10.1007/s12553-019-00380-x.
  • Motaung, T. E.; Linganiso, L. Z. Critical Review on Agrowaste Cellulose Applications for Biopolymers. Int. J. Plast. Technol. 2018, 22, 185–216. DOI: 10.1007/s12588-018-9219-6.
  • Gul, S.; Kausar, A.; Muhammad, B.; Jabeen, S. Research Progress on Properties and Applications of Polymer/Clay Nanocomposite. Polym. Plast. Technol. Eng. 2016, 55, 684–703. DOI: 10.1080/03602559.2015.1098699.
  • Kiliaris, P.; Papaspyrides, C. Polymer/Layered Silicate (Clay) Nanocomposites: An Overview of Flame Retardancy. Prog. Polym. Sci. 2010, 35, 902–958. DOI: 10.1016/j.progpolymsci.2010.03.001.
  • Boruah, J. S.; Chowdhury, D. Advances in Carbon Nanomaterial–Clay Nanocomposites for Diverse Applications. Minerals 2022, 13, 26. DOI: 10.3390/min13010026.
  • Mu, B.; Wang, A. Fabrication and Applications of Carbon/Clay Mineral Nanocomposites. In Nanomaterials from Clay Minerals. Elsevier: Amsterdam, 2019, pp 537–587.
  • Hall, L. D.; Yalpani, M. Formation of Branched-Chain, Soluble Polysaccharides from Chitosan. J. Chem. Soc. Chem. Commun. 1980, 23, 1153–1154. DOI: 10.1039/c39800001153.
  • Carrera, C.; Bengoechea, C.; Carrillo, F.; Calero, N. Effect of Deacetylation Degree and Molecular Weight on Surface Properties of Chitosan Obtained from Biowastes. Food Hydrocoll. 2023, 137, 108383. DOI: 10.1016/j.foodhyd.2022.108383.
  • Dinculescu, D. D.; Apetroaei, M. R.; Gîjiu, C. L.; Anton, M.; Enache, L.; Schröder, V.; Isopescu, R.; Rău, I. Simultaneous Optimization of Deacetylation Degree and Molar Mass of Chitosan from Shrimp Waste. Polymers 2024, 16, 170. DOI: 10.3390/polym16020170.
  • Agrawal, P.; Strijkers, G. J.; Nicolay, K. Chitosan-Based Systems for Molecular Imaging. Adv. Drug Deliv. Rev. 2010, 62, 42–58. DOI: 10.1016/j.addr.2009.09.007.
  • Azmana, M.; Mahmood, S.; Nayeem, A.; Arifin, M. A. B. Chitosan-Based Bionanocomposites: Synthesis, Properties, and Applications. In Advances in Bionanocomposites. Elsevier: Amsterdam, 2024, pp 133–168.
  • Hamed, I.; Özogul, F.; Regenstein, J. M. Industrial Applications of Crustacean by-Products (Chitin, Chitosan, and Chitooligosaccharides): A Review. Trends Food Sci. Technol. 2016, 48, 40–50. DOI: 10.1016/j.tifs.2015.11.007.
  • de Oliveira E Silva Guerrero, A.; da Silva, T. N.; Cardoso, S. A.; da Silva, F. F. F.; de Carvalho Patricio, B. F.; Gonçalves, R. P.; Weissmuller, G.; El-Cheikh, M. C.; Carneiro, K.; Barradas, T. N. Chitosan-Based Films Filled with Nanoencapsulated Essential Oil: Physical-Chemical Characterization and Enhanced Wound Healing Activity. Int. J. Biol. Macromol. 2024, 261, 129049. DOI: 10.1016/j.ijbiomac.2023.129049.
  • Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. DOI: 10.1016/j.progpolymsci.2006.06.001.
  • H P S, A. K.; Saurabh, C. K.; A S, A.; Nurul Fazita, M. R.; Syakir, M. I.; Davoudpour, Y.; Rafatullah, M.; Abdullah, C. K.; M Haafiz, M. K.; Dungani, R. A Review on Chitosan-Cellulose Blends and Nanocellulose Reinforced Chitosan Biocomposites: Properties and Their Applications. Carbohydr. Polym. 2016, 150, 216–226. DOI: 10.1016/j.carbpol.2016.05.028.
  • Jao, Y.-T.; Yang, P.-K.; Chiu, C.-M.; Lin, Y.-J.; Chen, S.-W.; Choi, D.; Lin, Z.-H. A Textile-Based Triboelectric Nanogenerator with Humidity-Resistant Output Characteristic and Its Applications in Self-Powered Healthcare Sensors. Nano Energy 2018, 50, 513–520. DOI: 10.1016/j.nanoen.2018.05.071.
