1,282
Views
128
CrossRef citations to date
0
Altmetric
Research Article

Endocytosis at the blood–brain barrier: From basic understanding to drug delivery strategies

&
Pages 191-214 | Received 30 Nov 2005, Accepted 20 Feb 2006, Published online: 08 Oct 2008

References

  • Abbott NJ. Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat 2002; 200(6)629–638
  • Ahima RS, Osei SY. Leptin signaling. Physiol Behav 2004; 81(2)223–241
  • Aktas Y, Yemisci M, Andrieux K, Gursoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Riguera R, Sargon MF, Celik HH, Demir AS, Hincal AA, Dalkara T, Capan Y, Couvreur P. Development and brain delivery of chitosan–PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem 2005; 16(6)1503–1511
  • Albeck DS, Hoffer BJ, Quissell D, Sanders LA, Zerbe G, Granholm AC. A non-invasive transport system for GDNF across the blood–brain barrier. Neuroreport 1997; 8(9–10)2293–2298
  • Alliot F, Rutin J, Leenen PJ, Pessac B. Brain parenchyma vessels and the angiotensin system. Brain Res 1999; 830(1)101–112
  • Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. Delivery of loperamide across the blood–brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 1997; 14(3)325–328
  • Alyautdin RN, Tezikov EB, Ramge P, Kharkevich DA, Begley DJ, Kreuter J. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: An in situ brain perfusion study. J Microencapsul 1998; 15(1)67–74
  • Alyautdin RN, Reichel A, Lobenberg R, Ramge P, Kreuter J, Begley DJ. Interaction of poly(butylcyanoacrylate) nanoparticles with the blood–brain barrier in vivo and in vitro. J Drug Target 2001; 9(3)209–221
  • Alyautdin RN, Kreuter J, Kharkevich DA. Drug delivery to the brain with nanoparticles. Eksp Klin Farmakol 2003; 66(2)65–68
  • Anderson DC, Nichols E, Manger R, Woodle D, Barry M, Fritzberg AR. Tumor cell retention of antibody Fab fragments is enhanced by an attached HIV TAT protein-derived peptide. Biochem Biophys Res Commun 1993; 194(2)876–884
  • Aoki T, Nomura R, Fujimoto T. Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp Cell Res 1999; 253(2)629–636
  • Badger JL, Stins MF, Kim KS. Citrobacter freundii invades and replicates in human brain microvascular endothelial cells. Infect Immun 1999; 67(8)4208–4215
  • Bagnasco M, Tulipano G, Melis MR, Argiolas A, Cocchi D, Muller EE. Endogenous ghrelin is an orexigenic peptide acting in the arcuate nucleus in response to fasting. Regul Pept 2003; 111(1–3)161–167
  • Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood–brain barrier. J Neurosci Res 1998; 53(6)637–644
  • Balin BJ, Broadwell RD, Salcman M, el-Kalliny M. Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat and squirrel monkey. J Comp Neurol 1986; 251(2)260–280
  • Banks WA. The many lives of leptin. Peptides 2004; 25(3)331–338
  • Banks WA. Blood–brain barrier transport of cytokines: A mechanism for neuropathology. Curr Pharm Des 2005; 11(8)973–984
  • Banks WA, Broadwell RD. Blood to brain and brain to blood passage of native horseradish peroxidase, wheat germ agglutinin and albumin: Pharmacokinetic and morphological assessments. J Neurochem 1994; 62(6)2404–2419
  • Banks WA, Kastin AJ. Reversible association of the cytokines MIP-1 alpha and MIP-1 beta with the endothelia of the blood–brain barrier. Neurosci Lett 1996; 205(3)202–206
  • Banks WA, Kastin AJ. Differential permeability of the blood–brain barrier to two pancreatic peptides: Insulin and amylin. Peptides 1998; 19(5)883–889
  • Banks WA, Kastin AJ, Fasold MB, Barrera CM, Augereau G. Studies of the slow bidirectional transport of iron and transferrin across the blood–brain barrier. Brain Res Bull 1988; 21(6)881–885
  • Banks WA, Ortiz L, Plotkin SR, Kastin AJ. Human interleukin (IL) 1 alpha, murine IL-1 alpha and murine IL-1 beta are transported from blood to brain in the mouse by a shared saturable mechanism. J Pharmacol Exp Ther 1991; 259(3)988–996
  • Banks WA, Kastin AJ, Broadwell RD. Passage of cytokines across the blood–brain barrier. Neuroimmunomodulation 1995a; 2(4)241–248
  • Banks WA, Plotkin SR, Kastin AJ. Permeability of the blood–brain barrier to soluble cytokine receptors. Neuroimmunomodulation 1995b; 2(3)161–165
  • Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides 1996; 17(2)305–311
  • Banks WA, Jaspan JB, Huang W, Kastin AJ. Transport of insulin across the blood–brain barrier: Saturability at euglycemic doses of insulin. Peptides 1997a; 18(9)1423–1429
  • Banks WA, Jaspan JB, Kastin AJ. Selective, physiological transport of insulin across the blood–brain barrier: Novel demonstration by species-specific radioimmunoassays. Peptides 1997b; 18(8)1257–1262
  • Banks WA, Kastin AJ, Akerstrom V. HIV-1 protein gp120 crosses the blood–brain barrier: Role of adsorptive endocytosis. Life Sci 1997c; 61(9)L119–L125
  • Banks WA, Farr SA, Morley JE. Permeability of the blood–brain barrier to albumin and insulin in the young and aged SAMP8 mouse. J Gerontol A Biol Sci Med Sci 2000; 55(12)B601–B606
  • Banks WA, Farr SA, La Scola ME, Morley JE. Intravenous human interleukin–1alpha impairs memory processing in mice: Dependence on blood–brain barrier transport into posterior division of the septum. J Pharmacol Exp Ther 2001; 299(2)536–541
