492
Views
57
CrossRef citations to date
0
Altmetric
Research Article

Primary porcine brain microvascular endothelial cells: Biochemical and functional characterisation as a model for drug transport and targeting

, &
Pages 253-268 | Received 24 Feb 2007, Accepted 06 Apr 2007, Published online: 08 Oct 2008

References

  • Abbott NJ. Astrocyte-endothelial interactions and blood–brain barrier permeability. J Anat 2002; 200(6)629–638
  • Abbruscato TJ, Davis TP. Combination of hypoxia/aglycemia compromises in vitro blood–brain barrier integrity. J Pharmacol Exp Ther 1999; 289(2)668–675
  • Aoki T, Nomura R, Fujimoto T. Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp Cell Res 1999; 253(2)629–636
  • Arvanitis DN, Wang H, Bagshaw RD, Callahan JW, Boggs JM. Membrane-associated estrogen receptor and caveolin-1 are present in central nervous system myelin and oligodendrocyte plasma membranes. J Neurosci Res 2004; 75(5)603–613
  • Begley DJ. ABC transporters and the blood–brain barrier. Curr Pharm Des 2004; 10(12)1295–1312
  • Boado RJ, Pardridge WM. Glucose deprivation and hypoxia increase the expression of the GLUT1 glucose transporter via a specific mRNA cis-acting regulatory element. J Neurochem 2002; 80(3)552–554
  • Boado RJ, Tsukamoto H, Pardridge WM. Evidence for translational control elements within the 5′-untranslated region of GLUT1 glucose transporter mRNA. J Neurochem 1996; 67(4)1335–1343
  • Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM. Selective expression of the large neutral amino acid transporter at the blood–brain barrier. Proc Natl Acad Sci USA 1999; 96(21)12079–12084
  • Broadwell RD. Transcytosis of macromolecules through the blood–brain barrier: A cell biological perspective and critical appraisal. Acta Neuropathol (Berl) 1989; 79(2)117–128
  • Campbell L, Hollins AJ, Al-Eid A, Newman GR, von RC, Gumbleton M. Caveolin-1 expression and caveolae biogenesis during cell transdifferentiation in lung alveolar epithelial primary cultures. Biochem Biophys Res Commun 1999; 262(3)744–751
  • Chishty M, Reichel A, Begley DJ, Abbott NJ. Glial induction of blood–brain barrier-like l-system amino acid transport in the ECV304 cell line. Glia 2002; 39(2)99–104
  • Coomber BL, Stewart PA. Morphometric analysis of CNS microvascular endothelium. Microvasc Res 1985; 30(1)99–115
  • Duelli R, Enerson BE, Gerhart DZ, Drewes LR. Expression of large amino acid transporter LAT1 in rat brain endothelium. J Cereb Blood Flow Metab 2000; 20(11)1557–1562
  • Ek CJ, Dziegielewska KM, Stolp H, Saunders NR. Functional effectiveness of the blood–brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica). J Comp Neurol 2006; 496(1)13–26
  • Engelhardt B. Development of the blood–brain barrier. Cell Tissue Res 2003; 314(1)119–129
  • Forster C, Silwedel C, Golenhofen N, Burek M, Kietz S, Mankertz J, Drenckhahn D. Occludin as direct target for glucocorticoid-induced improvement of blood–brain barrier properties in a murine in vitro system. J Physiol 565 2005; 2: 475–486
  • Franke H, Galla HJ, Beuckmann CT. An improved low-permeability in vitro-model of the blood–brain barrier: Transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res 1999; 818(1)65–71
  • Franke H, Galla H, Beuckmann CT. Primary cultures of brain microvessel endothelial cells: A valid and flexible model to study drug transport through the blood–brain barrier in vitro. Brain Res Brain Res Protoc 2000; 5(3)248–256
  • Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, Lindmark T, Mabondzo A, Nilsson JE, Raub TJ, Stanimirovic D, Terasaki T, Oberg JO, Osterberg T. In vitro models for the blood–brain barrier. Toxicol in Vitro 2005; 19(3)299–334
  • Goh LB, Spears KJ, Yao D, Ayrton A, Morgan P, Roland WC, Friedberg T. Endogenous drug transporters in in vitro and in vivo models for the prediction of drug disposition in man. Biochem Pharmacol 2002; 64(11)1569–1578
  • Gumbleton M, Abulrob AG, Campbell L. Caveolae: An alternative membrane transport compartment. Pharm Res 2000; 17(9)1035–1048
  • Gumbleton M, Audus KL. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood–brain barrier. J Pharm Sci 2001; 90(11)1681–1698
  • Hoffmann K, Gastens AM, Volk HA, Loscher W. Expression of the multidrug transporter MRP2 in the blood–brain barrier after pilocarpine-induced seizures in rats. Epilepsy Res 2006; 69(1)1–14
  • Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla HJ. Hydrocortisone reinforces the blood–brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 1998; 244(1)312–316
  • Iqbal J, Pompolo S, Murakami T, Grouzmann E, Sakurai T, Meister B, Clarke IJ. Immunohistochemical characterization of localization of long-form leptin receptor (OB-Rb) in neurochemically defined cells in the ovine hypothalamus. Brain Res 2001; 920(1–2)55–64
  • Kageyama T, Nakamura M, Matsuo A, Yamasaki Y, Takakura Y, Hashida M, Kanai Y, Naito M, Tsuruo T, Minato N, Shimohama S. The 4F2hc/LAT1 complex transports L-DOPA across the blood–brain barrier. Brain Res 2000; 879(1–2)115–121