  • Manzoor, K.; Ahmad, S.; Soundarajan, A.; Ikram, S.; Ahmed, S. Chitosan Based Nanomaterials for Biomedical Applications. In Handbook of Nanomaterials for Industrial Applications. Elsevier: Amsterdam, 2018, pp 543–562.
  • Chauhan, A.; Alam, M. A.; Kaur, A.; Malviya, R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr. Drug Targets 2023, 24, 13–40. DOI: 10.2174/1389450123666221011100235.
  • Pellis, A.; Guebitz, G. M.; Nyanhongo, G. S. Chitosan: Sources, Processing and Modification Techniques. Gels 2022, 8, 393. DOI: 10.3390/gels8070393.
  • Futalan, C. M.; Huang, Y.-S.; Chen, J.-H.; Wan, M.-W. Arsenate Removal from Aqueous Solution Using Chitosan-Coated Bentonite, Chitosan-Coated Kaolinite and Chitosan-Coated Sand: Parametric, Isotherm and Thermodynamic Studies. Water Sci. Technol. 2018, 78, 676–689. DOI: 10.2166/wst.2018.339.
  • Missaoui, B.; Krafft, J.-M.; Hamdi, N.; Saliba, V.; BenJemaa, J. M.; Boujday, S.; Bergaoui, L. Valorizing Industrial Tobacco Wastes within Natural Clays and Chitosan Nanocomposites for an Ecofriendly Insecticide. Waste Manag. 2023, 168, 146–155. DOI: 10.1016/j.wasman.2023.05.051.
  • Barbi, S.; Taurino, C.; La China, S.; Anguluri, K.; Gullo, M.; Montorsi, M. Mechanical and Structural Properties of Environmental Green Composites Based on Functionalized Bacterial Cellulose. Cellulose 2021, 28, 1431–1442. DOI: 10.1007/s10570-020-03602-y.
  • Zabihi, O.; Ahmadi, M.; Naebe, M. Self-Assembly of Quaternized Chitosan Nanoparticles within Nanoclay Layers for Enhancement of Interfacial Properties in Toughened Polymer Nanocomposites. Mater. Des. 2017, 119, 277–289. DOI: 10.1016/j.matdes.2017.01.079.
  • Butnaru, E.; Stoleru, E.; Brebu, M. A.; Darie-Nita, R. N.; Bargan, A.; Vasile, C. Chitosan-Based Bionanocomposite Films Prepared by Emulsion Technique for Food Preservation. Materials 2019, 12, 373. DOI: 10.3390/ma12030373.
  • Benucci, I.; Lombardelli, C.; Cacciotti, I.; Esti, M. Papain Covalently Immobilized on Chitosan–Clay Nanocomposite Films: Application in Synthetic and Real White Wine. Nanomaterials 2020, 10, 1622. DOI: 10.3390/nano10091622.
  • Xu, P.; Erdem, T.; Eiser, E. A Facile Approach to Prepare Self-Assembled, Nacre-Inspired Clay/Polymer Nano-Composites. arXiv preprint arXiv:1808.03972, 2018.
  • Kerakra, S. Preparation, Fabrication and Characterization of Reinforced Frame Polymer/Clay Nanocomposites. 2018. https://theses-algerie.com/1304740221999256/these-de-doctorat/universite-ferhat-abbas---setif-1/preparation-fabrication-and-characterization-of-reinforced-frame-polymer-clay-nanocomposites
  • Luecha, W.; Magaraphan, R. A Novel and Facile Nanoclay Aerogel Masterbatch toward Exfoliated Polymer-Clay Nanocomposites through a Melt-Mixing Process. Adv. Mater. Sci. Eng. 2018, 2018, 1–14. DOI: 10.1155/2018/8106189.
  • Zhang, J.; Wang, L.; Wang, A. Preparation and Properties of Chitosan-g-Poly (Acrylic Acid)/Montmorillonite Superabsorbent Nanocomposite via in Situ Intercalative Polymerization. Ind. Eng. Chem. Res. 2007, 46, 2497–2502. DOI: 10.1021/ie061385i.
  • Wu, T.-M.; Wu, C.-Y. Biodegradable Poly (Lactic Acid)/Chitosan-Modified Montmorillonite Nanocomposites: Preparation and Characterization. Polym. Degrad. Stab. 2006, 91, 2198–2204. DOI: 10.1016/j.polymdegradstab.2006.01.004.
  • Nagarpita, M.; Roy, P.; Shruthi, S.; Sailaja, R. Synthesis and Swelling Characteristics of Chitosan and CMC Grafted Sodium Acrylate-co-Acrylamide Using Modified Nanoclay and Examining Its Efficacy for Removal of Dyes. Int. J. Biol. Macromol. 2017, 102, 1226–1240. DOI: 10.1016/j.ijbiomac.2017.04.099.
