648
Views
26
CrossRef citations to date
0
Altmetric
Review Article

Malaria treatment using novel nano-based drug delivery systems

, , , ORCID Icon, &
Pages 567-581 | Received 05 Jan 2017, Accepted 02 Feb 2017, Published online: 28 Feb 2017

References

  • WHO,WorldMalariaReport. Available from: http://www.who.int/malaria/publications/world_malaria_report_2014/wmr-2014/malaria2014.pdf [last accessed 15 Feb 2015].
  • Hyde JE. Mechanisms of resistance of Plasmodium falciparum to antimalarial drugs. Microbes Infect 2002;4:165–74.
  • Goswami D, Baruah I, Dhiman S, et al. Chemotherapy and drug resistance status of malaria parasite in northeast India. Asian Pac J Trop Med 2013;6:583–8.
  • Sibley CH. Understanding drug resistance in malaria parasites: basic science for public health. Mol Biochem Parasitol 2014;195:107–14.
  • Winstanley P, Ward S. Malaria chemotherapy. Adv Parasitol 2006;61:47–76.
  • Gardella F, Assi S, Simon F, et al. Antimalarial drug use in general populations of tropical Africa. Malar J 2008;7:1.
  • WHO, Global Malaria Control and Elimination. Available from: http://apps.who.int/malaria/docs/elimination/MalariaControlEliminationMeeting.pdf [last accessed 20 Jun 2014]. (World Health Organization. Global malaria control and elimination: report of a technical review).
  • Greenwood BM, Fidock DA, Kyle DE, et al. Malaria: progress, perils, and prospects for eradication. J Clin Invest 2008;118:1266–76.
  • Krettli AU, Andrade-Neto VF, Brandão MD, Ferrari W. The search for new antimalarial drugs from plants used to treat fever and malaria or plants ramdomly selected: a review. Mem Inst Oswaldo Cruz 2001;96:1033–42.
  • Greenberg AE, Nsa W, Ryder RW, et al. Plasmodium falciparum malaria and perinatally acquired human immunodeficiency virus type 1 infection in Kinshasa, Zaire: a prospective, longitudinal cohort study of 587 children. N Engl J Med 1991;325:105–9.
  • Van Geertruyden JP. Interactions between malaria and human immunodeficiency virus anno 2014. Clin Microbiol Infect 2014;20:278–85.
  • Grimwade K, French N, Mbatha DD, et al. Childhood malaria in a region of unstable transmission and high human immunodeficiency virus prevalence. Pediatr Infect Dis J 2003;22:1057–63.
  • Orlov M, Vaida F, Finney OC, et al. P. falciparum enhances HIV replication in an experimental malaria challenge system. PLoS One 2012;7:e39000.
  • Hastings IM. The origins of antimalarial drug resistance. Trends Parasitol 2004;20:512–18.
  • Winstanley PA. Chemotherapy for falciparum malaria: the armoury, the problems and the prospects. Parasitol Today 2000;16:146–53.
  • Rathore D, McCutchan TF, Sullivan M, Kumar S. Antimalarial drugs: current status and new developments. Expert Opin Investig Drugs 2005;14:871–83.
  • Nunes JK, Woods C, Carter T, et al. Development of a transmission-blocking malaria vaccine: progress, challenges, and the path forward. Vaccine 2014;32:5531–9.
  • Maire N, Shillcutt SD, Walker DG, et al. Cost-effectiveness of the introduction of a pre-erythrocytic malaria vaccine into the expanded program on immunization in sub-Saharan Africa: analysis of uncertainties using a stochastic individual-based simulation model of Plasmodium falciparum malaria. Value Health 2011;14:1028–38.
  • Vanderberg JP. Reflections on early malaria vaccine studies, the first successful human malaria vaccination, and beyond. Vaccine 2009;27:2–9.
  • Malaria biology. Available from: https://www.cdc.gov/malaria/about/biology/ [last accessed 20 Aug 2016].