  • Banks WA, Farr SA, Morley JE. Entry of blood-borne cytokines into the central nervous system: Effects on cognitive processes. Neuroimmunomodulation 2002a; 10(6)319–327
  • Banks WA, Tschop M, Robinson SM, Heiman ML. Extent and direction of ghrelin transport across the blood–brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther 2002b; 302(2)822–827
  • Banks WA, Kumar VB, Franko MW, Bess JW, Jr, Arthur LO. Evidence that the species barrier of human immunodeficiency virus-1 does not extend to uptake by the blood–brain barrier: Comparison of mouse and human brain microvessels. Life Sci 2005a; 77(19)2361–2368
  • Banks WA, Robinson SM, Nath A. Permeability of the blood–brain barrier to HIV-1 Tat. Exp Neurol 2005b; 193(1)218–227
  • Bickel U, Yoshikawa T, Landaw EM, Faull KF, Pardridge WM. Pharmacologic effects in vivo in brain by vector-mediated peptide drug delivery. Proc Natl Acad Sci USA 1993; 90(7)2618–2622
  • Bickel U, Kang YS, Yoshikawa T, Pardridge WM. In vivo demonstration of subcellular localization of anti-transferrin receptor monoclonal antibody-colloidal gold conjugate in brain capillary endothelium. J Histochem Cytochem 1994; 42(11)1493–1497
  • Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood–brain barrier. Adv Drug Deliv Rev 2001; 46(1–3)247–279
  • Bishop NE. Dynamics of endosomal sorting. Int Rev Cytol 2003; 232: 1–57
  • Bjorbaek C, Elmquist JK, Michl P, Ahima RS, van BA, McCall AL, Flier JS. Expression of leptin receptor isoforms in rat brain microvessels. Endocrinology 1998; 139(8)3485–3491
  • Boado RJ. RNA interference and nonviral targeted gene therapy of experimental brain cancer. NeuroRx 2005; 2(1)139–150
  • Boado RJ, Tsukamoto H, Pardridge WM. Drug delivery of antisense molecules to the brain for treatment of Alzheimer's disease and cerebral AIDS. J Pharm Sci 1998; 87(11)1308–1315
  • Borm PJ, Kreyling W. Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. J Nanosci Nanotechnol 2004; 4(5)521–531
  • Bradbury MW. Transport of iron in the blood–brain-cerebrospinal fluid system. J Neurochem 1997; 69(2)443–454
  • Broadwell RD. Transcytosis of macromolecules through the blood–brain barrier: A cell biological perspective and critical appraisal. Acta Neuropathol (Berl) 1989; 79(2)117–128
  • Broadwell RD, Salcman M. Expanding the definition of the blood–brain barrier to protein. Proc Natl Acad Sci USA 1981; 78(12)7820–7824
  • Broadwell RD, Balin BJ, Salcman M, Kaplan RS. Brain–blood barrier? Yes and no. Proc Natl Acad Sci USA 1983; 80(23)7352–7356
  • Broadwell RD, Balin BJ, Salcman M. Transcytotic pathway for blood-borne protein through the blood–brain barrier. Proc Natl Acad Sci USA 1988; 85(2)632–636
  • Broadwell RD, Baker-Cairns BJ, Friden PM, Oliver C, Villegas JC. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood–brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Exp Neurol 1996; 142(1)47–65
  • Brooks H, Lebleu B, Vives E. Tat peptide-mediated cellular delivery: Back to basics. Adv Drug Deliv Rev 2005; 57(4)559–577
  • Calvo P, Gouritin B, Chacun H, Desmaele D, D'Angelo J, Noel JP, Georgin D, Fattal E, Andreux JP, Couvreur P. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 2001; 18(8)1157–1166
  • Cameron PL, Ruffin JW, Bollag R, Rasmussen H, Cameron RS. Identification of caveolin and caveolin-related proteins in the brain. J Neurosci 1997; 17(24)9520–9535
  • Carman CV, Springer TA. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 2004; 167(2)377–388
  • Chang YC, Stins MF, McCaffery MJ, Miller GF, Pare DR, Dam T, Paul-Satyaseela M, Kim KS, Kwon-Chung KJ. Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood–brain barrier. Infect Immun 2004; 72(9)4985–4995
  • Chuang VT, Kragh-Hansen U, Otagiri M. Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm Res 2002; 19(5)569–577
  • Coloma MJ, Lee HJ, Kurihara A, Landaw EM, Boado RJ, Morrison SL, Pardridge WM. Transport across the primate blood–brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res 2000; 17(3)266–274
  • Console S, Marty C, Garcia-Echeverria C, Schwendener R, Ballmer-Hofer K. Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high-molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem 2003; 278(37)35109–35114
  • Coomber BL, Stewart PA. Morphometric analysis of CNS microvascular endothelium. Microvasc Res 1985; 30(1)99–115
  • Crowe A, Morgan EH. Iron and transferrin uptake by brain and cerebrospinal fluid in the rat. Brain Res 1992; 592(1–2)8–16
  • da Cruz MT, Cardoso AL, de Almeida LP, Simoes S, de Lima MC. Tf-lipoplex-mediated NGF gene transfer to the CNS: Neuronal protection and recovery in an excitotoxic model of brain injury. Gene Ther 2005; 12(16)1242–1252
  • Das D, Lin S. Double-coated poly (butylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration. J Pharm Sci 2005; 94(6)1343–1353
  • Defazio G, Ribatti D, Nico B, Ricchiuti F, De SR, Roncali L, Livrea P. Endocytosis of horseradish peroxidase by brain microvascular and umbilical vein endothelial cells in culture: An ultrastructural and morphometric study. Brain Res Bull 1997; 43(5)467–472
