572
Views
0
CrossRef citations to date
0
Altmetric
ISMSC2023

Low symmetry and functionalised organic cages prepared using Eglinton and Sonogashira coupling reactions

& ORCID Icon
Received 20 Nov 2023, Accepted 23 Feb 2024, Published online: 04 Mar 2024

References

  • Yang X, Ullah Z, Stoddart JF, et al. Porous organic cages. Chem Rev. 2023;123(8):4602–4634. doi: 10.1021/acs.chemrev.2c00667
  • Yoshizawa M, Klosterman JK, Fujita M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew Chem Int Ed. 2009;48(19):3418–3438. doi: 10.1002/anie.200805340
  • Cook TR, Stang PJ. Recent developments in the preparation and chemistry of Metallacycles and metallacages via coordination. Chem Rev. 2015;115(15):7001–7045. doi: 10.1021/cr5005666
  • Hasell T, Cooper AI. Porous organic cages: soluble, modular and molecular pores. Nat Rev Mater. 2016;1(9):16053. doi: 10.1038/natrevmats.2016.53
  • Sudik AC, Millward AR, Ockwig NW, et al. Design, synthesis, structure, and gas (N 2, ar, CO 2, CH 4, and H 2) sorption properties of porous metal-organic tetrahedral and Heterocuboidal Polyhedra. J Am Chem Soc. 2005;127(19):7110–7118. doi: 10.1021/ja042802q
  • Tozawa T, Jones JTA, Swamy SI, et al. Porous organic cages. Nat Mater. 2009;8(12):973. doi: 10.1038/nmat2545
  • Zhang G, Presly O, White F, et al. A permanent mesoporous organic cage with an exceptionally high surface area. Angew Chem Int Ed. 2014;53(6):1516–1520. doi: 10.1002/anie.201308924
  • Jones JTA, Hasell T, Wu X, et al. Modular and predictable assembly of porous organic molecular crystals. Nature. 2011;474(7351):367–371. doi: 10.1038/nature10125
  • Evans JD, Huang DM, Hill MR, et al. Molecular design of amorphous porous organic cages for enhanced gas storage. J Phys Chem C. 2015;119(14):7746–7754. doi: 10.1021/jp512944r
  • Taggart GA, Antonio AM, Lorzing GR, et al. Tuning the porosity, solubility, and gas-storage properties of cuboctahedral coordination cages via Amide or Ester Functionalization. ACS Appl Mater Interfaces. 2020;12(22):24913–24919. doi: 10.1021/acsami.0c06434
  • Gosselin AJ, Decker GE, Antonio AM, et al. A charged coordination cage-based porous salt. J Am Chem Soc. 2020;142(21):9594–9598. doi: 10.1021/jacs.0c02806
  • Smulders MMJ, Riddell IA, Browne C, et al. Building on architectural principles for three-dimensional metallosupramolecular construction. Chem Soc Rev. 2013;42(4):1728–1754. doi: 10.1039/C2CS35254K
  • Liu X, Liu Y, Li G, et al. One-pot, 18-component synthesis of an octahedral nanocontainer molecule. Angew Chem Int Ed. 2006;45(6):901–904. doi: 10.1002/anie.200504049
  • Francesconi O, Ienco A, Moneti G, et al. A self-assembled pyrrolic cage receptor specifically recognizes β-Glucopyranosides. Angew Chem Int Ed. 2006;45(40):6693–6696. doi: 10.1002/anie.200602412
  • Skowronek P, Gawronski J. Chiral iminospherand of a tetrahedral symmetry spontaneously assembled in a [6 + 4] cyclocondensation. Org Lett. 2008;10(21):4755–4758. doi: 10.1021/ol801702j
  • Nishimura N, Kobayashi K. Self-assembly of a cavitand-based capsule by dynamic boronic ester formation. Angew Chem Int Ed. 2008;47(33):6255–6258. doi: 10.1002/anie.200802293
  • Christinat N, Scopelliti R, Severin K. Multicomponent assembly of boronic acid based macrocycles and cages. Angew Chem Int Ed. 2008;47(10):1848–1852. doi: 10.1002/anie.200705272
  • Mastalerz M, Schneider MW, Oppel IM, et al. A salicylbisimine cage compound with high surface area and selective CO 2 /CH 4 adsorption. Angew Chem Int Ed. 2011;50(5):1046–1051. doi: 10.1002/anie.201005301
  • Zhang G, Mastalerz M. Organic cage compounds – from shape-persistency to function. Chem Soc Rev. 2014;43(6):1934–1947. doi: 10.1039/C3CS60358J