  • Bell D, Peeling RW. Evaluation of rapid diagnostic tests: malaria. Nat Rev Microbiol 2006;4:S34–8.
  • Malaria diagnostic testing. Available from: www.who.int/malaria/areas/diagnosis/en/ [last accessed 23 Sep 2016].
  • Verma R, Jayaprakash NS, Vijayalakshmi MA, Venkataraman K. Novel monoclonal antibody against truncated C terminal region of Histidine Rich Protein2 (PfHRP2) and its utility for the specific diagnosis of malaria caused by Plasmodium falciparum. Exp Parasitol 2015;150:56–66.
  • Marti H, Stalder C, González IJ. Diagnostic accuracy of a LAMP kit for diagnosis of imported malaria in Switzerland. Travel Med Infect Dis 2015;13:167–71.
  • Ghayour NZ, Oormazdi H, Akhlaghi L, et al. Detection of Plasmodium vivax and Plasmodium falciparum DNA in human saliva and urine: loop-mediated isothermal amplification for malaria diagnosis. Acta Trop 2014;136:44–9.
  • Surabattula R, Vejandla MP, Mallepaddi PC, et al. Simple, rapid, inexpensive platform for the diagnosis of malaria by loop mediated isothermal amplification (LAMP). Exp Parasitol 2013;134:333–40.
  • Wongsrichanalai C, Sibley CH. Fighting drug‐resistant Plasmodium falciparum: the challenge of artemisinin resistance. Clin Microbiol Infect 2013;19:908–16.
  • Severini C, Menegon M. Resistance to antimalarial drugs: an endless world war against Plasmodium that we risk losing. J Glob Antimicrob Resist 2015;3:58–63.
  • Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 2009;361:455–67.
  • Nosten F, Brasseur P. Combination therapy for malaria: the way forward? Drugs 2002;62:1315–29.
  • Davis TM, Karunajeewa HA, Ilett KF. Artemisinin-based combination therapies for uncomplicated malaria. Med J Aust 2005;182:181–5.
  • Trape JF. The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg 2001;64:12–17.
  • Bray PG, Hawley SR, Mungthin M, Ward SA. Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum. Mol Pharmacol 1996;50:1559–66.
  • Slater AF. Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol Ther 1993;57:203–35.
  • Pagola S, Stephens PW, Bohle DS, et al. The structure of malaria pigment beta-haematin. Nature 2000;404:307–10.
  • Fitch CD, Chevli R, Banyal HS, et al. Lysis of Plasmodium falciparum by ferriprotoporphyrin IX and a chloroquine-ferriprotoporphyrin IX complex. Antimicrob Agents Chemother 1982;21:819–22.
  • Lehane AM, Kirk K. Chloroquine resistance-conferring mutations in PfCRT give rise to a chloroquine-associated H + leak from the malaria parasite’s digestive vacuole. Antimicrob Agents Chemother 2008;52:4374–80.
  • van Schalkwyk DA, Walden JC, Smith PJ. Reversal of chloroquine resistance in Plasmodium falciparum using combinations of chemosensitizers. Antimicrob Agents Chemother 2001;45:3171–4.
  • Lödige M, Lewis MD, Paulsen ES, et al. A primaquine–chloroquine hybrid with dual activity against Plasmodium liver and blood stages. Int J Med Microbiol 2013;303:539–47.
  • Yeka A, Achan J, D’Alessandro U, Talisuna AO. Quinine monotherapy for treating uncomplicated malaria in the era of artemisinin-based combination therapy: an appropriate public health policy? Lancet Infect Dis 2009;9:448–52.
  • Sweetman SC. Martindale: the complete drug reference. London, England, UK: Pharmaceutical Press; 2009.
  • Quinine. Available from: https://www.drugbank.ca/drugs/DB00468 [last accessed 23 Sep 2016].
  • World Health Organization. Severe and complicated malaria. Trans R Soc Trop Med Hyg 1990;84:1–65.