  • Kido Y, Tamai I, Uchino H, Suzuki F, Sai Y, Tsuji A. Molecular and functional identification of large neutral amino acid transporters LAT1 and LAT2 and their pharmacological relevance at the blood–brain barrier. J Pharm Pharmacol 2001; 53(4)497–503
  • Lee WJ, Peterson DR, Sukowski EJ, Hawkins RA. Glucose transport by isolated plasma membranes of the bovine blood–brain barrier. Am J Physiol 1997; 1(5 Pt 1)C1552–C1557
  • Merino B, ez-Fernandez C, Ruiz-Gayo M, Somoza B. Choroid plexus epithelial cells co-express the long and short form of the leptin receptor. Neurosci Lett 2006; 393(2–3)269–272
  • Moos T, Mollgard K. Cerebrovascular permeability to azo dyes and plasma proteins in rodents of different ages. Neuropathol Appl Neurobiol 1993; 19(2)120–127
  • Newman GR, Campbell L, von RC, Jasani B, Gumbleton M. Caveolin and its cellular and subcellular immunolocalisation in lung alveolar epithelium: Implications for alveolar epithelial type I cell function. Cell Tissue Res 1999; 295(1)111–120
  • Ohtsuki S. New aspects of the blood–brain barrier transporters; its physiological roles in the central nervous system. Biol Pharm Bull 2004; 27(10)1489–1496
  • Omidi Y, Campbell L, Barar J, Connell D, Akhtar S, Gumbleton M. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood–brain barrier model for drug uptake and transport studies. Brain Res 2003; 990(1–2)95–112
  • Pinkofsky HB, Dwyer DS, Bradley RJ. The inhibition of GLUT1 glucose transport and cytochalasin B binding activity by tricyclic antidepressants. Life Sci 2000; 66(3)271–278
  • Raub TJ, Kuentzel SL, Sawada GA. Permeability of bovine brain microvessel endothelial cells in vitro: Barrier tightening by a factor released from astroglioma cells. Exp Cell Res 1992; 199(2)330–340
  • Regina A, Roux F, Revest PA. Glucose transport in immortalized rat brain capillary endothelial cells in vitro: Transport activity and GLUT1 expression. Biochim Biophys Acta 1997; 1335(1–2)135–143
  • Rist RJ, Romero IA, Chan MW, Couraud PO, Roux F, Abbott NJ. F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: Effects of cyclic AMP and astrocytic factors. Brain Res 1997; 768(1–2)10–18
  • Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kuhn LC. LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 1999; 274(49)34948–34954
  • Schinkel AH, Wagenaar E, van DL, Mol CA, Borst P. Absence of the mdr1a p-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96(4)1698–1705
  • Siawrys G, Przala J, Kaminski T, Smolinska N, Gajewska A, Kochman K, Skowronski M, Staszkiewicz J. Long form leptin receptor mRNA expression in the hypothalamus and pituitary during early pregnancy in the pig. Neuro Endocrinol Lett 2005; 26(4)305–309
  • Smith MW, Gumbleton M. Endocytosis at the blood–brain barrier: From basic understanding to drug delivery strategies. J Drug Target 2006; 14(4)191–214
  • Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, Kato T. Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 1999; 35(2)155–164
  • Stewart PA. Endothelial vesicles in the blood–brain barrier: Are they related to permeability?. Cell Mol Neurobiol 2000; 20(2)149–163
  • Stewart PA, Hayakawa K, Hayakawa E, Farrell CL, Del Maestro RF. A quantitative study of blood–brain barrier permeability ultrastructure in a new rat glioma model. Acta Neuropathol (Berl) 1985; 67(1–2)96–102
  • Stewart PA, Magliocco M, Hayakawa K, Farrell CL, Del Maestro RF, Girvin J, Kaufmann JC, Vinters HV, Gilbert J. A quantitative analysis of blood–brain barrier ultrastructure in the aging human. Microvasc Res 1987; 33(2)270–282
  • Stewart PA, Farrell CR, Farrell CL, Hayakawa E. Horseradish peroxidase retention and washout in blood–brain barrier lesions. J Neurosci Methods 1992; 41(1)75–84
  • Su Y, Sinko PJ. Drug delivery across the blood–brain barrier: Why is it difficult? How to measure and improve it?. Expert Opin Drug Deliv 2006; 3(3)419–435
  • Tilling T, Korte D, Hoheisel D, Galla HJ. Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J Neurochem 1998; 71(3)1151–1157
  • Verrey F, Meier C, Rossier G, Kuhn LC. Glycoprotein-associated amino acid exchangers: Broadening the range of transport specificity. Pflugers Arch 2000; 440(4)503–512
  • Virgintino D, Robertson D, Errede M, Benagiano V, Tauer U, Roncali L, Bertossi M. Expression of caveolin-1 in human brain microvessels. Neuroscience 2002; 115(1)145–152
  • Wagner CA, Lang F, Broer S. Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 2001; 281(4)C1077–C1093
  • Zhang Y, Schuetz JD, Elmquist WF, Miller DW. Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J Pharmacol Exp Ther 2004; 311(2)449–455
  • Zhou R, Vander Heiden MG, Rudin CM. Genotoxic exposure is associated with alterations in glucose uptake and metabolism. Cancer Res 2002; 62(12)3515–3520

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.