  • We note that recent advances in alkyne metathesis chemistry and hydrazone chemistry may offer a method to prepare robust cages under thermodynamic control, although the ability to form low symmetry species using these approaches is still limited. See e.g. Lee S, Yang A, Moneypenny TP II, et al. Kinetically trapped tetrahedral cages via Alkyne Metathesis. J Am Chem Soc. 2016;138(7):2182–2185. doi: 10.1021/jacs.6b00468 and Jiao T, Wu G, Zhang Y, et al. Self-assembly in water with N-substituted imines. Angew Chem Int Ed. 2020;59(42):18350-18367. doi: 10.1002/anie.201910739
  • Schneider MW, Oppel IM, Griffin A, et al. Post-modification of the interior of porous shape-persistent organic cage compounds. Angew Chem Int Ed. 2013;52(13):3611–3615. doi: 10.1002/anie.201208156
  • Bhat AS, Elbert SM, Zhang W-S, et al. Transformation of a [4+6] salicylbisimine cage to chemically robust amide cages. Angew Chem Int Ed. 2019;58(26):8819–8823. doi: 10.1002/anie.201903631
  • Alexandre P-E, Zhang W-S, Rominger F, et al. A robust porous quinoline cage: transformation of a [4+6] salicylimine cage by Povarov Cyclization. Angew Chem Int Ed. 2020;59(44):19675–19679. doi: 10.1002/anie.202007048
  • Andrews KG, Christensen KE. Access to amide-linked organic cages by in situ trapping of Metastable Imine Assemblies: solution phase bisamine recognition. Chem: Eur J. 2023;29(26):e202300063. doi: 10.1002/chem.202300063
  • Bloch WM, Clever GH. Integrative self-sorting of coordination cages based on ‘naked’ metal ions. Chem Commun. 2017;53(61):8506–8516. doi: 10.1039/C7CC03379F
  • Lewis JEM, Tarzia A, White AJP, et al. Conformational control of Pd 2 L 4 assemblies with unsymmetrical ligands. Chem Sci. 2020;11(3):677–683. doi: 10.1039/C9SC05534G
  • Tian C-B, Sun Q-F. Combinatorial coordination self-assembly for organopalladium cages with fine-tuned structure and function. Chem: Eur J. 2023;29(28):e202300195. doi: 10.1002/chem.202300195
  • Wu K, Benchimol E, Baksi A, et al. ChemRxiv. doi:10.26434/chemrxiv-2023-5gb4g.
  • Preston D, Evans JD. A lantern-shaped Pd(II) cage constructed from four different low-symmetry ligands with positional and orientational control: an ancillary pairings approach. Chem Int Ed. 2023;62(49):e202314378. doi: 10.1002/anie.202314378
  • Zhang C, Chen C-F. Synthesis and structure of a Triptycene-based nanosized molecular cage. J Org Chem. 2007;72(24):9339–9341. doi: 10.1021/jo7017526
  • Avellaneda A, Valente P, Burgun A, et al. Kinetically controlled porosity in a robust organic cage material. Angew Chem Int Ed. 2013;52(13):3746–3749. doi: 10.1002/anie.201209922
  • Kitchin M, Konstas K, Sumby CJ, et al. Continuous flow synthesis of a carbon-based molecular cage macrocycle via a three-fold homocoupling reaction. Chem Commun. 2015;51(75):14231–14234. doi: 10.1039/C5CC05181A
  • Burgun A, Valente P, Evans JD, et al. Endohedrally functionalised porous organic cages. Chem Commun. 2016;52(57):8850–8853. doi: 10.1039/C6CC04423A
  • Tominaga M, Ohara K, Yamaguchi K, et al. Hollow sphere formation from a three-dimensional structure composed of an Adamantane-Based Cage. J Org Chem. 2014;79(14):6738–6742. doi: 10.1021/jo500989c
  • Ma H, Zhai T-L, Wang Z, et al. Switching porosity of stable triptycene-based cage via solution-state assembly processes. RSC Adv. 2020;10(15):9088–9092. doi: 10.1039/D0RA00128G
  • Zhang Z-Q, Ren Q-X, Tian W-F, et al. Synthesis of enantiopure hydrocarbon cages based on an optically resolved C 3 -symmetric triaminotribenzotriquinacene. Org Lett. 2021;23(4):1478–1483. doi: 10.1021/acs.orglett.1c00176
  • Thomas CM, Liang W, Preston D, et al. Post-synthetic modification of a porous hydrocarbon cage to give a Discrete Co 24 organometallic Complex. Chem: Eur J. 2022;28(51):e202200958. doi: 10.1002/chem.202200958
  • We note that generally the term Eglinton coupling is used to refer to the Cu(II)-mediated coupling of two terminal alkynes to give a di-alkyne and that our reactions, which are based on those developed by Sumby and Doonan use both a Cu(I) and Cu(II) mediator (reference 31). Other copper-mediated coupling reactions were also investigated (see Supporting Information). In the interests of simplicity, we refer to these reactions as Eglinton reactions throughout.
