140
Views
5
CrossRef citations to date
0
Altmetric
Journal of Drug Targeting Lifetime Achievement Award 2017

Biophysical studies in polymer therapeutics: the interactions of anionic and cationic PAMAM dendrimers with lipid monolayers

, , &
Pages 910-918 | Received 02 Aug 2017, Accepted 07 Aug 2017, Published online: 25 Aug 2017

References

  • Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm. 2009;71:445–462.
  • Tomalia DA, Naylor AM, Goddard WA. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl. 1990;29:138–175.
  • Jedrych M, Borowska K, Galus R, et al. The evaluation of the biomedical effectiveness of poly(amido)amine dendrimers generation 4.0 as a drug and as drug carriers: a systematic review and meta-analysis. Int J Pharm. 2014;462:38–43.
  • Yabbarov NG, Posypanova GA, Vorontsov EA, et al. Targeted delivery of doxorubicin: drug delivery system based on PAMAM dendrimers. Biochem Moscow. 2013;78:884–894.
  • Gajbhiye V, Palanirajan VK, Tekade RK, et al. Dendrimers as therapeutic agents: a systematic review. J Pharm Pharmacol. 2009;61:989–1003.
  • Shcharbin D, Shakhbazau A, Bryszewska M. Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opin Drug Deliv. 2013;10:1687–1698.
  • Yu S, Li MH, Choi SK, et al. DNA condensation by partially acetylated poly(amido amine) dendrimers: effects of dendrimer charge density on complex formation. Molecules. 2013;18:10707–10720.
  • Zhong H, He ZG, Li Z, et al. Studies on polyamidoamine dendrimers as efficient gene delivery vector. J Biomater Appl. 2008;22:527–544.
  • Sadekar S, Ghandehari H. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev. 2012;64:571–588.
  • Mukherjee SP, Davoren M, Byrne HJ. In vitro mammalian cytotoxicological study of PAMAM dendrimers – towards quantitative structure activity relationships. Toxicol In Vitro. 2010;24:169–177.
  • Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57:2215–2237.
  • Kumar A, Yellepeddi VK, Davies GE, et al. Enhanced gene transfection efficiency by polyamidoamine (PAMAM) dendrimers modified with ornithine residues. Int J Pharm. 2010;392:294–303.
  • Albertazzi LA, Serresi M, Albanese A, et al. Dendrimer internalization and intracellular trafficking in living cells. Mol Pharm. 2010;7:680–688.
  • Wang S, Li Y, Fan J, et al. The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials. 2014;35:7588–7597.
  • Mukherjee SP, Byrne HJ. Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation. Nanomedicine. 2013;9:202–211.
  • Akhtar S, Chandrasekhar B, Attur S, et al. On the nanotoxicity of PAMAM dendrimers: Superfect® stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells. Int J Pharm. 2013;448:239–246.
  • Pryor JB, Harper BJ, Harper SL. Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish. Int J Nanomed. 2014;9:1947–1956.
  • Halets I, Shcharbin D, Klajnert B, et al. Contribution of hydrophobicity, DNA and proteins to the cytotoxicity of cationic PAMAM dendrimers. Int J Pharm. 2013;454:1–3.
  • Thiagarajan G, Greish K, Ghandehari H. Charge affects the oral toxicity of poly(amidoamine) dendrimers. Eur J Pharm Biopharm. 2013;84:330–334.
  • Wang L, Erasquin UJ, Zhao M, et al. Stability, antimicrobial activity, and cytotoxicity of poly(amidoamine) dendrimers on titanium substrates. ACS Appl Mater Interfaces. 2011;3:2885–2894.
  • Wang B, Navath RS, Menjoge AR, et al. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int J Pharm. 2010;395:298–308.
  • Lopez AI, Reins RY, McDermott AM, et al. Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Mol Biosyst. 2009;5:1148–1156.
  • Calabretta M, Kumar A, McDermott A, et al. Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups. Biomacromolecules. 2007;8:1807–1811.
  • Choi YJ, Kang SJ, Kim YJ, et al. Comparative studies on the genotoxicity and cytotoxicity of polymeric gene carriers polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer in Jurkat T-cells. Drug Chem Toxicol. 2010;33:357–366.
  • Jevprasesphant R, Penny J, Jalal R, et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 2003;252:263–266.
  • Berenyi S, Mihaly J, Wacha A, et al. A mechanistic view of lipid membrane disrupting effect of PAMAM dendrimers. Colloids Surf B Biointerfaces. 2014;118:164–171.