  • Deguchi Y, Kurihara A, Pardridge WM. Retention of biologic activity of human epidermal growth factor following conjugation to a blood–brain barrier drug delivery vector via an extended poly(ethylene glycol) linker. Bioconjug Chem 1999; 10(1)32–37
  • Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994; 269(14)10444–10450
  • Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 1996; 271(30)18188–18193
  • Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y. Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-beta production. Brain Res 2005; 1038(2)208–215
  • Doran KS, Engelson EJ, Khosravi A, Maisey HC, Fedtke I, Equils O, Michelsen KS, Arditi M, Peschel A, Nizet V. Blood–brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J Clin Invest 2005; 115(9)2499–2507
  • Drin G, Cottin S, Blanc E, Rees AR, Temsamani J. Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem 2003; 278(33)31192–31201
  • Duffy KR, Pardridge WM. Blood–brain barrier transcytosis of insulin in developing rabbits. Brain Res 1987; 420(1)32–38
  • Engelhardt B. Development of the blood–brain barrier. Cell Tissue Res 2003; 314(1)119–129
  • Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 1994; 91(2)664–668
  • Fischer R, Fotin-Mleczek M, Hufnagel H, Brock R. Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides. Chem Biochem 2005
  • Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE. Receptor-mediated transcytosis of transferrin across the blood–brain barrier. J Neurosci Res 1987; 18(2)299–304
  • Fotin-Mleczek M, Fischer R, Brock R. Endocytosis and cationic cell-penetrating peptides—a merger of concepts and methods. Curr Pharm Des 2005; 11(28)3613–3628
  • Frank HJ, Pardridge WM. A direct in vitro demonstration of insulin binding to isolated brain microvessels. Diabetes 1981; 30(9)757–761
  • Frank HJ, Jankovic-Vokes T, Pardridge WM, Morris WL. Enhanced insulin binding to blood–brain barrier in vivo and to brain microvessels in vitro in newborn rabbits. Diabetes 1985; 34(8)728–733
  • Frank HJ, Pardridge WM, Morris WL, Rosenfeld RG, Choi TB. Binding and internalization of insulin and insulin-like growth factors by isolated brain microvessels. Diabetes 1986; 35(6)654–661
  • Friden PM, Walus LR, Musso GF, Taylor MA, Malfroy B, Starzyk RM. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood–brain barrier. Proc Natl Acad Sci USA 1991; 88(11)4771–4775
  • Friese A, Seiller E, Quack G, Lorenz B, Kreuter J. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm 2000; 49(2)103–109
  • Frokjaer-Jensen J. The plasmalemmal vesicular system in striated muscle capillaries and in pericytes. Tissue Cell 1984; 16(1)31–42
  • Futaki S. Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv Drug Deliv Rev 2005; 57(4)547–558
  • Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood–brain barrier (BBB) translocation: A way to deliver drugs to the brain?. Int J Pharm 2005; 298(2)274–292
  • Giometto B, Bozza F, Argentiero V, Gallo P, Pagni S, Piccinno MG, Tavolato B. Transferrin receptors in rat central nervous system. An immunocytochemical study. J Neurol Sci 1990; 98(1)81–90
  • Gloor SM, Wachtel M, Bolliger MF, Ishihara H, Landmann R, Frei K. Molecular and cellular permeability control at the blood–brain barrier. Brain Res Brain Res Rev 2001; 36(2–3)258–264
  • Golden PL, Maccagnan TJ, Pardridge WM. Human blood–brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J Clin Invest 1997; 99(1)14–18
  • Gosk S, Vermehren C, Storm G, Moos T. Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J Cereb Blood Flow Metab 2004; 24(11)1193–1204
  • Grab DJ, Perides G, Dumler JS, Kim KJ, Park J, Kim YV, Nikolskaia O, Choi KS, Stins MF, Kim KS. Borrelia burgdorferi, host-derived proteases and the blood–brain barrier. Infect Immun 2005; 73(2)1014–1022
  • Gragera RR, Muniz E, Martinez-Rodriguez R. Molecular and ultrastructural basis of the blood–brain barrier function. Immunohistochemical demonstration of Na+/K+ ATPase, alpha-actin, phosphocreatine and clathrin in the capillary wall and its microenvironment. Cell Mol Biol (Noisy-le-grand) 1993; 39(8)819–828
  • Granholm AC, Backman C, Bloom F, Ebendal T, Gerhardt GA, Hoffer B, Mackerlova L, Olson L, Soderstrom S, Walus LR. NGF and anti-transferrin receptor antibody conjugate: Short and long-term effects on survival of cholinergic neurons in intraocular septal transplants. J Pharmacol Exp Ther 1994; 268(1)448–459
  • Granholm AC, Albeck D, Backman C, Curtis M, Ebendal T, Friden P, Henry M, Hoffer B, Kordower J, Rose GM, Soderstrom S, Bartus RT. A non-invasive system for delivering neural growth factors across the blood–brain barrier: A review. Rev Neurosci 1998; 9(1)31–55
  • Greiffenberg L, Goebel W, Kim KS, Weiglein I, Bubert A, Engelbrecht F, Stins M, Kuhn M. Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InlB-dependent invasion, long-term intracellular growth and spread from macrophages to endothelial cells. Infect Immun 1998; 66(11)5260–5267
  • Greiffenberg L, Goebel W, Kim KS, Daniels J, Kuhn M. Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: An electron microscopic study. Infect Immun 2000; 68(6)3275–3279