  • Karlsson KK, Hellgren U, Alván G, Rombo L. Audiometry as a possible indicator of quinine plasma concentration during treatment of malaria. Trans R Soc Trop Med Hyg 1990;84:765–7.
  • James EF, Reynolds F, Martindale W. The extra pharmacopoeia. London: Council of The Royal Pharmaceutical Society of Great Britain; 1993.
  • Haas SE, Bettoni CC, de Oliveira LK, et al. Nanoencapsulation increases quinine antimalarial efficacy against Plasmodium berghei in vivo. Int J Antimicrob Agents 2009;34:156–61.
  • Gupta Y, Jain A, Jain SK. Transferrin‐conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol 2007;59:935–40.
  • Vale N, Moreira R, Gomes P. Primaquine revisited six decades after its discovery. Eur J Med Chem 2009;44:937–53.
  • Hiebsch RR, Raub TJ, Wattenberg BW. Primaquine blocks transport by inhibiting the formation of functional transport vesicles. Studies in a cell-free assay of protein transport through the Golgi apparatus. J Biol Chem 1991;266:20323–8.
  • Fernando D, Rodrigo C, Rajapakse S. Primaquine in vivax malaria: an update and review on management issues. Malar J 2011;10:1.
  • White NJ, Qiao LG, Qi G, Luzzatto L. Rationale for recommending a lower dose of primaquine as a Plasmodium falciparum gametocytocide in populations where G6PD deficiency is common. Malar J 2012;11:418.
  • Guidelines for the treatment of malaria – 3rd ed. Geneva, Switzerland: WHO Press; 2015.
  • Bray PG, Deed S, Fox E, et al. Primaquine synergises the activity of chloroquine against chloroquine-resistant P. falciparum. Biochem Pharmacol 2005;70:1158–66.
  • Singh KK, Vingkar SK. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int J Pharm 2008;347:136–43.
  • Chou AC, Fitch CD. Control of heme polymerase by chloroquine and other quinoline derivatives. Biochem Biophys Res Commun 1993;195:422–7.
  • Chai A, Chevli R, Fitch C. Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 1980;19:1543–9.
  • Van Riemsdijk MM, Sturkenboom MC, Ditters JM, et al. Low body mass index is associated with an increased risk of neuropsychiatric adverse events and concentration impairment in women on mefloquine. Br J Clin Pharmacol 2004;57:506–12.
  • Peters W, Robinson BL. The chemotherapy of rodent malaria. XLVI. Reversal of mefloquine resistance in rodent Plasmodium. Ann Trop Med Parasitol 1991;85:5–10.
  • Santelli AC, Ribeiro I, Daher A, et al. Effect of artesunate-mefloquine fixed-dose combination in malaria transmission in amazon basin communities. Malar J 2012;11:286.
  • Lell B, Lehman LG, Schmidt-Ott JR, et al. Malaria chemotherapy trial at a minimal effective dose of mefloquine/sulfadoxine/pyrimethamine compared with equivalent doses of sulfadoxine/pyrimethamine or mefloquine alone. Am J Trop Med Hyg 1998;58:619–24.
  • Karbwang J, Bangchang KN. Clinical pharmacokinetics of halofantrine. Clin Pharmacokinet 1994;27:104–19.
  • Halofantrine. Available from: https://www.drugbank.ca/drugs/DB01218 [last accessed 29 Sep 2016].
  • Nosten F, Ter Kuile FO, Luxemburger C, et al. Cardiac effects of antimalarial treatment with halofantrine. Lancet 1993;341:1054–6.
  • Karbwang J, Bangchang KN, Bunnag D, et al. Cardiac effect of halofantrine. Lancet 1993;342:501.
  • Bouchaud O, Imbert P, Touze JE, et al. Fatal cardiotoxicity related to halofantrine: a review based on a worldwide safety data base. Malar J 2009;8:1.