  • Chen, P.; Xie, F.; Tang, F.; McNally, T. Influence of Plasticiser Type and Nanoclay on the Properties of Chitosan-Based Materials. Eur. Polym. J. 2021, 144, 110225. DOI: 10.1016/j.eurpolymj.2020.110225.
  • Khan, M.; Chowdhury, M.; Rahman, M. Biobased Amphoteric Aerogel Derived from Amine-Modified Clay-Enriched Chitosan/Alginate for Adsorption of Organic Dyes and Chromium (VI) Ions from Aqueous Solution. Mater. Today Sustainability 2021, 13, 100077. DOI: 10.1016/j.mtsust.2021.100077.
  • Ravichandran, K.; Praseetha, P. K.; Arun, T.; Gobalakrishnan, S. Synthesis of Nanocomposites. In Synthesis of Inorganic Nanomaterials. Elsevier: Amsterdam, 2018, pp 141–168.
  • Chai, Y.; Tian, X.-Y.; Zheng, X.-P.; Du, Y.-P.; Zhang, Y.-C.; Zheng, Y.-Z. An Effective Approach for Chitosan Conversion to 5-Hydroxymethylfurfural Catalyzed by Bio-Based Organic Acid with Ionic Liquids Additive. Renewable Energy 2024, 221, 119759. DOI: 10.1016/j.renene.2023.119759.
  • Prashanth, K. H.; Tharanathan, R. Chitin/Chitosan: Modifications and Their Unlimited Application Potential—An Overview. Trends Food Sci. Technol. 2007, 18, 117–131. DOI: 10.1016/j.tifs.2006.10.022.
  • Hadjianfar, M.; Semnani, D.; Varshosaz, J. Polycaprolactone/Chitosan Blend Nanofibers Loaded by 5‐Fluorouracil: An Approach to Anticancer Drug Delivery System. Polym. Adv. Techs. 2018, 29, 2972–2981. DOI: 10.1002/pat.4417.
  • Srinivasa, P.; Ramesh, M.; Tharanathan, R. Effect of Plasticizers and Fatty Acids on Mechanical and Permeability Characteristics of Chitosan Films. Food Hydrocoll. 2007, 21, 1113–1122. DOI: 10.1016/j.foodhyd.2006.08.005.
  • Fadli, A. L.; Hanifah, A.; Fitriani, A.; Rakhmawati, A.; Dwandaru, W. S. B. Application of silver-chitosan nanoparticles as a prevention and eradication of nosocomial infections due to Staphylococcus aureus sp. In AIP Conference Proceedings, 2018; Vol. 2014, AIP Publishing, Surakarta, Indonesia.
  • Sharma, B.; Malik, P.; Jain, P. Biopolymer Reinforced Nanocomposites: A Comprehensive Review. Mater. Today Commun. 2018, 16, 353–363. DOI: 10.1016/j.mtcomm.2018.07.004.
  • Kasai, D.; Chougale, R.; Masti, S.; Narasgoudar, S. Thermal degradation of ternary blend films containing PVA/chitosan/vanillin; In AIP Conference Proceedings. 2018; Vol. 1953; AIP Publishing. Bikaner, India.
  • Isa, S. A. M.; Mohamed, R.; Tahir, H.; Mohamed, R. R. R; Ahmad, R. Tensile and antimicrobial properties of linear low density polyethylene (LLDPE) and chitosan blend. In AIP Conference Proceedings. 2018; Vol. 1985. AIP Publishing. Selangor, Malaysia.
  • Tang, Q.; Huang, G. Preparation and Applications of Glyconanoparticles. Int. J. Biol. Macromol. 2018, 116, 927–930. DOI: 10.1016/j.ijbiomac.2018.05.103.
  • Mir, S.; Asghar, B.; Khan, A. K.; Rashid, R.; Shaikh, A. J.; Khan, R. A.; Murtaza, G. The Effects of Nanoclay on Thermal, Mechanical and Rheological Properties of LLDPE/Chitosan Blend. J. Polym. Eng. 2017, 37, 143–149. DOI: 10.1515/polyeng-2015-0350.
  • Morariu, S.; Brunchi, C.-E.; Honciuc, M.; Iftime, M.-M. Development of Hybrid Materials Based on Chitosan, Poly (Ethylene Glycol) and Laponite® RD: Effect of Clay Concentration. Polymers 2023, 15, 841. DOI: 10.3390/polym15040841.
  • Giannakas, A.; Vlacha, M.; Salmas, C.; Leontiou, A.; Katapodis, P.; Stamatis, H.; Barkoula, N.-M.; Ladavos, A. Preparation, Characterization, Mechanical, Barrier and Antimicrobial Properties of Chitosan/PVOH/Clay Nanocomposites. Carbohydr. Polym. 2016, 140, 408–415. DOI: 10.1016/j.carbpol.2015.12.072.