  • Guillot FL, Audus KL. Angiotensin peptide regulation of fluid-phase endocytosis in brain microvessel endothelial cell monolayers. J Cereb Blood Flow Metab 1990; 10(6)827–834
  • Guillot FL, Audus KL. Angiotensin peptide regulation of bovine brain microvessel endothelial cell monolayer permeability. J Cardiovasc Pharmacol 1991; 18(2)212–218
  • Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 1999; 16(10)1564–1569
  • Gutierrez EG, Banks WA, Kastin AJ. Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 1993; 47(2)169–176
  • Gutierrez EG, Banks WA, Kastin AJ. Blood-borne interleukin-1 receptor antagonist crosses the blood–brain barrier. J Neuroimmunol 1994; 55(2)153–160
  • Haake DA, Lovett MA. Interjunctional invasion of endothelial cell monolayers. Methods Enzymol 1994; 236: 447–463
  • Hardebo JE, Falck B, Owman C. A comparative study on the uptake and subsequent decarboxylation of monoamine precursors in cerebral microvessels. Acta Physiol Scand 1979; 107(2)161–167
  • Havrankova J, Brownstein M, Roth J. Insulin and insulin receptors in rodent brain. Diabetologia 1981; 20(Suppl)268–273
  • Healy DP, Wilk S. Localization of immunoreactive glutamyl aminopeptidase in rat brain. II. Distribution and correlation with angiotensin II. Brain Res 1993; 606(2)295–303
  • Hileman SM, Pierroz DD, Masuzaki H, Bjorbaek C, El-Haschimi K, Banks WA, Flier JS. Characterizaton of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity. Endocrinology 2002; 143(3)775–783
  • Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem 2004; 89(2)503–513
  • Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 1996; 93(24)14164–14169
  • Huwyler J, Yang J, Pardridge WM. Receptor mediated delivery of daunomycin using immunoliposomes: Pharmacokinetics and tissue distribution in the rat. J Pharmacol Exp Ther 1997; 282(3)1541–1546
  • Huwyler J, Cerletti A, Fricker G, Eberle AN, Drewe J. By-passing of P-glycoprotein using immunoliposomes. J Drug Target 2002; 10(1)73–79
  • Janzer RC, Raff MC. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 1987; 325(6101)253–257
  • Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY. Transferrin receptor on endothelium of brain capillaries. Nature 1984; 312(5990)162–163
  • Jong AY, Stins MF, Huang SH, Chen SH, Kim KS. Traversal of Candida albicans across human blood–brain barrier in vitro. Infect Immun 2001; 69(7)4536–4544
  • Jong AY, Chen SH, Stins MF, Kim KS, Tuan TL, Huang SH. Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J Med Microbiol 2003; 52(Pt 8)615–622
  • Kabanov AV, Batrakova EV. New technologies for drug delivery across the blood–brain barrier. Curr Pharm Des 2004; 10(12)1355–1363
  • Kang YS, Boado RJ, Pardridge WM. Pharmacokinetics and organ clearance of a 3′-biotinylated, internally [32P]-labeled phosphodiester oligodeoxynucleotide coupled to a neutral avidin/monoclonal antibody conjugate. Drug Metab Dispos 1995; 23(1)55–59
  • Kanmogne GD, Primeaux C, Grammas P. HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permeability: Implications for the pathogenesis of HIV-associated dementia. J Neuropathol Exp Neurol 2005; 64(6)498–505
  • Kim KJ, Elliott SJ, Di CF, Stins MF, Kim KS. The K1 capsule modulates trafficking of E. coli-containing vacuoles and enhances intracellular bacterial survival in human brain microvascular endothelial cells. Cell Microbiol 2003; 5(4)245–252
  • Kordower JH, Charles V, Bayer R, Bartus RT, Putney S, Walus LR, Friden PM. Intravenous administration of a transferrin receptor antibody-nerve growth factor conjugate prevents the degeneration of cholinergic striatal neurons in a model of Huntington disease. Proc Natl Acad Sci USA 1994; 91(19)9077–9080
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001; 47(1)65–81
  • Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 2004; 4(5)484–488
  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles). Brain Res 1995; 674(1)171–174
  • Kreuter J, Petrov VE, Kharkevich DA, Alyautdin RN. Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood–brain barrier using surfactant-coated nanoparticles. J Control Release 1997; 49(1)81–87
  • Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J Drug Target 2002; 10(4)317–325
  • Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, Alyautdin R, Von BH, Begley DJ. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003; 20(3)409–416
  • Kuchler-Bopp S, Delaunoy JP, Artault JC, Zaepfel M, Dietrich JB. Astrocytes induce several blood–brain barrier properties in non-neural endothelial cells. Neuroreport 1999; 10(6)1347–1353
  • Kumagai AK, Eisenberg JB, Pardridge WM. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood–brain barrier transport. J Biol Chem 1987; 262(31)15214–15219
  • Kurihara A, Deguchi Y, Pardridge WM. Epidermal growth factor radiopharmaceuticals: 111In chelation, conjugation to a blood–brain barrier delivery vector via a biotin–polyethylene linker, pharmacokinetics and in vivo imaging of experimental brain tumors. Bioconjug Chem 1999; 10(3)502–511
  • Lencer WI, Blumberg RS. A passionate kiss, then run: Exocytosis and recycling of IgG by FcRn. Trends Cell Biol 2005; 15(1)5–9
  • Li XB, Liao GS, Shu YY, Tang SX. Brain delivery of biotinylated NGF bounded to an avidin–transferrin conjugate. J Nat Toxins 2000; 9(1)73–83
