458
Views
35
CrossRef citations to date
0
Altmetric
Review Article

Novel nanoparticulate systems for lung cancer therapy: an updated review

, , , , , , & show all
Pages 499-512 | Received 13 Aug 2016, Accepted 29 Jan 2017, Published online: 20 Feb 2017

References

  • Yen LH, A MK, Najmunnise N. Nanoparticle-based targeted gene therapy for lung cancer. Am J Cancer Res 2016;6:1118–34.
  • Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 2011;32:605–44.
  • Chunsahn S, Haiyang Y, Dejun S, et al. Cisplatin loaded polymeric nanoparticles: characterization and potential exploitation for the treatment of of non small cell lung carcinoma. Acta Biomaterialia 2015;18:68–76.
  • Mandal B, Mittal NK, Balabathula P, et al. Development and in vitro evaluation of core-shell type lipid-polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci 2016;81:162–71.
  • Alibolandi M, Ramezani M, Abnous K, et al. In vitro and in vivo evaluation of therapy targeting epithelial-cell adhesion-molecule aptamers for non-small cell lung cancer. J Control Release 2015;209:88–100.
  • Choi SH, Jin SE, Lee MK, et al. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur J Pharm Biopharm 2008;68:545–54.
  • Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 2016;5:288–300.
  • Zhu X, Xu Y, Solis LM, et al. Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment. Proc Natl Acad Sci USA 2015;112:7779–84.
  • Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem 2010;3:135–40.
  • Pandey N, Dhiman S, Srivastava T, Majumder S. Transition metal oxide nanoparticles are effective in inhibiting lung cancer cell survival in the hypoxic tumor microenvironment. Chem Biol Interact 2016;254:221–30.
  • Shakeel A, Annu Saiqa I, Salprima Y. Biosynthesis of gold nanoparticles: a general approach. J Photochem Photobiol B 2016;161:141–53.
  • In GK, Nieva J. Emerging chemotherapy agents in lung cancer: nanoparticles therapeutics for non-small cell lung cancer. Transl Cancer Res 2015;4:340–55.
  • Zhengxia L, Yucheng W, Zhirui G, et al. Effects of internalized gold nanoparticles with respect to cytotoxicity and invasion activity in lung cancer cells. PLoS One 2014;9:1–11.
  • Qian Y, Qiu M, Wu Q, et al. Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles. Sci Rep 2014;4:7490.
  • Orel V, Shevchenko A, Romanov A, et al. Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin. Nanomedicine 2015;11:47–55.
  • Sadeghi L, Babadi VY, Espanani H. Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratisl Lek Listy 2014;116:373–8.
  • McBride AA, Price DN, Lamoureux LR, et al. Preparation and characterization of novel magnetic nano-in-microparticles for site-specific pulmonary drug delivery. Mol Pharm 2013;10:3574–81.
  • Kuroda S, Tam J, Roth JA, et al. EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage. Int J Nanomed 2014;9:3825–39.
  • Nejati-Koshki K, Mesgari M, Ebrahimi E, et al. Synthesis and in vitro study of cisplatin-loaded Fe3O4 nanoparticles modified with PLGA-PEG6000 copolymers in treatment of lung cancer. J Microencapsul 2014;31:815–23.
  • del Mar Ramos-Tejada M, Viota JL, Rudzka K, Delgado AV. Preparation of multi-functionalized Fe3O4/Au nanoparticles for medical purposes. Colloids Surf B Biointerfaces 2015;128:1–7.
  • Dufort S, Bianchi A, Henry M, et al. Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. Small 2015;11:215–21.
  • Sundarraj S, Thangam R, Sujitha MV, et al. Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy. Toxicol Appl Pharmacol 2014;275:232–43.
  • Noh MS, Lee S, Kang H, et al. Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes. Biomaterials 2015;45:81–92.
  • Mandal B, Bhattacharjee H, Mittal N, et al. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 2013;9:474–91.
  • Zhang L, Zhang L. Lipid–polymer hybrid nanoparticles: synthesis, characterization and applications. Nano LIFE 2010;1:163–73.
  • Fang JY, Al-Suwayeh SA. Nanoparticles as delivery carriers for anticancer prodrugs. Expert Opin Drug Deliv 2012;9:657–69.
  • Jigyasu AK, Siddiqui S, Lohani M, et al. Chemically synthesized CdSe quantum dots inhibit growth of human lung carcinoma cells via ROS generation. EXCLI J 2016;15:54.