  • Marquez VE, Cranston JW, Ruddon RW, et al. Mechanism of action of amodiaquine. Synthesis of its indoloquinoline analog. J Med Chem 1972;15:36–9.
  • Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 1998;79:55–87.
  • Olliaro PL, Mussano P. Amodiaquine for treating malaria. Cochrane Database Syst Rev 2003;(2):CD000016.
  • Adjei GO, Goka BQ, Rodrigues OP, et al. Amodiaquine-associated adverse effects after inadvertent overdose and after a standard therapeutic dose. Ghana Med J 2009;43:135–8.
  • Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science 1985;228:1049–55.
  • Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol 2002;32:1655–60.
  • Posner GH, O’Neill PM. Knowledge of the proposed chemical mechanism of action and cytochrome P450 metabolism of antimalarial trioxanes like artemisinin allows rational design of new antimalarial peroxides. Acc Chem Res 2004;37:397–404.
  • Wang J, Huang L, Li J, et al. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One 2010;5:e9582.
  • O’Neill PM, Posner GH. A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem 2004;47:2945–64.
  • Van Hensbroek MB, Onyiorah E, Jaffar S, et al. A trial of artemether or quinine in children with cerebral malaria. N Engl J Med 1996;335:69–75.
  • Hien TT, Day NP, Phu NH, et al. A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria. N Engl J Med 1996;335:76–83.
  • Alin MH, Ashton M, Kihamia CM, et al. Multiple dose pharmacokinetics of oral artemisinin and comparison of its efficacy with that of oral artesunate in falciparum malaria patients. Trans R Soc Trop Med Hyg 1996;90:61–5.
  • Douglas NM, Anstey NM, Angus BJ, et al. Artemisinin combination therapy for vivax malaria. Lancet Infect Dis 2010;10:405–16.
  • Chen N, Auliff A, Rieckmann K, et al. Relapses of Plasmodium vivax infection result from clonal hypnozoites activated at predetermined intervals. J Infect Dis 2007;195:934–41.
  • Krungkrai J, Imprasittichai W, Otjungreed S, et al. Artemisinin resistance or tolerance in human malaria patients. Asian Pac J Trop Med 2010;3:748–53.
  • Brewer TG, Grate SJ, Peggins JO, et al. Fatal neurotoxicity of arteether and artemether. Am J Trop Med Hyg 1994;51:251–9.
  • Li QG, Mog SR, Si YZ, et al. Neurotoxicity and efficacy of arteether related to its exposure times and exposure levels in rodents. Am J Trop Med Hyg 2002;66:516–25.
  • Leslie T, Mayan MI, Hasan MA, et al. Sulfadoxine-pyrimethamine, chlorproguanil-dapsone, or chloroquine for the treatment of Plasmodium vivax malaria in Afghanistan and Pakistan: a randomized controlled trial. JAMA 2007;297:2201–9.
  • Dzinjalamala FK, Macheso A, Kublin JG, et al. Association between the pharmacokinetics and in vivo therapeutic efficacy of sulfadoxine-pyrimethamine in Malawian children. Antimicrob Agents Chemother 2005;49:3601–6.
  • Shulman CE, Dorman EK, Cutts F, et al. Intermittent sulphadoxine-pyrimethamine to prevent severe anaemia secondary to malaria in pregnancy: a randomised placebo-controlled trial. Lancet 1999;353:632–6.
  • Arinaitwe E, Ades V, Walakira A, et al. Intermittent preventive therapy with sulfadoxine-pyrimethamine for malaria in pregnancy: a cross-sectional study from Tororo, Uganda. PLoS One 2013;8:e73073.
  • Tagbor H, Bruce J, Browne E, et al. Efficacy, safety, and tolerability of amodiaquine plus sulphadoxine-pyrimethamine used alone or in combination for malaria treatment in pregnancy: a randomised trial. Lancet 2006;368:1349–56.
  • Hudson AT, Randall AW, Fry M, et al. Novel anti-malarial hydroxynaphthoquinones with potent broad spectrum anti-protozoal activity. Parasitology 1985;90:45–55.