  • Lieu PT, Heiskala M, Peterson PA, Yang Y. The roles of iron in health and disease. Mol Aspects Med 2001; 22(1-2)1–87
  • Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target 2004; 12(9–10)635–641
  • Lu W, Zhang Y, Tan YZ, Hu KL, Jiang XG, Fu SK. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release 2005; 107(3)428–448
  • Maclean AG, Rasmussen TA, Bieniemy DN, Alvarez X, Lackner AA. SIV-induced activation of the blood–brain barrier requires cell-associated virus and is not restricted to endothelial cell activation. J Med Primatol 2004; 33(5–6)236–242
  • Malecki EA, Devenyi AG, Beard JL, Connor JR. Existing and emerging mechanisms for transport of iron and manganese to the brain. J Neurosci Res 1999; 56(2)113–122
  • Maness LM, Banks WA, Zadina JE, Kastin AJ. Selective transport of blood-borne interleukin-1 alpha into the posterior division of the septum of the mouse brain. Brain Res 1995; 700(1–2)83–88
  • Mann DA, Frankel AD. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J 1991; 10(7)1733–1739
  • Maresh GA, Maness LM, Zadina JE, Kastin AJ. In vitro demonstration of a saturable transport system for leptin across the blood–brain barrier. Life Sci 2001; 69(1)67–73
  • Martins JM, Banks WA, Kastin AJ. Acute modulation of active carrier-mediated brain-to-blood transport of corticotropin-releasing hormone. Am J Physiol 1997; 272(2 Pt 1)E312–E319
  • Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol 2004; 5(2)121–132
  • Mazel M, Clair P, Rousselle C, Vidal P, Scherrmann JM, Mathieu D, Temsamani J. Doxorubicin-peptide conjugates overcome multidrug resistance. Anticancer Drugs 2001; 12(2)107–116
  • McLay RN, Kastin AJ, Zadina JE. Passage of interleukin-1-beta across the blood–brain barrier is reduced in aged mice: A possible mechanism for diminished fever in aging. Neuroimmunomodulation 2000; 8(3)148–153
  • Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 1996; 12: 575–625
  • Mizuguchi H, Hashioka Y, Utoguchi N, Kubo K, Nakagawa S, Mayumi T. A comparison of drug transport through cultured monolayers of bovine brain capillary and bovine aortic endothelial cells. Biol Pharm Bull 1994; 17(10)1385–1390
  • Moos T, Mollgard K. Cerebrovascular permeability to azo dyes and plasma proteins in rodents of different ages. Neuropathol Appl Neurobiol 1993; 19(2)120–127
  • Moos T, Morgan EH. Evidence for low-molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid. J Neurosci Res 1998; 54(4)486–494
  • Moos T, Morgan EH. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood–brain barrier in the rat. J Neurochem 2001; 79(1)119–129
  • Morgan EH, Moos T. Mechanism and developmental changes in iron transport across the blood–brain barrier. Dev Neurosci 2002; 24(2-3)106–113
  • Mousavi SA, Malerod L, Berg T, Kjeken R. Clathrin-dependent endocytosis. Biochem J 2004; 377(Pt 1)1–16
  • Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol Rev 1997; 77(3)759–803
  • Muller RH, Keck CM. Drug delivery to the brain—realization by novel drug carriers. J Nanosci Nanotechnol 2004; 4(5)471–483
  • Munzberg H, Bjornholm M, Bates SH, Myers MG, Jr. Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci 2005; 62(6)642–652
  • Nizet V, Kim KS, Stins M, Jonas M, Chi EY, Nguyen D, Rubens CE. Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun 1997; 65(12)5074–5081
  • Noble LJ, Kalinyak JE, Pitts LH, Hall JJ. Fluid-phase endocytosis of horseradish peroxidase by cerebral endothelial cells in primary culture: Characterization and kinetic analysis. J Neurosci Res 1994; 38(6)654–663
  • Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, Sharer LR, McComb RD, Swindells S, Soderland C, Gendelman HE. Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol 1996; 156(3)1284–1295
  • Nystrom FH, Quon MJ. Insulin signalling: Metabolic pathways and mechanisms for specificity. Cell Signal 1999; 11(8)563–574
  • Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx 2005; 2(1)108–119
  • Olivier JC, Fenart L, Chauvet R, Pariat C, Cecchelli R, Couet W. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 1999; 16(12)1836–1842
  • Omidi Y, Campbell L, Barar J, Connell D, Akhtar S, Gumbleton M. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood–brain barrier model for drug uptake and transport studies. Brain Res 2003; 990(1–2)95–112
  • Pan W, Kastin AJ. Entry of EGF into brain is rapid and saturable. Peptides 1999; 20(9)1091–1098
  • Pan W, Kastin AJ. Changing the chemokine gradient: CINC1 crosses the blood–brain barrier. J Neuroimmunol 2001; 115(1–2)64–70
  • Pan W, Kastin AJ. TNFalpha transport across the blood–brain barrier is abolished in receptor knockout mice. Exp Neurol 2002; 174(2)193–200
  • Pan W, Kastin AJ. Interactions of cytokines with the blood–brain barrier: Implications for feeding. Curr Pharm Des 2003; 9(10)827–831
  • Pan W, Kastin AJ. Polypeptide delivery across the blood–brain barrier. Curr Drug Target CNS Neurol Disord 2004; 3(2)131–136
  • Pan W, Banks WA, Kastin AJ. Permeability of the blood–brain and blood–spinal cord barriers to interferons. J Neuroimmunol 1997; 76(1–2)105–111