  • Hoskins BF, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc. 1989;111(15):5962–5964. doi: 10.1021/ja00197a079
  • Robson R. Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs): a personal view. Dalton Trans. 2008;38:5113–5131. doi: 10.1039/b805617j
  • Yaghi OM, O’Keeffe M, Ockwig NW, et al. Reticular synthesis and the design of new materials. Nature. 2003;423(6941):705–714. doi: 10.1038/nature01650
  • Morshedi M, Thomas M, Tarzia A, et al. Supramolecular anion recognition in water: synthesis of hydrogen-bonded supramolecular frameworks. Chem Sci. 2017;8(4):3019–3025. doi: 10.1039/C7SC00201G
  • Xing G, Yan T, Das S, et al. Synthesis of crystalline porous organic salts with high proton conductivity. Angew Chem Int Ed. 2018;57(19):5345–5349. doi: 10.1002/anie.201800423
  • Bassanetti I, Bracco S, Comotti A, et al. Flexible porous molecular materials responsive to CO 2 , CH 4 and Xe stimuli. J Mater Chem A. 2018;6(29):14231–14239. doi: 10.1039/C8TA02211A
  • White NG. Amidinium⋯carboxylate frameworks: predictable, robust, water-stable hydrogen bonded materials. Chem Commun. 2021;57(84):10998–11008. doi: 10.1039/D1CC04782E
  • Spek AL. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. 2015;C71:9–8.
  • Bruno IJ, Cole JC, Edgington PR, et al. New software for searching the Cambridge structural database and visualizing crystal structures. Acta Crystallogr. 2002;B58(3):389–397. doi: 10.1107/S0108768102003324
  • Boer SA, Morshedi M, Tarzia A, et al. Molecular tectonics: a node-and-linker building block approach to a family of hydrogen-bonded frameworks. Chem: Eur J. 2019;25(42):10006–10012. doi: 10.1002/chem.201902117
  • Kwon Y-D, Son J, Chun J-H. Catalyst-Free Aromatic Radiofluorination via Oxidized Iodoarene Precursors. Org Lett. 2018;20(24):7902–7906. doi: 10.1021/acs.orglett.8b03450
  • Alagille D, DaCosta H, Chen Y, et al. Potent mGlur5 antagonists: pyridyl and thiazolyl-ethynyl-3,5-disubstituted-phenyl series. Bioorg Med Chem Lett. 2011;21(11):3243–3247. doi: 10.1016/j.bmcl.2011.04.047
  • Endres A, Maas G. Dirhodium(II) tetrakis(perfluoroalkylbenzoates) as partially recyclable catalysts for carbene transfer reactions with diazoacetates. Tetrahedron. 2002;58(20):3999–4005. doi: 10.1016/S0040-4020(02)00249-1
  • Aragao D, Aishima J, Cherukuvada H, et al. MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian synchrotron. J Synchrotron Rad. 2018;25(3):885–891. doi: 10.1107/S1600577518003120
  • Kabsch W. XDS. Acta Crystallogr. 2010;66(2):125–132. doi: 10.1107/S0907444909047337
  • Palatinus L, Chapuis G. SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr. 2007;40(4):786–790. doi: 10.1107/S0021889807029238
  • Betteridge PW, Carruthers JR, Cooper RI, et al. CRYSTALS version 12: software for guided crystal structure analysis. J Appl Crystallogr. 2003;36(6):1487. doi: 10.1107/S0021889803021800