  • Gutteridge WE, Chemotherapy. In: Cox FEG, ed. Modern parasitology. Oxford: Blackwell Scientific Publications; 1993:218–39.
  • Olliaro P. Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol Ther 2001;89:207–19.
  • Bustos DG, Canfield CJ, Canete-Miguel E, Hutchinson DB. Atovaquone-proguanil compared with chloroquine and chloroquine-sulfadoxine-pyrimethamine for treatment of acute Plasmodium falciparum malaria in the Philippines. J Infect Dis 1999;179:1587–90.
  • Radloff PD, Philips J, Nkeyi M, et al. Atovaquone and proguanil for Plasmodium falciparum malaria. Lancet 1996;347:1511–14.
  • Durand R, Prendki V, Cailhol J, et al. Plasmodium falciparum malaria and atovaquone-proguanil treatment failure. Emerg Infect Dis 2008;14:320–2.
  • Boggild AK, Lau R, Reynaud D, et al. Failure of atovaquone-proguanil malaria chemoprophylaxis in a traveler to Ghana. Travel Med Infect Dis 2015;13:89–93.
  • Adaramoye OA, Osaimoje DO, Akinsanya AM, et al. Changes in antioxidant status and biochemical indices after acute administration of artemether, artemether‐lumefantrine and halofantrine in rats. Basic Clin Pharmacol Toxicol 2008;102:412–18.
  • Falade C, Makanga M, Premji Z, et al. Efficacy and safety of artemether–lumefantrine (Coartem®) tablets (six-dose regimen) in African infants and children with acute, uncomplicated falciparum malaria. Trans R Soc Trop Med Hyg 2005;99:459–67.
  • Abdulla S, Sagara I, Borrmann S, et al. Efficacy and safety of artemether-lumefantrine dispersible tablets compared with crushed commercial tablets in African infants and children with uncomplicated malaria: a randomised, single-blind, multicentre trial. Lancet 2008;372:1819–27.
  • Zwang J, Ashley EA, Karema C, et al. Safety and efficacy of dihydroartemisinin-piperaquine in falciparum malaria: a prospective multi-centre individual patient data analysis. PLoS One 2009;4:e6358.
  • Myint HY, Ashley EA, Day NP, et al. Efficacy and safety of dihydroartemisinin-piperaquine. Trans R Soc Trop Med Hyg 2007;101:858–66.
  • Murambiwa P, Masola B, Govender T, et al. Anti-malarial drug formulations and novel delivery systems: a review. Acta Trop 2011;118:71–9.
  • Santos-Magalhaes NS, Mosqueira VC. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 2010;62:560–75.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013;8:1.
  • Moles E, Urbán P, Jimenez-Díaz MB, et al. Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy. J Control Release 2015;210:217–29.
  • Moles E, Moll K, Ch'ng JH, et al. Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells. J Control Release 2016;241:57–67.
  • Marques J, Valle-Delgado JJ, Urban P, et al. Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine 2017;13:515–25.
  • Pirson P, Steiger RF, Trouet A, et al. Liposomes in the chemotherapy of experimental murine malaria. Trans R Soc Trop Med Hyg 1979;73:347.
  • Qiu L, Jing N, Jin Y. Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method. Int J Pharm 2008;361:56–63.
  • Trouet A, Pirson P, Steiger R, et al. Development of new derivatives of primaquine by association with lysosomotropic carriers. Bull World Health Organ 1981;59:449.
  • Smith JE, Pirson P, Sinden RE. Studies on the kinetics of uptake and distribution of free and liposome-entrapped primaquine, and of sporozoites by isolated perfused rat liver. Ann Trop Med Parasitol 1983;77:379–86.
  • Al-Angary AA, Al-Meshal MA, Bayomi MA, Khidr SH. Evaluation of liposomal formulations containing the antimalarial agent, arteether. Int J Pharm 1996;128:163–8.