  • Schipper ML, Cheng Z, Lee SW, et al. microPET-based biodistribution of quantum dots in living mice. J Nucl Med 2007;48:1511–8.
  • Stan MS, Sima C, Cinteza LO, Dinischiotu A. Silicon‐based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis. FEBS J 2015;282:2914–29.
  • Rakovich TY, Mahfoud OK, Mohamed BM, et al. Highly sensitive single domain antibody–quantum dot conjugates for detection of HER2 biomarker in lung and breast cancer cells. Acs Nano 2014;8:5682–95.
  • Zhou J, Zhao W-Y, Ma X, et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 2013;34:3626–38.
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013;65:36–48.
  • Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007;9:E128–47.
  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009;30:592–9.
  • Haley B, Frenkel E, editors. Nanoparticles for drug delivery in cancer treatment. Urologic Oncology: seminars and original investigations. Netherlands: Elsevier; 2008.
  • Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 2005;1:193–212.
  • Lee WH, Loo CY, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J Pharm Sci 2015;10:481–9.
  • Pandey RK. Recent advances in photodynamic therapy. J Porphyrins Phthalocyanines 2000;4:368–73.
  • Demidova T, Hamblin M. Photodynamic therapy targeted to pathogens. Intl J Immunopathol Pharmacol 2004;17:245–54.
  • Maiolino S, Russo A, Pagliara V, et al. Biodegradable nanoparticles sequentially decorated with Polyethyleneimine and Hyaluronan for the targeted delivery of docetaxel to airway cancer cells. J Nanobiotechnol 2015;13:29.
  • Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010;148:135–46.
  • Zhang JX, Wang K, Mao ZF, et al. Application of liposomes in drug development-focus on gastroenterological targets. Int J Nanomed 2013;8:1325.
  • Pierre MBR, Costa ISM. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res 2011;303:607–21.
  • Guo L, Fan L, Ren J, et al. Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer. Int J Nanomed 2012;7:1449–60.
  • Kraft JC, Freeling JP, Wang Z, Ho RJ. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014;103:29–52.
  • Agashe H, Sahoo K, Lagisetty P, Awasthi V. Cyclodextrin-mediated entrapment of curcuminoid 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid] or CLEFMA in liposomes for treatment of xenograft lung tumor in rats. Colloids Surf B Biointerfaces 2011;84:329–37.
  • Li R, Wu W, Liu Q, et al. Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PLoS One 2013;8:e69643.
  • Yao L, Daniels J, Wijesinghe D, et al. pHLIP®-mediated delivery of PEGylated liposomes to cancer cells. J Control Release 2013;167:228–37.
  • Cheng L, Huang FZ, Cheng LF, et al. GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation. Int J Nanomed 2014;9:921.
  • Zhang L, Gu F, Chan J, et al. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008;83:761–9.
  • Anderson M, Omri A. The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv 2004;11:33–9.
  • Cevc G. Rational design of new product candidates: the next generation of highly deformable bilayer vesicles for noninvasive, targeted therapy. J Control Release 2012;160:135–46.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013;8:1.
  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 2013;8:1509–28.
  • Drummond DC, Noble CO, Hayes ME, et al. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci 2008;97:4696–740.
  • Zhang H, Wang ZY, Gong W, et al. Development and characteristics of temperature-sensitive liposomes for vinorelbine bitartrate. Int J Pharm 2011;414:56–62.
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 2006;1:297.
  • Voinea M, Simionescu M. Designing of ‘intelligent’ liposomes for efficient delivery of drugs. J Cell Mol Med 2002;6:465–74.
  • Jiang L, Li L, He X, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials 2015;52:126–39.
  • Goyal P, Goyal K, Kumar SGV, et al. Liposomal drug delivery systems-clinical applications. Acta Pharmaceutica 2005;55:1–25.
  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5:505–15.
  • Uday SK, Bharat B, Poornima D, et al. Emerging application of nanoparticles for lung cancer diagnosis and therapy. Int Nano Lett 2013;3:45.
  • Lee YS, Kim SW. Bioreducible polymers for therapeutic gene delivery. J Control Release 2014;190:424–39.
  • Kumari A, Yadav KS, Yadav CS. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010;75:1–18.
  • Jiang ZM, Dai SP, Xu YQ, et al. Crizotinib-loaded polymeric nanoparticles in lung cancer chemotherapy. Med Oncol 2015;32:193.
