146
Views
3
CrossRef citations to date
0
Altmetric
Original Article

A novel αVβ3 ligand-modified HPMA copolymers for anticancer drug delivery

, , , , , & show all
Pages 231-241 | Received 02 Mar 2017, Accepted 07 Aug 2017, Published online: 18 Aug 2017

References

  • Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev. 2002;54:675–693.
  • Vyas SP, Singh A, Sihorkar V. Ligand-receptor-mediated drug delivery: an emerging paradigm in cellular drug targeting. Crit Rev Ther Drug Carrier Syst. 2001;18:1–76.
  • Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135–146.
  • Cheresh D. Tumor progression induced by integrin αvβ3 mediated anchorage-dependent and -independent signaling. FASEB J. 2014;28:79–93.
  • Stenzel D, Wilsch-Bräuninger M, Wong FK, et al. Integrin αvβ3 and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development. 2014;141:795–806.
  • Liu S, Hsieh WY, Jiang Y, et al. Evaluation of a 99mTc-labeled cyclic RGD tetramer for noninvasive imaging integrin αvβ3-positive breast cancer. Bioconjugate Chem. 2007;18:438–446.
  • Guo Z, He B, Jin H, et al. Targeting efficiency of RGD-modified nanocarriers with different ligand intervals in response to integrin αvβ3 clustering. Biomaterials. 2014;35:6106–6117.
  • Danhier F, Breton AL, Pre´at V. RGD-based strategies to target alpha (v) beta (3) integrin in cancer therapy and diagnosis. Mol Pharmaceutics. 2012;9:2961–2973.
  • Zhan C, Gu B, Xie C, et al. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release. 2010;143:136–142.
  • Dubey PK, Mishra V, Jain S, et al. Liposomes modified with cyclic RGD peptide for tumor targeting. J Drug Target. 2004;12:257–264.
  • Pike DB, Ghandehari H. HPMA copolymer-cyclic RGD conjugates for tumor targeting. Adv Drug Deliv Rev. 2010;62:167–183.
  • Greish K, Ray A, Bauer H, et al. Anticancer and antiangiogenic activity of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer therapy. J Control Release. 2011;151:263–270.
  • Mitra A, Coleman T, Borgman M, et al. Polymeric conjugates of mono-and bi-cyclic α V β 3 binding peptides for tumor targeting. J Control Release. 2006;114:175–183.
  • Kunjachan S, Pola R, Gremse F, et al. Passive versus active tumor targeting using RGD-and NGR-modified polymeric nanomedicines. Nano Lett. 2014;14:972–981.
  • Svensen N, Díaz-Mochón JJ, Bradley M. Decoding a PNA encoded peptide library by PCR: the discovery of new cell surface receptor ligands. Chem Biol. 2011;18:1284–1289.
  • Liu C, Shan W, Liu M, et al. A novel ligand conjugated nanoparticles for oral insulin delivery. Drug Deliv. 2016;23:2015–2025.
  • Kopeček J, Kopečková P, Minko T, et al. HPMA copolymer–anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm. 2000;50:61–81.
  • Kopeček J, Kopečková P. HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev. 2010;62:122–149.
  • Gianasi E, Wasil M, Evagorou E, et al. HPMA copolymer platinates as novel antitumour agents: in vitro properties, pharmacokinetics and antitumour activity in vivo. Eur J Cancer. 1999;35:994–1002.
  • Lai PS, Lou PJ, Peng CL, et al. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release. 2007;122:39–46.
  • Chytil P, Etrych T, Konak C, et al. Properties of HPMA copolymer-doxorubicin conjugates with pH-controlled activation: effect of polymer chain modification. J Control Release. 2006;115:26–36.
  • Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71:409–419.
  • Duncan R, Vicent MJ. Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv Drug Deliv Rev. 2010;62:272–282.
  • Allmeroth M, Moderegger D, Biesalski B, et al. Modifying the body distribution of HPMA-based copolymers by molecular weight and aggregate formation. Biomacromolecules. 2011;12:2841–2849.
  • Lammers T, Subr V, Ulbrich K, et al. HPMA-based polymer therapeutics improve the efficacy of surgery, of radiotherapy and of chemotherapy combinations. Nanomedicine. 2010;5:1501–1523.
  • Kopeček J, Baẑilová H. Poly[N-(2-hydroxypropyl)methacrylamide]—I. Radical polymerization and copolymerization. Eur Polym J. 1973;9:7–14.
  • Ulbrich K, Šubr V, Strohalm J, et al. Polymeric drugs based on conjugates of synthetic and natural macromolecules. I. Synthesis and physico-chemical characterisation. J Control Release. 2000;64:63–79.