  • Bayomi MA, Al-Angary AA, Al-Meshal MA, Al-Dardiri MM. In vivo evaluation of arteether liposomes. Int J Pharm 1998;175:1–7.
  • Gabriels M, Plaizier-Vercammen J. Physical and chemical evaluation of liposomes, containing artesunate. J Pharm Biomed Anal 2003;31:655–67.
  • Isacchi B, Bergonzi MC, Grazioso M, et al. Artemisinin and artemisinin plus curcumin liposomal formulations: enhanced antimalarial efficacy against Plasmodium berghei-infected mice. Eur J Pharm Biopharm 2012;80:528–34.
  • Urbán P, Estelrich J, Cortés A, Fernàndez-Busquets X. A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. J Control Release 2011;151:202–11.
  • Urbán P, Estelrich J, Adeva A, et al. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors. Nanoscale Res Lett 2011;6:1.
  • Owais M, Varshney GC, Choudhury A, et al. Chloroquine encapsulated in malaria-infected erythrocyte-specific antibody-bearing liposomes effectively controls chloroquine-resistant Plasmodium berghei infections in mice. Antimicrob Agents Chemother 1995;39:180–4.
  • Postma NS, Crommelin DJ, Eling WM, Zuidema J. Treatment with liposome-bound recombinant human tumor necrosis factor-α suppresses parasitemia and protects against Plasmodium berghei k173-induced experimental cerebral malaria in mice. J Pharm Exp Ther 1999;288:114–20.
  • Pirson P, Steiger R, Trouet A. The disposition of free and liposomally encapsulated antimalarial primaquine in mice. Biochem Pharmacol 1982;31:3501–7.
  • Longmuir KJ, Robertson RT, Haynes SM, et al. Effective targeting of liposomes to liver and hepatocytes in vivo by incorporation of a Plasmodium amino acid sequence. Pharm Res 2006;23:759–69.
  • Haynes SM, Longmuir KJ, Robertson RT, et al. Liposomal polyethyleneglycol and polyethyleneglycol-peptide combinations for active targeting to liver in vivo. Drug Deliv 2008;15:207–17.
  • Alving CR. Liposomes as carriers of antigens and adjuvants. J Immunol Meth 1991;140:1–3.
  • Verma JN, Rao M, Amselem S, et al. Adjuvant effects of liposomes containing lipid A: enhancement of liposomal antigen presentation and recruitment of macrophages. Infect Immun 1992;60:2438–44.
  • Casares S, Brumeanu TD, Richie TL. The RTS,S malaria vaccine. Vaccine 2010;28:4880–94.
  • Campo JJ, Dobano C, Sacarlal J, et al. Impact of the RTS, S malaria vaccine candidate on naturally acquired antibody responses to multiple asexual blood stage antigens. PLoS One 2011;6:e25779.
  • Morrison C. Landmark green light for Mosquirix malaria vaccine. Nat Biotechnol 2015;33:1015–16.
  • Sharma SK, Gupta C, Dwivedi V, et al. Prophylactic potential of liposomized integral membrane protein of Plasmodium yoelii nigeriensis against blood stage infection in BALB/c mice. Vaccine 2007;25:2103–11.
  • Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2001;47:165–96.
  • Utreja S, Jain NK. Solid lipid nanoparticles. In: Jain, NK. eds. Advances in controlled and novel drug delivery. New Delhi, India: CBS Publishers; 2001;408–25.
  • Mueller RH, Maeder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 2000;50:161–77.
  • Omwoyo WN, Melariri P, Gathirwa JW, et al. Development, characterization and antimalarial efficacy of dihydroartemisinin loaded solid lipid nanoparticles. Nanomedicine 2016;12:801–9.
  • Omwoyo WN, Ogutu B, Oloo F, et al. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int J Nanomed 2014;9:3865.
  • Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002;242:121–8.
  • Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002;54:S131–55.