  • Wang RT, Zhi XY, Yao SY, Zhang Y. LFC131 peptide-conjugated polymeric nanoparticles for the effective delivery of docetaxel in CXCR4 overexpressed lung cancer cells. Colloids Surf B Biointerfaces 2015;133:43–50.
  • Boyer C, Teo J, Phillips P, et al. Effective delivery of siRNA into cancer cells and tumors using well-defined biodegradable cationic star polymers. Mol Pharm 2013;10:2435–44.
  • Dahlman JE, Barnes C, Khan OF, et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nanotechnol 2014;9:648–55.
  • Guo Y, Wang L, Lv P, Zhang P. Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol Lett 2015;9:1065–72.
  • Sgorla D, Bunhak E, Cavalcanti OA, et al. Exploitation of lipid-polymeric matrices at nanoscale for drug delivery applications. Expert Opin Drug Deliv 2016;13:1301–9.
  • Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 2013;85:427–43.
  • Landesman-Milo D, Ramishetti S, Peer D. Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev 2015;34:291–301.
  • Nguyen KT, Zhao Y. Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Acc Chem Res 2015;48:3016–25.
  • Clawson C, Ton L, Aryal S, et al. Synthesis and characterization of lipid-polymer hybrid nanoparticles with pH-triggered poly(ethylene glycol) shedding. Langmuir 2011;27:10556–61.
  • Zhang L, Feng Q, Wang J, et al. Microfluidic synthesis of hybrid nanoparticles with controlled lipid layers: understanding flexibility-regulated cell–nanoparticle interaction. ACS Nano 2015;9:9912–21.
  • Bivash M, Himanshu B, Nivesh M, Wood GC. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 2013;9:471–91.
  • Gao S, Dagnaes-Hansen F, Nielsen EJ, et al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther 2009;17:1225–33.
  • Schiffelers RM, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucl Acids Res 2004;32:e149.
  • Lakshmikuttyamma A, Sun Y, Lu B, et al. Stable and efficient transfection of siRNA for mutated KRAS silencing using novel hybrid nanoparticles. Mol Pharm 2014;11:4415–24.
  • Dim N, Perepelyuk M, Gomes O, et al. Novel targeted siRNA-loaded hybrid nanoparticles: preparation, characterization and in vitro evaluation. J Nanobiotechnol 2015;13:61.
  • Perepelyuk M, Thangavel C, Liu Y, et al. Biodistribution and Pharmacokinetics Study of siRNA-loaded Anti-NTSR1-mAb-functionalized Novel Hybrid Nanoparticles in a Metastatic Orthotopic Murine Lung Cancer Model. Mol Ther Nucl Acids 2016;5:e282.
  • Yang Y, Li J, Liu F, Huang L. Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis. Mol Ther 2012;20:609–15.
  • Ragelle H, Colombo S, Pourcelle V, et al. Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan-poly(ethylene imine) hybrid nanoparticles: a mechanistic insight. J Control Release 2015;211:1–9.
  • Stocke NA, Meenach SA, Arnold SM, et al. Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying. Int J Pharm 2015;479:320–8.
  • Vatta LL, Sanderson RD, Koch KR. Magnetic nanoparticles: properties and potential applications. Pure Appl Chem 2006;78:1793–801.
  • Jain TK, Richey J, Strand M, et al. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 2008;29:4012–21.
  • Zhang L, Xue H, Gao C, et al. Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3, 4-dihydroxyphenyl-l-alanine linkages. Biomaterials 2010;31:6582–8.
  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today 2007;2:22–32.
  • Barceloux DG, Barceloux D. Cobalt. J Toxicol Clin Toxicol 1999;37:201–16.
  • Bucher JR, Hailey J, Roycroft JR, et al. Inhalation toxicity and carcinogenicity studies of cobalt sulfate. Toxicol Sci 1999;49:56–67.
  • Valko M, Rhodes C, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1–40.
  • Denkhaus E, Salnikow K. Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 2002;42:35–56.
  • Sadeghi L, Babadi V, Espanani H. Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratislavske Lekarske Listy 2014;116:373–8.
  • Sadhukha T, Wiedmann TS, Panyam J. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 2013;34:5163–71.
  • Yokoyama T, Tam J, Kuroda S, et al. EGFR-targeted hybrid plasmonic magnetic nanoparticles synergistically induce autophagy and apoptosis in non-small cell lung cancer cells. PLoS One 2011;6:e25507.