  • Llanos, J. H.; Avezum, L.; Dacanal, G. C.; Tadini, C. C. Increase in the Physical Performance of Nanostructured Starch/Chitosan Blends with Montmorillonite. Colloid Polym. Sci. 2021, 299, 1901–1915. DOI: 10.1007/s00396-021-04907-5.
  • Jha, P. Functional Properties of Starch-Chitosan Blend Bionanocomposite Films for Food Packaging: The Influence of Amylose-Amylopectin Ratios. J. Food Sci. Technol. 2021, 58, 3368–3378. DOI: 10.1007/s13197-020-04908-2.
  • Kononova, S. V.; Gubanova, G. N.; Korytkova, E. N.; Sapegin, D. A.; Setnickova, K.; Petrychkovych, R.; Uchytil, P. Polymer Nanocomposite Membranes. Appl. Sci. 2018, 8, 1181. DOI: 10.3390/app8071181.
  • Saleh, T. A.; Mustaqeem, M.; Khaled, M. Water Treatment Technologies in Removing Heavy Metal Ions from Wastewater: A Review. Environ. Nanotechnol. Monitor. Manage. 2022, 17, 100617. DOI: 10.1016/j.enmm.2021.100617.
  • Sundaram, E. S.; Dharmalingam, P. Synthesis and Characterization of Magnetized Clay Polymer Nanocomposites and Its Adsorptive Behaviour in Removal of Cr (VI) from Aqueous Phase. Asian J. Chem. 2018, 30, 667–672. DOI: 10.14233/ajchem.2018.21100.
  • Wang, Y.-M.; Duan, L.; Sun, Y.; Hu, N.; Gao, J.-Y.; Wang, H.; Xie, X.-M. Adsorptive Removal of Cr (VI) from Aqueous Solutions with an Effective Adsorbent: Cross-Linked Chitosan/Montmorillonite Nanocomposites in the Presence of Hydroxy-Aluminum Oligomeric Cations. Desalin. Water Treat. 2016, 57, 10767–10775. DOI: 10.1080/19443994.2015.1040465.
  • Kinoti, I. K.; Karanja, E. M.; Nthiga, E. W.; M’thiruaine, C. M.; Marangu, J. M. Review of Clay-Based Nanocomposites as Adsorbents for the Removal of Heavy Metals. J. Chem. 2022, 2022, 1–25. 2022 DOI: 10.1155/2022/7504626.
  • Kumararaja, P.; Manjaiah, K.; Datta, S.; Ahammed Shabeer, T.; Sarkar, B. Chitosan-g-Poly (Acrylic Acid)-Bentonite Composite: A Potential Immobilizing Agent of Heavy Metals in Soil. Cellulose 2018, 25, 3985–3999. DOI: 10.1007/s10570-018-1828-x.
  • Song, J.; Huang, G.; Han, D.; Hou, Q.; Gan, L.; Zhang, M. A Review of Reactive Media within Permeable Reactive Barriers for the Removal of Heavy Metal (Loid) s in Groundwater: Current Status and Future Prospects. J. Cleaner Prod. 2021, 319, 128644. DOI: 10.1016/j.jclepro.2021.128644.
  • Dey, S. C.; Moztahida, M.; Sarker, M.; Ashaduzzaman, M.; Shamsuddin, S. M. pH-Triggered Interfacial Interaction of Kaolinite/Chitosan Nanocomposites with Anionic Azo Dye. J. Compos. Sci. 2019, 3, 39. DOI: 10.3390/jcs3020039.
  • Azzam, E. M.; Eshaq, G.; Rabie, A.; Bakr, A.; Abd-Elaal, A. A.; El Metwally, A.; Tawfik, S. M. Preparation and Characterization of Chitosan-Clay Nanocomposites for the Removal of Cu (II) from Aqueous Solution. Int. J. Biol. Macromol. 2016, 89, 507–517. DOI: 10.1016/j.ijbiomac.2016.05.004.
  • Arabyarmohammadi, H.; Darban, A. K.; Abdollahy, M.; Yong, R.; Ayati, B.; Zirakjou, A.; van der Zee, S. E. Utilization of a Novel Chitosan/Clay/Biochar Nanobiocomposite for Immobilization of Heavy Metals in Acid Soil Environment. J. Polym. Environ. 2018, 26, 2107–2119. DOI: 10.1007/s10924-017-1102-6.
  • Malayoglu, U. Removal of Heavy Metals by Biopolymer (Chitosan)/Nanoclay Composites. Sep. Sci. Technol. 2018, 53, 2741–2749. DOI: 10.1080/01496395.2018.1471506.
  • Ramakoti, I. S.; Panda, A. K.; Gouda, N. A Brief Review on Polymer Nanocomposites: Current Trends and Prospects. J. Polym. Eng. 2023, 43, 651–679. DOI: 10.1515/polyeng-2023-0103.