  • Joshi M, Pathak S, Sharma S, Patravale V. Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: Nanoject. Int J Pharm 2008;364:119–26.
  • Parashar D, Aditya NP, Murthy RS. Development of artemether and lumefantrine co-loaded nanostructured lipid carriers: physicochemical characterization and in vivo antimalarial activity. Drug Deliv 2016;23:123–9.
  • Prabhu P, Suryavanshi S, Pathak S, et al. Nanostructured lipid carriers of artemether–lumefantrine combination for intravenous therapy of cerebral malaria. Int J Pharm 2016;513:504–17.
  • Jain SA, Basu H, Prabhu PS, et al. Parasite impairment by targeting Plasmodium-infected RBCs using glyceryl-dilaurate nanostructured lipid carriers. Biomaterials 2014;35:6636–45.
  • Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 2015;5:123–7.
  • Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and applications. Soft Matter 2016;12:2826–41.
  • Dwivedi P, Khatik R, Chaturvedi P, et al. Arteether nanoemulsion for enhanced efficacy against Plasmodium yoelii nigeriensis malaria: an approach by enhanced bioavailability. Colloids Surf B Biointerfaces 2015;126:467–75.
  • Dierling AM, Cui Z. Targeting primaquine into liver using chylomicron emulsions for potential vivax malaria therapy. Int J Pharm 2005;303:143–52.
  • Borhade V, Pathak S, Sharma S, Patravale V. Clotrimazole nanoemulsion for malaria chemotherapy. Part I: preformulation studies, formulation design and physicochemical evaluation. Int J Pharm 2012;431:138–48.
  • Borhade V, Pathak S, Sharma S, Patravale V. Clotrimazole nanoemulsion for malaria chemotherapy. Part II: stability assessment, in vivo pharmacodynamic evaluations and toxicological studies. Int J Pharm 2012;431:149–60.
  • Joshi M, Pathak S, Sharma S, Patravale V. Solid microemulsion preconcentrate (NanOsorb) of artemether for effective treatment of malaria. Int J Pharm 2008;362:172–8.
  • Tang Z, He C, Tian H, et al. Polymeric nanostructured materials for biomedical applications. Prog Polym Sci 2016;60:86–128.
  • Barratt G. Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 2003;60:21–37.
  • Attasart P, Boonma S, Sunintaboon P, et al. Inhibition of Plasmodium falciparum proliferation in vitro by double-stranded RNA nanoparticle against malaria topoisomerase II. Exp Parasitol 2016;164:84–90.
  • Föger F, Noonpakdee W, Loretz B, et al. Inhibition of malarial topoisomerase II in Plasmodium falciparum by antisense nanoparticles. Int J Pharm 2006;319:139–46.
  • Urbán P, Valle-Delgado JJ, Mauro N, et al. Use of poly (amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. J Control Release 2014;177:84–95.
  • Surolia R, Pachauri M, Ghosh PC. Preparation and characterization of monensin loaded PLGA nanoparticles: in vitro anti-malarial activity against Plasmodium falciparum. J Biomed Nanotechnol 2012;8:172–81.
  • Couvreur P, Barratt G, Fattal E, et al. Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 2002;19:99–134.
  • dos Santos PP, Flôres SH, de Oliveira Rios A, Chisté RC. Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends Food Sci Technol 2016;53:23–33.
  • Mosqueira VC, Legrand P, Barratt G. Surface-modified and conventional nanocapsules as novel formulations for parenteral delivery of halofantrine. J Nanosci Nanotechnol 2006;6:3193–202.
  • Legrand P, Mosqueira V, Loiseau P, et al. [Long circulating nanocapsules: interest in the treatment of severe malaria with halofantrine]. Ann Pharm Fr 2003;61:196–202.
  • Mosqueira VC, Loiseau PM, Bories C, et al. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob Agents Chemother 2004;48:1222–8.
  • Leite EA, Grabe-Guimarães A, Guimarães HN, et al. Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sci 2007;80:1327–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.