  • Pan W, Kastin AJ, Maness LM, Brennan JM. Saturable entry of ciliary neurotrophic factor into brain. Neurosci Lett 1999; 263(1)69–71
  • Pan W, Yu Y, Cain CM, Nyberg F, Couraud PO, Kastin AJ. Permeation of growth hormone across the blood–brain barrier. Endocrinology 2005; 146(11)4898–4904
  • Pardridge WM. Transport of insulin-related peptides and glucose across the blood–brain barrier. Ann NY Acad Sci 1993; 692: 126–137
  • Pardridge WM. Vector-mediated drug delivery to the brain. Adv Drug Deliv Rev 1999; 36(2–3)299–321
  • Pardridge WM. Blood–brain barrier drug targeting enables neuroprotection in brain ischemia following delayed intravenous administration of neurotrophins. Adv Exp Med Biol 2002; 513: 397–430
  • Pardridge WM. Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin Biol Ther 2004; 4(7)1103–1113
  • Pardridge WM, Eisenberg J, Yang J. Human blood–brain barrier insulin receptor. J Neurochem 1985; 44(6)1771–1778
  • Pardridge WM, Eisenberg J, Yang J. Human blood–brain barrier transferrin receptor. Metabolism 1987; 36(9)892–895
  • Pardridge WM, Triguero D, Buciak J, Yang J. Evaluation of cationized rat albumin as a potential blood–brain barrier drug transport vector. J Pharmacol Exp Ther 1990; 255(2)893–899
  • Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo. J Pharmacol Exp Ther 1991; 259(1)66–70
  • Pardridge WM, Kang YS, Buciak JL. Transport of human recombinant brain-derived neurotrophic factor (BDNF) through the rat blood–brain barrier in vivo using vector-mediated peptide drug delivery. Pharm Res 1994; 11(5)738–746
  • Pardridge WM, Boado RJ, Kang YS. Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood–brain barrier in vivo. Proc Natl Acad Sci USA 1995; 92(12)5592–5596
  • Penichet ML, Kang YS, Pardridge WM, Morrison SL, Shin SU. An antibody-avidin fusion protein specific for the transferrin receptor serves as a delivery vehicle for effective brain targeting: Initial applications in anti-HIV antisense drug delivery to the brain. J Immunol 1999; 163(8)4421–4426
  • Persidsky Y, Zheng J, Miller D, Gendelman HE. Mononuclear phagocytes mediate blood–brain barrier compromise and neuronal injury during HIV-1-associated dementia. J Leukoc Biol 2000; 68(3)413–422
  • Plotkin SR, Banks WA, Kastin AJ. Comparison of saturable transport and extracellular pathways in the passage of interleukin-1 alpha across the blood–brain barrier. J Neuroimmunol 1996; 67(1)41–47
  • Poduslo JF, Curran GL, Berg CT. Macromolecular permeability across the blood–nerve and blood–brain barriers. Proc Natl Acad Sci USA 1994; 91(12)5705–5709
  • Prasadarao NV, Wass CA, Kim KS. Endothelial cell GlcNAc beta 1-4GlcNAc epitopes for Omp A enhance traversal of Escherichia coli across the blood–brain barrier. Infect Immun 1996a; 64(1)154–160
  • Prasadarao NV, Wass CA, Weiser JN, Stins MF, Huang SH, Kim KS. Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect Immun 1996b; 64(1)146–153
  • Prasadarao NV, Wass CA, Stins MF, Shimada H, Kim KS. Outer membrane protein A-promoted actin condensation of brain microvascular endothelial cells is required for Escherichia coli invasion. Infect Immun 1999; 67(11)5775–5783
  • Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 2002; 54(4)561–587
  • Ramge P, Unger RE, Oltrogge JB, Zenker D, Begley D, Kreuter J, Von BH. Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci 2000; 12(6)1931–1940
  • Raub TJ. Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions. Am J Physiol 271 1996; 271(2 Pt 1)C495–C503
  • Reese TS, Karnovsky MJ. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 1967; 34(1)207–217
  • Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik LV. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 2005; 280(15)15300–15306
  • Ring A, Weiser JN, Tuomanen EI. Pneumococcal trafficking across the blood–brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest 1998; 102(2)347–360
  • Risau W, Dingler A, Albrecht U, Dehouck MP, Cecchelli R. Blood–brain barrier pericytes are the main source of gamma-glutamyltranspeptidase activity in brain capillaries. J Neurochem 1992; 58(2)667–672
  • Roberts RL, Fine RE, Sandra A. Receptor-mediated endocytosis of transferrin at the blood–brain barrier. J Cell Sci 1993; 104(Pt 2)521–532
  • Rousselle C, Clair P, Lefauconnier JM, Kaczorek M, Scherrmann JM, Temsamani J. New advances in the transport of doxorubicin through the blood–brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 2000; 57(4)679–686
  • Rousselle C, Smirnova M, Clair P, Lefauconnier JM, Chavanieu A, Calas B, Scherrmann JM, Temsamani J. Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: Saturation kinetics and specificity. J Pharmacol Exp Ther 2001; 296(1)124–131
  • Rousselle C, Clair P, Temsamani J, Scherrmann JM. Improved brain delivery of benzylpenicillin with a peptide-vector-mediated strategy. J Drug Target 2002; 10(4)309–315
  • Rousselle C, Clair P, Smirnova M, Kolesnikov Y, Pasternak GW, Gac-Breton S, Rees AR, Scherrmann JM, Temsamani J. Improved brain uptake and pharmacological activity of dalargin using a peptide-vector-mediated strategy. J Pharmacol Exp Ther 2003; 306(1)371–376
  • Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J. A cell culture model of the blood–brain barrier. J Cell Biol 1991; 115(6)1725–1735