  • Yang, X.-J.; Zhang, P.; Li, P.; Li, Z.; Xia, W.; Zhang, H.; Di, Z.; Wang, M.; Zhang, H.; Niu, Q. J. Layered Double Hydroxide/Polyacrylamide Nanocomposite Hydrogels: Green Preparation, Rheology and Application in Methyl Orange Removal from Aqueous Solution. J. Mol. Liq. 2019, 280, 128–134. DOI: 10.1016/j.molliq.2019.02.033.
  • Xu, R.; Mao, J.; Peng, N.; Luo, X.; Chang, C. Chitin/Clay Microspheres with Hierarchical Architecture for Highly Efficient Removal of Organic Dyes. Carbohydr. Polym. 2018, 188, 143–150. DOI: 10.1016/j.carbpol.2018.01.073.
  • Bée, A.; Obeid, L.; Mbolantenaina, R.; Welschbillig, M.; Talbot, D. Magnetic Chitosan/Clay Beads: A Magsorbent for the Removal of Cationic Dye from Water. J. Magn. Magn. Mater. 2017, 421, 59–64. DOI: 10.1016/j.jmmm.2016.07.022.
  • Vanamudan, A.; Pamidimukkala, P. Chitosan, Nanoclay and Chitosan–Nanoclay Composite as Adsorbents for Rhodamine-6G and the Resulting Optical Properties. Int. J. Biol. Macromol. 2015, 74, 127–135. DOI: 10.1016/j.ijbiomac.2014.11.009.
  • Hosseini, S. A.; Daneshvar e Asl, S.; Vossoughi, M.; Simchi, A.; Sadrzadeh, M. Green Electrospun Membranes Based on Chitosan/Amino-Functionalized Nanoclay Composite Fibers for Cationic Dye Removal: Synthesis and Kinetic Studies. ACS Omega 2021, 6, 10816–10827. DOI: 10.1021/acsomega.1c00480.
  • Zhang, L.-L.; Zaoui, A.; Sekkal, W. Adsorption Efficiency of Highly Methylene Blue Dye Concentrations with Multilayer Chitosan-Modified Clays for a Precise Nanofiltration Performance of Polluted Water. J. Water Process Eng. 2024, 57, 104651. DOI: 10.1016/j.jwpe.2023.104651.
  • Kordbacheh, F.; Heidari, G. Water Pollutants and Approaches for Their Removal. Mater. Chem. Horizons 2023, 2, 139–153.
  • Unuabonah, E. I.; Ugwuja, C. G.; Omorogie, M. O.; Adewuyi, A.; Oladoja, N. A. Clays for Efficient Disinfection of Bacteria in Water. Appl. Clay Sci. 2018, 151, 211–223. DOI: 10.1016/j.clay.2017.10.005.
  • Han, Y.-S.; Lee, S.-H.; Choi, K. H.; Park, I. Preparation and Characterization of Chitosan–Clay Nanocomposites with Antimicrobial Activity. J. Phys. Chem. Solids 2010, 71, 464–467. DOI: 10.1016/j.jpcs.2009.12.012.
  • Murugesan, S.; Scheibel, T. Chitosan‐Based Nanocomposites for Medical Applications. J. Polym. Sci. 2021, 59, 1610–1642. DOI: 10.1002/pol.20210251.
  • Motshekga, S. C.; Ray, S. S.; Onyango, M. S.; Momba, M. N. Preparation and Antibacterial Activity of Chitosan-Based Nanocomposites Containing Bentonite-Supported Silver and Zinc Oxide Nanoparticles for Water Disinfection. Appl. Clay Sci. 2015, 114, 330–339. DOI: 10.1016/j.clay.2015.06.010.
  • Zhan, Y.; Zeng, W.; Jiang, G.; Wang, Q.; Shi, X.; Zhou, Z.; Deng, H.; Du, Y. Construction of Lysozyme Exfoliated Rectorite‐Based Electrospun Nanofibrous Membranes for Bacterial Inhibition. J. Appl. Polym. Sci. 2015, 132, 41496–41506. DOI: 10.1002/app.41496.
  • Shameli, K.; Ahmad, M. B.; Zargar, M.; Yunus, W. M. Z. W.; Ibrahim, N. A.; Shabanzadeh, P.; Moghaddam, M. G. Synthesis and Characterization of Silver/Montmorillonite/Chitosan Bionanocomposites by Chemical Reduction Method and Their Antibacterial Activity. Int. J. Nanomedicine 2011, 6, 271–284. DOI: 10.2147/IJN.S16043.
  • Manna, S.; Das, P.; Basak, P.; Sharma, A. K.; Singh, V. K.; Patel, R. K.; Pandey, J. K.; Ashokkumar, V.; Pugazhendhi, A. Separation of Pollutants from Aqueous Solution Using Nanoclay and Its Nanocomposites: A Review. Chemosphere 2021, 280, 130961. DOI: 10.1016/j.chemosphere.2021.130961.