  • Abbas YHE. Development of inhalable microparticles for drug delivery to deep lung tissues. Egypt: The American University in Cairo; 2015.
  • Li JJ, Zou L, Hartono D, et al. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater 2008;20:138–42.
  • Lam AT, Yoon J, Ganbold EO, et al. Colloidal gold nanoparticle conjugates of gefitinib. Colloids Surfaces B Biointerfaces 2014;123:61–7.
  • Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010;2:282–9.
  • Park J, Park J, Ju EJ, et al. Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging. J Control Release 2015;207:77–85.
  • Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 2010;132:4678–84.
  • Chen YH, Tsai CY, Huang PY, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 2007;4:713–22.
  • Wei L, Lu J, Xu H, et al. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 2015;20:595–601.
  • Wang C, Hu X, Gao Y, Ji Y. ZnO nanoparticles treatment induces apoptosis by increasing intracellular ROS levels in LTEP-a-2 cells. BioMed Res Int 2015;2015:423287.
  • Jutz G, Böker A. Bionanoparticles as functional macromolecular building blocks – A new class of nanomaterials. Polymer 2011;52:211–32.
  • Wang XB, Zhou HY. Molecularly targeted gemcitabine-loaded nanoparticulate system towards the treatment of EGFR overexpressing lung cancer. Biomed Pharm 2015;70:123–8.
  • Alibolandi M, Ramezani M, Abnous K, et al. In vitro and in vivo evaluation of therapy targeting epithelial-cell adhesion-molecule aptamers for non-small cell lung cancer. J Control Release 2015;209:88–100.
  • Askarian S, Abnous K, Taghavi S, et al. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles. Colloids Surf B Biointerfaces 2015;136:355–64.
  • Guan YY, Luan X, Xu JR, et al. Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis. Biomaterials 2014;35:3060–70.
  • Choi SH, Byeon HJ, Choi JS, et al. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J Control Release 2015;197:199–207.
  • Shao Z, Shao J, Tan B, et al. Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int J Nanomed 2015;10:1223–33.
  • Dubey A, Park DW, Kwon JE, et al. Investigation of the biological and anti-cancer properties of ellagic acid-encapsulated nano-sized metalla-cages. Int J Nanomed 2015;10:227–40.
  • Conde J, Bao C, Tan Y, et al. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells. Adv Funct Mater 2015;25:4183–94.
  • Ding S, Pickard AJ, Kucera GL, Bierbach U. Design of enzymatically cleavable prodrugs of a potent platinum-containing anticancer agent. Chemistry 2014;20:16164–73.
  • Rooseboom M, Commandeur JNM, Vermeulen NPE. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev 2004;56:53–102.
  • Jia-You F, Al-Suwayeh SA. Nanoparticles as delivery carriers for anti cancer prodrugs. Expert Opin Drug Deliv 2012;9:657–69.
  • Mahato R, Tai W, Cheng K. Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev 2011;63:659–70.
  • Zaro JL. Lipid-based drug carriers for prodrugs to enhance drug delivery. AAPS J 2015;17:83–92.
  • Giang I, Boland EL, Poon GMK. Prodrug applications for targeted cancer therapy. AAPS J 2014;16:899–913.
  • Springer Caroline J, Niculescu-Duvaz I. Prodrug-activating systems in suicide gene therapy. J Clin Invest 2000;105:1161–7.
  • Cao ZT, Chen ZY, Sun CY, et al. Overcoming tumor resistance to cisplatin by cationic lipid-assisted prodrug nanoparticles. Biomaterials 2016;94:9–19.
  • Ma X, Huang X, Moore Z, et al. Esterase-activatable β-lapachone prodrug micelles for NQO1-targeted lung cancer therapy. J Control Release 2015;200:201–11.
  • Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015;5:305–13.
  • de Jesus MB, Zuhorn IS. Solid lipid nanoparticles as nucleic acid delivery system: properties and molecular mechanisms. J Control Release 2015;201:1–13.
  • Makwana V, Jain R, Patel K, et al. Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm 2015;495:439–46.
  • Ezzati Nazhad Dolatabadi J, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull 2015;5:151–9.
  • Thukral DK, Dumoga S, Mishra AK. Solid lipid nanoparticles: promising therapeutic nanocarriers for drug delivery. Curr Drug Deliv 2014;11:771–91.