  • Saito Y, Buciak J, Yang J, Pardridge WM. Vector-mediated delivery of [125]I-labeled beta-amyloid peptide A beta 1–40 through the blood–brain barrier and binding to Alzheimer disease amyloid of the A beta 1–40/vector complex. Proc Natl Acad Sci USA 1995; 92(22)10227–10231
  • Schlachetzki F, Pardridge WM. P-glycoprotein and caveolin-1alpha in endothelium and astrocytes of primate brain. Neuroreport 2003; 14(16)2041–2046
  • Schlachetzki F, Zhu C, Pardridge WM. Expression of the neonatal Fc receptor (FcRn) at the blood–brain barrier. J Neurochem 2002; 81(1)203–206
  • Schlachetzki F, Zhang Y, Boado RJ, Pardridge WM. Gene therapy of the brain: The trans-vascular approach. Neurology 2004; 62(8)1275–1281
  • Schnitzer JE. gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol 1992; 262(1 Pt 2)H246–H254
  • Schnyder A, Krahenbuhl S, Drewe J, Huwyler J. Targeting of daunomycin using biotinylated immunoliposomes: Pharmacokinetics, tissue distribution and in vitro pharmacological effects. J Drug Target 2005; 13(5)325–335
  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science 1999; 285(5433)1569–1572
  • Shi N, Pardridge WM. Noninvasive gene targeting to the brain. Proc Natl Acad Sci USA 2000; 97(13)7567–7572
  • Shi N, Zhang Y, Zhu C, Boado RJ, Pardridge WM. Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci USA 2001; 98(22)12754–12759
  • Shimura T, Tabata S, Ohnishi T, Terasaki T, Tsuji A. Transport mechanism of a new behaviorally highly potent adrenocorticotropic hormone (ACTH) analog, ebiratide, through the blood–brain barrier. J Pharmacol Exp Ther 1991; 258(2)459–465
  • Shimura T, Tabata S, Terasaki T, Deguchi Y, Tsuji A. In vivo blood–brain barrier transport of a novel adrenocorticotropic hormone analogue, ebiratide, demonstrated by brain microdialysis and capillary depletion methods. J Pharm Pharmacol 1992; 44(7)583–588
  • Shin S, Lu G, Cai M, Kim KS. Escherichia coli outer membrane protein A adheres to human brain microvascular endothelial cells. Biochem Biophys Res Commun 2005; 330(4)1199–1204
  • Skarlatos S, Yoshikawa T, Pardridge WM. Transport of [[125]I]transferrin through the rat blood–brain barrier. Brain Res 1995; 683(2)164–171
  • Smith KR, Borchardt RT. Permeability and mechanism of albumin, cationized albumin and glycosylated albumin transcellular transport across monolayers of cultured bovine brain capillary endothelial cells. Pharm Res 1989; 6(6)466–473
  • Song BW, Vinters HV, Wu D, Pardridge WM. Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood–brain barrier delivery vector. J Pharmacol Exp Ther 2002; 301(2)605–610
  • Soni V, Kohli DV, Jain SK. Transferrin coupled liposomes as drug delivery carriers for brain targeting of 5-florouracil. J Drug Target 2005; 13(4)245–250
  • Stamnes M. Regulating the actin cytoskeleton during vesicular transport. Curr Opin Cell Biol 2002; 14(4)428–433
  • Stanimirovic D, Morley P, Ball R, Hamel E, Mealing G, Durkin JP. Angiotensin II-induced fluid phase endocytosis in human cerebromicrovascular endothelial cells is regulated by the inositol-phosphate signaling pathway. J Cell Physiol 1996; 169(3)455–467
  • Stewart PA. Endothelial vesicles in the blood–brain barrier: Are they related to permeability?. Cell Mol Neurobiol 2000; 20(2)149–163
  • Stewart PA, Wiley MJ. Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: A study using quail-chick transplantation chimeras. Dev Biol 1981; 84(1)183–192
  • Stewart PA, Hayakawa K, Hayakawa E, Farrell CL, Del Maestro RF. A quantitative study of blood–brain barrier permeability ultrastructure in a new rat glioma model. Acta Neuropathol (Berl) 1985; 67(1–2)96–102
  • Stewart PA, Magliocco M, Hayakawa K, Farrell CL, Del Maestro RF, Girvin J, Kaufmann JC, Vinters HV, Gilbert J. A quantitative analysis of blood–brain barrier ultrastructure in the aging human. Microvasc Res 1987; 33(2)270–282
  • Stewart PA, Farrell CR, Farrell CL, Hayakawa E. Horseradish peroxidase retention and washout in blood–brain barrier lesions. J Neurosci Methods 1992; 41(1)75–84
  • Stins MF, Badger J, Sik KK. Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathog 2001; 30(1)19–28
  • Sun H, Li H, Sadler PJ. Transferrin as a metal ion mediator. Chem Rev 1999; 99(9)2817–2842
  • Suzuki T, Futaki S, Niwa M, Tanaka S, Ueda K, Sugiura Y. Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem 2002; 277(4)2437–2443
  • Suzuki T, Wu D, Schlachetzki F, Li JY, Boado RJ, Pardridge WM. Imaging endogenous gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology. J Nucl Med 2004; 45(10)1766–1775
  • Tadayoni BM, Friden PM, Walus LR, Musso GF. Synthesis, in vitro kinetics and in vivo studies on protein conjugates of AZT: Evaluation as a transport system to increase brain delivery. Bioconjug Chem 1993; 4(2)139–145
  • Temsamani J, Bonnafous C, Rousselle C, Fraisse Y, Clair P, Granier LA, Rees AR, Kaczorek M, Scherrmann JM. Improved brain uptake and pharmacological activity profile of morphine-6-glucuronide using a peptide vector-mediated strategy. J Pharmacol Exp Ther 2005; 313(2)712–719