  • Kausar, A. Flame Retardant Potential of Clay Nanoparticles. Clay Nanoparticles. Elsevier: Amsterdam, 2020, pp 169–184
  • Malucelli, G. Chitosan-Based Flame-Retardant Polymeric Materials and Their Applications. In Bio-Based Flame-Retardant Technology for Polymeric Materials. Elsevier: Amsterdam, 2022, pp 187–226.
  • Malucelli, G. Flame-Retardant Systems Based on Chitosan and Its Derivatives: State of the Art and Perspectives. Molecules 2020, 25, 4046. DOI: 10.3390/molecules25184046.
  • Laufer, G.; Kirkland, C.; Cain, A. A.; Grunlan, J. C. Clay–Chitosan Nanobrick Walls: Completely Renewable Gas Barrier and Flame-Retardant Nanocoatings. ACS Appl. Mater. Interfaces 2012, 4, 1643–1649. DOI: 10.1021/am2017915.
  • Hassan, M.; Nour, M.; Abdelmonem, Y.; Makhlouf, G.; Abdelkhalik, A. Synergistic Effect of Chitosan-Based Flame Retardant and Modified Clay on the Flammability Properties of LLDPE. Polym. Degrad. Stab. 2016, 133, 8–15. DOI: 10.1016/j.polymdegradstab.2016.07.011.
  • Gomes, L. P.; Andrade, C. T.; Del Aguila, E. M.; Alexander, C.; Paschoalin, V. M. Assessing the Antimicrobial Activity of Chitosan Nanoparticles by Fluorescence-Labeling. Int. J. Biotechnol. Bioeng. 2018, 12, 112–116.
  • Liu, J.; Xiao, J.; Li, F.; Shi, Y.; Li, D.; Huang, Q. Chitosan-Sodium Alginate Nanoparticle as a Delivery System for ε-Polylysine: Preparation, Characterization and Antimicrobial Activity. Food Control 2018, 91, 302–310. DOI: 10.1016/j.foodcont.2018.04.020.
  • Panda, S. Synthesis and Overall Migration Study of Chitosan‐Encapsulated ZnO‐Based ESO Bionanocomposite with Synergistic Antimicrobial Activity for Packaging Purpose. ChemistrySelect 2022, 7, e202201433. DOI: 10.1002/slct.202201433.
  • Qu, B.; Luo, Y. A Review on the Preparation and Characterization of Chitosan-Clay Nanocomposite Films and Coatings for Food Packaging Applications. Carbohydr. Polym. Technol. Appl. 2021, 2, 100102. DOI: 10.1016/j.carpta.2021.100102.
  • Wang, X.; Du, Y.; Yang, J.; Wang, X.; Shi, X.; Hu, Y. Preparation, Characterization and Antimicrobial Activity of Chitosan/Layered Silicate Nanocomposites. Polymer 2006, 47, 6738–6744. DOI: 10.1016/j.polymer.2006.07.026.
  • Sharma, R.; Jafari, S. M.; Sharma, S. Antimicrobial Bio-Nanocomposites and Their Potential Applications in Food Packaging. Food Control 2020, 112, 107086. DOI: 10.1016/j.foodcont.2020.107086.
  • Devi, N.; Dutta, J. Development and in Vitro Characterization of Chitosan/Starch/Halloysite Nanotubes Ternary Nanocomposite Films. Int. J. Biol. Macromol. 2019, 127, 222–231. DOI: 10.1016/j.ijbiomac.2019.01.047.
  • Wang, Y.; Yi, S.; Lu, R.; Sameen, D. E.; Ahmed, S.; Dai, J.; Qin, W.; Li, S.; Liu, Y. Preparation, Characterization, and 3D Printing Verification of Chitosan/Halloysite Nanotubes/Tea Polyphenol Nanocomposite Films. Int. J. Biol. Macromol. 2021, 166, 32–44. DOI: 10.1016/j.ijbiomac.2020.09.253.
  • Cesur, S.; Köroğlu, C.; Yalçın, H. T. Antimicrobial and Biodegradable Food Packaging Applications of Polycaprolactone/Organo Nanoclay/Chitosan Polymeric Composite Films. Vinyl Addit. Technol. 2018, 24, 376–387. DOI: 10.1002/vnl.21607.
  • Lee, M. H.; Kim, S. Y.; Park, H. J. Effect of Halloysite Nanoclay on the Physical, Mechanical, and Antioxidant Properties of Chitosan Films Incorporated with Clove Essential Oil. Food Hydrocoll. 2018, 84, 58–67. DOI: 10.1016/j.foodhyd.2018.05.048.