  • Omelyanenko V, Kopečková P, Gentry C, et al. Targetable HPMA copolymer-adriamycin conjugates. Recognition, internalization, and subcellular fate. J Control Release. 1998;53:25–37.
  • Etrych T, Mrkvan T, Chytil P, et al. N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. J Appl Polym Sci. 2008;109:3050–3061.
  • Li L, Yang Q, Zhou Z, et al. Doxorubicin-loaded, charge reversible, folate modified HPMA copolymer conjugates for active cancer cell targeting. Biomaterials. 2014;35:5171–5187.
  • Li L, Sun W, Zhong J, et al. Multistage nanovehicle delivery system based on stepwise size reduction and charge reversal for programmed nuclear targeting of systemically administered anticancer drugs. Adv Funct Mater. 2015;25:4101–4113.
  • Xu X, Li L, Zhou Z, et al. Dual-pH responsive micelle platform for co-delivery of axitinib and doxorubicin. Int J Pharm. 2016;507:50–60.
  • Zhou Z, Xu X, Li L, et al. Improvement of anti-tumor abilities on human non-small cell lung carcinoma by micellization and cross-linking of N-(2-hydroxypropyl) methacrylamide copolymers. J Drug Target. 2015;23:821–831.
  • Sun W, Li L, Yang Q, et al. G3-C12 peptide reverses galectin-3 from foe to friend for active targeting cancer treatment. Mol Pharm. 2015;12:4124–4136.
  • Mitra A, Nan A, Papadimitriou JC, et al. Polymer-peptide conjugates for angiogenesis targeted tumor radiotherapy. Nucl Med Biol. 2006;33:43–52.
  • Luo Y, Bernshaw NJ, Lu ZR, et al. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm Res. 2002;19:396–402.
  • Zhang R, Luo K, Yang J, et al. Synthesis and evaluation of a backbone biodegradable multiblock HPMA copolymer nanocarrier for the systemic delivery of paclitaxel. J Control Release. 2013;166:66–74.
  • Vercauteren D, Piest M, van der Aa LJ, et al. Flotillin-dependent endocytosis and a phagocytosis-like mechanism for cellular internalization of disulfide-based poly(amido amine)/DNA polyplexes. Biomaterials. 2011;32:3072–3084.
  • Rayapureddi JP, Tomamichel WJ, Walton ST, et al. TAT fusion protein transduction into isolated mitochondria is accelerated by sodium channel inhibitors. Biochemistry. 2010;49:9470–9479.
  • Xiang S, Zhang X. Cellular uptake mechanism of non-viral gene delivery and means for improving transfection efficiency. In: Martin F, editor. Gene therapy – Tools and potential applications. Vol. 4. InTech; 2013. p. 71–90.
  • Xiao J, Duan X, Yin Q, et al. Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer. Biomaterials. 2013;34:9648–9656.
  • Rihova B, Hovorka O, Kovar L, et al. HPMA-anticancer drug conjugates. Macromolecular Anticancer Therapeutics. New York: Springer; 2010. p. 87–132.
  • Ruan S, Yuan M, Zhang L, et al. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials. 2015;37:425–435.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003.
  • Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7:569–579.
  • Duncan R. Designing polymer conjugates as lysosomotropic nanomedicines. Biochm Soc Trans. 2007;35:56–60.
  • Capasso D, de Paola I, Liguoro A, et al. RGDechi-hCit: αvβ3 selective pro-apoptotic peptide as potential carrier for drug delivery into melanoma metastatic cells. PLoS One. 2014;9:e106441.
  • Liu X, Wang W, Samarsky D, et al. Tumor-targeted in vivo gene silencing via systemic delivery of cRGD-conjugated siRNA. Nucl Acids Res. 2014:42:11805–11817.
  • Borgne-Sanchez A, Dupont S, Langonne A, et al. Targeted Vpr-derived peptides reach mitochondria to induce apoptosis of αvβ3-expressing endothelial cells. Cell Death Differ. 2007;14:422–435.
  • Wang Y, Yang T, Wang X, et al. Targeted polymeric micelle system for delivery of combretastatin A4 to tumor vasculature in vitro. Pharm Res. 2010;27:1861–1868.
  • Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.
  • Stafman LL, Beierle AE. Cell proliferation in neuroblastoma. Cancer. 2016;8:13.
  • Lisanti MP, Schook W, Moskowitz N, et al. Brain clathrin: studies of its ultrastructural assemblies. Eur J Biochem. 1982;121:617–622.
  • Barbuti A, Scavone A, Mazzocchi N, et al. A caveolin-binding domain in the HCN4 channels mediates functional interaction with caveolin proteins. J Mol Cell Cardiol. 2012;53:187–195.
  • Schnitzer JE, Oh P, Pinney E, et al. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol. 1994;127:1217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.