  • Teng CH, Cai M, Shin S, Xie Y, Kim KJ, Khan NA, Di CF, Kim KS. Escherichia coli K1 RS218 interacts with human brain microvascular endothelial cells via type 1 fimbria bacteria in the fimbriated state. Infect Immun 2005; 73(5)2923–2931
  • Terasaki T, Deguchi Y, Sato H, Hirai K, Tsuji A. In vivo transport of a dynorphin-like analgesic peptide, E-2078, through the blood–brain barrier: An application of brain microdialysis. Pharm Res 1991; 8(7)815–820
  • Terasaki T, Takakuwa S, Saheki A, Moritani S, Shimura T, Tabata S, Tsuji A. Absorptive-mediated endocytosis of an adrenocorticotropic hormone (ACTH) analogue, ebiratide, into the blood–brain barrier: Studies with monolayers of primary cultured bovine brain capillary endothelial cells. Pharm Res 1992; 9(4)529–534
  • Thole M, Nobmanna S, Huwyler J, Bartmann A, Fricker G. Uptake of cationzied albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries. J Drug Target 2002; 10(4)337–344
  • Thomas WE. Brain macrophages: On the role of pericytes and perivascular cells. Brain Res Brain Res Rev 1999; 31(1)42–57
  • utry-Varsat A, Ciechanover A, Lodish HF. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci USA 1983; 80(8)2258–2262
  • Virgintino D, Robertson D, Errede M, Benagiano V, Girolamo F, Maiorano E, Roncali L, Bertossi M. Expression of P-glycoprotein in human cerebral cortex microvessels. J Histochem Cytochem 2002; 50(12)1671–1676
  • Visser CC, Stevanovic S, Voorwinden LH, van BL, Gaillard PJ, Danhof M, Crommelin DJ, de Boer AG. Targeting liposomes with protein drugs to the blood–brain barrier in vitro. Eur J Pharm Sci 2005; 25(2–3)299–305
  • Vives E. Cellular uptake of the Tat peptide: An endocytosis mechanism following ionic interactions. J Mol Recognit 2003; 16(5)265–271
  • Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997; 272(25)16010–16017
  • Vives E, Richard JP, Rispal C, Lebleu B. TAT peptide internalization: Seeking the mechanism of entry. Curr Protein Pept Sci 2003; 4(2)125–132
  • Wadia JS, Dowdy SF. Protein transduction technology. Curr Opin Biotechnol 2002; 13(1)52–56
  • Wadia JS, Dowdy SF. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv Drug Deliv Rev 2005; 57(4)579–596
  • Waguespack PJ, Banks WA, Kastin AJ. Interleukin-2 does not cross the blood–brain barrier by a saturable transport system. Brain Res Bull 1994; 34(2)103–109
  • Walus LR, Pardridge WM, Starzyk RM, Friden PM. Enhanced uptake of rsCD4 across the rodent and primate blood–brain barrier after conjugation to anti-transferrin receptor antibodies. J Pharmacol Exp Ther 1996; 277(2)1067–1075
  • Wang Y, Wen ZG, Kim KS. Role of S fimbriae in Escherichia coli K1 binding to brain microvascular endothelial cells in vitro and penetration into the central nervous system in vivo. Microb Pathog 2004; 37(6)287–293
  • Westergaard E. The blood–brain barrier to horseradish peroxidase under normal and experimental conditions. Acta Neuropathol (Berl) 1977; 39(3)181–187
  • Wolburg H, Wolburg-Buchholz K, Engelhardt B. Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol (Berl) 2005; 109(2)181–190
  • Wu D, Pardridge WM. Central nervous system pharmacologic effect in conscious rats after intravenous injection of a biotinylated vasoactive intestinal peptide analog coupled to a blood–brain barrier drug delivery system. J Pharmacol Exp Ther 1996; 279(1)77–83
  • Wu D, Pardridge WM. Pharmacokinetics and blood–brain barrier transport of an anti-transferrin receptor monoclonal antibody (OX26) in rats after chronic treatment with the antibody. Drug Metab Dispos 1998; 26(9)937–939
  • Wu D, Boado RJ, Pardridge WM. Pharmacokinetics and blood–brain barrier transport of [3H]-biotinylated phosphorothioate oligodeoxynucleotide conjugated to a vector-mediated drug delivery system. J Pharmacol Exp Ther 1996; 276(1)206–211
  • Wu D, Song BW, Vinters HV, Pardridge WM. Pharmacokinetics and brain uptake of biotinylated basic fibroblast growth factor conjugated to a blood–brain barrier drug delivery system. J Drug Target 2002; 10(3)239–245
  • Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA. Expression of the iron transporter ferroportin in synaptic vesicles and the blood–brain barrier. Brain Res 2004; 1001(1–2)108–117
  • Yoshikawa T, Pardridge WM. Biotin delivery to brain with a covalent conjugate of avidin and a monoclonal antibody to the transferrin receptor. J Pharmacol Exp Ther 1992; 263(2)897–903
  • Young SP, Bomford A, Williams R. The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes. Biochem J 1984; 219(2)505–510
  • Zhang Y, Pardridge WM. Conjugation of brain-derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Res 2001a; 889(1–2)49–56
  • Zhang Y, Pardridge WM. Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood–brain barrier drug targeting system. Stroke 2001b; 32(6)1378–1384
  • Zhang Y, Calon F, Zhu C, Boado RJ, Pardridge WM. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther 2003; 14(1)1–12
  • Zhang F, Chen Y, Heiman M, Dimarchi R. Leptin: Structure, function and biology. Vitam Horm 2005; 71: 345–372
  • Zorko M, Langel U. Cell-penetrating peptides: Mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 2005; 57(4)529–545

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.