  • Hong, S.-I.; Rhim, J.-W. Antimicrobial Activity of Organically Modified Nano-Clays. J. Nanosci. Nanotechnol. 2008, 8, 5818–5824. DOI: 10.1166/jnn.2008.248.
  • Winkler, T.; Sass, F.; Duda, G.; Schmidt-Bleek, K. A Review of Biomaterials in Bone Defect Healing, Remaining Shortcomings and Future Opportunities for Bone Tissue Engineering: The Unsolved Challenge. Bone Joint Res. 2018, 7, 232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.
  • Fernandez de Grado, G.; Keller, L.; Idoux-Gillet, Y.; Wagner, Q.; Musset, A.-M.; Benkirane-Jessel, N.; Bornert, F.; Offner, D. Bone Substitutes: A Review of Their Characteristics, Clinical Use, and Perspectives for Large Bone Defects Management. J. Tissue Eng. 2018, 9, 2041731418776819. DOI: 10.1177/2041731418776819.
  • Kozusko, S. D.; Riccio, C.; Goulart, M.; Bumgardner, J.; Jing, X. L.; Konofaos, P. Chitosan as a Bone Scaffold Biomaterial. J. Craniofac. Surg. 2018, 29, 1788–1793. DOI: 10.1097/SCS.0000000000004909.
  • Fourie, J.; Taute, F.; Du Preez, L.; De Beer, D. Chitosan Composite Biomaterials for Bone Tissue Engineering—A Review. Regen. Eng. Transl. Med. 2020, 8, 1–21. DOI: 10.1007/s40883-020-00187-7.
  • Paluszkiewicz, C.; Stodolak, E.; Hasik, M.; Blazewicz, M. FT-IR Study of Montmorillonite–Chitosan Nanocomposite Materials. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2011, 79, 784–788. DOI: 10.1016/j.saa.2010.08.053.
  • Nikpour, M.; Rabiee, S.; Jahanshahi, M. Synthesis and Characterization of Hydroxyapatite/Chitosan Nanocomposite Materials for Medical Engineering Applications. Compos. B Eng. 2012, 43, 1881–1886. DOI: 10.1016/j.compositesb.2012.01.056.
  • Soundarya, S. P.; Menon, A. H.; Chandran, S. V.; Selvamurugan, N. Bone Tissue Engineering: Scaffold Preparation Using Chitosan and Other Biomaterials with Different Design and Fabrication Techniques. Int. J. Biol. Macromol. 2018, 119, 1228–1239. DOI: 10.1016/j.ijbiomac.2018.08.056.
  • Hakimi, F.; Jafari, H.; Hashemikia, S.; Shabani, S.; Ramazani, A. Chitosan-Polyethylene Oxide/Clay-Alginate Nanofiber Hydrogel Scaffold for Bone Tissue Engineering: Preparation, Physical Characterization, and Biomimetic Mineralization. Int. J. Biol. Macromol. 2023, 233, 123453. DOI: 10.1016/j.ijbiomac.2023.123453.
  • Babakhani, A.; Peighambardoust, S. J.; Olad, A. Fabrication of Magnetic Nanocomposite Scaffolds Based on Polyvinyl Alcohol-Chitosan Containing Hydroxyapatite and Clay Modified with Graphene Oxide: Evaluation of Their Properties for Bone Tissue Engineering Applications. J. Mech. Behav. Biomed. Mater. 2024, 150, 106263. DOI: 10.1016/j.jmbbm.2023.106263.
  • He, M.; Zhao, Z.; Yin, L.; Tang, C.; Yin, C. Hyaluronic Acid Coated Poly (Butyl Cyanoacrylate) Nanoparticles as Anticancer Drug Carriers. Int. J. Pharm. 2009, 373, 165–173. DOI: 10.1016/j.ijpharm.2009.02.012.
  • Parhi, R. Drug Delivery Applications of Chitin and Chitosan: A Review. Environ. Chem. Lett. 2020, 18, 577–594. DOI: 10.1007/s10311-020-00963-5.
  • Mikušová, V.; Mikuš, P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 2021, 22, 9652. DOI: 10.3390/ijms22179652.
  • Peers, S.; Montembault, A.; Ladavière, C. Chitosan Hydrogels for Sustained Drug Delivery. J. Control. Release 2020, 326, 150–163. DOI: 10.1016/j.jconrel.2020.06.012.
  • Khatoon, N.; Chu, M. Q.; Zhou, C. H. Nanoclay-Based Drug Delivery Systems and Their Therapeutic Potentials. J. Mater. Chem. B 2020, 8, 7335–7351. DOI: 10.1039/d0tb01031f.