  • Singh I, Swami R, Jeengar MK, et al. p-Aminophenyl-alpha-D-mannopyranoside engineered lipidic nanoparticles for effective delivery of docetaxel to brain. Chem Phys Lipids 2015;188:1–9.
  • Naguib YW, Rodriguez BL, Li X, Hursting SD, et al. Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: in vitro and in vivo evaluation. Mol Pharm 2014;11:1239–49.
  • Michalet X, Pinaud F, Bentolila L, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307:538–44.
  • Stinaff EA, Scheibner M, Bracker AS, et al. Optical signatures of coupled quantum dots. Science 2006;311:636–9.
  • Cai W, Shin DW, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006;6:669–76.
  • Jamieson T, Bakhshi R, Petrova D, et al. Biological applications of quantum dots. Biomaterials 2007;28:4717–32.
  • Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006;114:165–72.
  • Qu YG, Zhang Q, Pan Q, et al. Quantum dots immunofluorescence histochemical detection of EGFR gene mutations in the non-small cell lung cancers using mutation-specific antibodies. Int J Nanomed 2014;9:5771.
  • Badrzadeh F, Rahmati-Yamchi M, Badrzadeh K, et al. Drug delivery and nanodetection in lung cancer. Artif Cells Nanomed Biotechnol 2016;44:618–34.
  • Wang YW, Yang K, Tang H, et al. Toxicity assessment of repeated intravenous injections of arginine–glycine–aspartic acid peptide conjugated CdSeTe/ZnS quantum dots in mice. Int J Nanomed 2014;9:4809.
  • Chen MH, Hanagata N, Ikoma T, et al. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment. Acta Biomater 2016;37:165–73.
  • Robertson CA, Evans DH, Abrahamse H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 2009;96:1–8.
  • Nwogu C, Pera P, Bshara W, et al. Photodynamic therapy of human lung cancer xenografts in mice. J Surg Res 2015;200:8–12.
  • Huang Z. A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat 2005;4:283–93.
  • Chang JE, Cho HJ, Yi E, et al. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid-ceramide nanoparticles for targeted photodynamic therapy in lung cancer. J Photochem Photobiol B 2016;158:113–21.
  • Rocha LB, Gomes-da-Silva LC, Dabrowski JM, Arnaut LG. Elimination of primary tumours and control of metastasis with rationally designed bacteriochlorin photodynamic therapy regimens. Eur J Cancer 2015;51:1822–30.
  • Obstoy B, Salaun M, Bohn P, et al. Photodynamic therapy using methylene blue in lung adenocarcinoma xenograft and hamster cheek pouch induced squamous cell carcinoma. Photodiagnosis Photodynamic Ther 2016;15:109–14.
  • Khatun Z, Nurunnabi M, Nafiujjaman M, et al. A hyaluronic acid nanogel for photo-chemo theranostics of lung cancer with simultaneous light-responsive controlled release of doxorubicin. Nanoscale 2015;7:10680–9.
  • Hou W, Zhao X, Qian X, et al. pH-Sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Nanoscale 2016;8:104–16.
  • Thapa P, Li M, Bio M, et al. Far-red light-activatable prodrug of paclitaxel for the combined effects of photodynamic therapy and site-specific paclitaxel chemotherapy. J Med Chem 2016;59:3204–14.
  • Zhang W, Shen J, Su H, et al. Co-delivery of cisplatin prodrug and chlorin e6 by mesoporous silica nanoparticles for chemo-photodynamic combination therapy to combat drug resistance. ACS Appl Mater Interfaces 2016;8:13332–40.
  • Priyanka T, Ullah MA, Annette L, et al. nanaoparticulate carriers: an emerging tool for breast cancer therapy. J Drug Target 2015;23:97–108.
  • Gopalakrishna P. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharmacy Pharmaceut Sci 2014;1:1–13.
  • Anish B, Templeton KA, Anupama M, Rajagopal R. Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges. J Nanomaterial 2013;1:1–11.
  • Grace L, Mandal TK. Nanamedicines: emerging therapeutics for 21st century. US Pharmacist 2012;37:7–11.
  • Dan P, Karp JM, Seungpyo H, et al. Nanocarriers as an emerging platforms for cancer therapy. Nat Nanotechnol 2007;2:751–60.
  • Sanjib B, Kudgus RA, Resham B, Priyabrata M. Inorganic nanoparticles in cancer therapy. Pharmaceut Res 2011;28:237–59.
  • Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011;61:250–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.