  • Fakhruddin, K.; Hassan, R.; Khan, M. U. A.; Allisha, S. N.; Abd Razak, S. I.; Zreaqat, M. H.; Latip, H. F. M.; Jamaludin, M. N.; Hassan, A. Halloysite Nanotubes and Halloysite-Based Composites for Biomedical Applications. Arabian J. Chem. 2021, 14, 103294. DOI: 10.1016/j.arabjc.2021.103294.
  • Huang, H.-J.; Huang, S.-Y.; Wang, T.-H.; Lin, T.-Y.; Huang, N.-C.; Shih, O.; Jeng, U.-S.; Chu, C.-Y.; Chiang, W.-H. Clay Nanosheets Simultaneously Intercalated and Stabilized by PEGylated Chitosan as Drug Delivery Vehicles for Cancer Chemotherapy. Carbohydr. Polym. 2023, 302, 120390. DOI: 10.1016/j.carbpol.2022.120390.
  • Zhang, X.; Fan, J.; Lee, C.-S.; Kim, S.; Chen, C.; Lee, M. Supramolecular Hydrogels Based on Nanoclay and Guanidine-Rich Chitosan: Injectable and Moldable Osteoinductive Carriers. ACS Appl. Mater. Interfaces 2020, 12, 16088–16096. DOI: 10.1021/acsami.0c01241.
  • Huang, Y.; Dan, N.; Dan, W.; Zhao, W. Reinforcement of Polycaprolactone/Chitosan with Nanoclay and Controlled Release of Curcumin for Wound Dressing. ACS Omega 2019, 4, 22292–22301. DOI: 10.1021/acsomega.9b02217.
  • Wan, S.; Peng, J.; Li, Y.; Hu, H.; Jiang, L.; Cheng, Q. Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan. ACS Nano. 2015, 9, 9830–9836. DOI: 10.1021/acsnano.5b02902.
  • Aerogels, A. Ab-Initio Methods, 130 Aerobic Biodegradation, 153 Aerogel Monoliths, 47 Aerospace Applications in Aeronautics. Biobased Aerogels 2018, 58, 324.
  • Tripathy, D. B.; Gupta, A. Nanocomposites as Sustainable Smart Materials: A Review. J. Reinf. Plast. Compos. 2024, 07316844241233162. DOI: 10.1177/07316844241233162.
  • Burelo, M.; Martínez, A.; Hernández-Varela, J. D.; Stringer, T.; Ramírez-Melgarejo, M.; Yau, A. Y.; Luna-Bárcenas, G.; Treviño-Quintanilla, C. D. Recent Developments in Synthesis, Properties, Applications and Recycling of Bio-Based Elastomers. Molecules 2024, 29, 387. DOI: 10.3390/molecules29020387.
  • Yaseen, M.; Khattak, M. A. K.; Khan, A.; Bibi, S.; Bououdina, M.; Usman, M.; Khan, N. A.; Pirzado, A. A. A.; Abumousa, R. A.; Humayun, M. State-of-the-Art Electrochromic Thin Films Devices, Fabrication Techniques and Applications: A Review. Nanocomposites 2024, 10, 1–40. DOI: 10.1080/20550324.2023.2291619.
  • Benali, S.; Aouadi, S.; Dechief, A.-L.; Murariu, M.; Dubois, P. Key Factors for Tuning Hydrolytic Degradation of Polylactide/Zinc Oxide Nanocomposites. Nanocomposites 2015, 1, 51–61. DOI: 10.1179/2055033214Y.0000000007.
  • Mishnaevsky, L. Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions. Materials 2021, 14, 1124. DOI: 10.3390/ma14051124.
  • Talukder, M. E.; Alam, F.; Pervez, M. N.; Jiangming, W.; Hassan, F.; Stylios, G. K.; Naddeo, V.; Song, H. New Generation Washable PES Membrane Face Mask for Virus Filtration. Nanocomposites 2022, 8, 13–23. DOI: 10.1080/20550324.2021.2008209.
  • Sen Gupta, R.; Samantaray, P. K.; Bose, S. Going beyond Cellulose and Chitosan: Synthetic Biodegradable Membranes for Drinking Water, Wastewater, and Oil–Water Remediation. ACS Omega 2023, 8, 24695–24717. DOI: 10.1021/acsomega.3c01699.
  • Samantaray, P. K.; Little, A.; Wemyss, A. M.; Iacovidou, E.; Wan, C. Design and Control of Compostability in Synthetic Biopolyesters. ACS Sustainable Chem. Eng. 2021, 9, 9151–9164. DOI: 10.1021/acssuschemeng.1c01424.
  • Narisetty, V.; Cox, R.; Willoughby, N.; Aktas, E.; Tiwari, B.; Matharu, A. S.; Salonitis, K.; Kumar, V. Recycling Bread Waste into Chemical Building Blocks Using a Circular Biorefining Approach. Sustain. Energy Fuels. 2021, 5, 4842–4849. DOI: 10.1039/d1se00575h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.