  • Roy B, Panda AK, Parimi S, et al. Physico-chemical studies on the interaction of dendrimers with lipid bilayers. 1. Effect of dendrimer generation and liposome surface charge. J Oleo Sci. 2014;63:1185–1193.
  • Akesson A, Bendtsen KM, Beherens MA, et al. The effect of PAMAM G6 dendrimers on the structure of lipid vesicles. Phys Chem Chem Phys. 2010;12:12267–12272.
  • Yanez Arteta M, Ainalem ML, Porcar L, et al. Interactions of PAMAM dendrimers with negatively charged model biomembranes. J Phys Chem B. 2014;118:12892–12906.
  • Kim Y, Kwak Y, Chang R. Free energy of PAMAM dendrimer adsorption onto model biological membranes. J Phys Chem B. 2014;118:6792–6802.
  • Nyitrai G, Keszthelyi T, Bota A, et al. Sodium selective ion channel formation in living cell membranes by polyamidoamine dendrimer. Biochim Biophys Acta. 2013;1828:1873–1880.
  • Mansour H, Zografi G. The relationship between water vapor absorption and desorption by phospholipids and bilayer phase transitions. J Pharm Sci. 2007;96:377.
  • Neville F, Ivankin A, Konovalov O, et al. A comparative study on the interactions of SMAP-29 with lipid monolayers. Biochim Biophys Acta. 2010;1798:851–860.
  • Clifton LA, Lad MD, Green RJ, et al. Single amino acid substitutions in puroindoline-b mutants influence lipid binding properties. Biochemistry. 2007;46:2260–2266.
  • Paiva D, Brezesinski G, Pereira Mdo C, et al. Langmuir monolayers of monocationic lipid mixed with cholesterol or fluorocholesterol: DNA adsorption studies. Langmuir. 2013;29:1920–1925.
  • Bohinc K, Brezesinski G, May S. Modeling the influence of adsorbed DNA on the lateral pressure and tilt transition of a zwitterionic lipid monolayer. Phys Chem Chem Phys. 2012;14:10613–10621.
  • Nowotarska SW, Nowotarski KJ, Friedman M, et al. Effect of structure on the interactions between five natural antimicrobial compounds and phospholipids of bacterial cell membrane on model monolayers. Molecules. 2014;19:7497–7515.
  • Lad MD, Birembaut F, Clifton LA, et al. Antimicrobial peptide-lipid binding interactions and binding selectivity. Biophys J. 2007;92:3575–3586.
  • Deleu M, Crowet JM, Nasir MN, et al. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: a review. Biochim Biophys Acta. 2014;1838:3171–3190.
  • Brezesinski G, Mohwald H. Langmuir monolayers to study interactions at model membrane surfaces. Adv Colloid Interface Sci. 2003;100:563–584.
  • Epand RM, Epand RF. Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta Biomembr. 2009;1788:289–294.
  • Böhme U, Klenge A, Hänel B, et al. Counterion condensation and effective charge of PAMAM dendrimers. Polymers. 2011;3:812–819.
  • Maiti PK, Çaǧn T, Lin ST, et al. Effect of solvent and pH on the structure of PAMAM dendrimers. Macromolecules. 2005;38:979–991.
  • Bodewein L, Schmelter F, Di Fiore S, et al. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines. Toxicol Appl Pharmacol. 2016;305:83–92.
  • Prieto MJ, Bacigalupe D, Pardini O, et al. Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent. Int J Pharm. 2006;326:160–168.
  • Kirkpatrick GJ, Plumb JA, Sutcliffe OB, et al. Evaluation of anionic half generation 3.5–6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J Inorganic Biochem. 2011;105:1115–1122.
  • Sweet DM, Kolhatkar RB, Ray A, et al. Transepithelial transport of PEGylated anionic poly(amidoamine) dendrimers: implications for oral drug delivery. J Control Release. 2009;138:78–85.
  • Oddone N, Lecot N, Fernandez M, et al. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer. J Nanobiotechnol. 2016;14:45.
  • Yavuz B, Bozdag Pehlivan S, Sumer Bolu B, et al. Dexamethasone – PAMAM dendrimer conjugates for retinal delivery: preparation, characterization and in vivo evaluation. J Pharm Pharmacol. 2016;68:1010–1020.
  • Lombardo D, Calandra P, Bellocco E, et al. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. Biochim Biophys Acta. 2016;1858:2769–2777.
  • Keszthelyi T, Hollo G, Nyitrai G, et al. Bilayer charge reversal and modification of lipid organization by dendrimers as observed by sum-frequency vibrational spectroscopy. Langmuir. 2015;31:7815–7825.
  • Nowacka O, Shcharbin D, Klajnert-Maculewicz B, et al. Stabilizing effect of small concentrations of PAMAM dendrimers at the insulin aggregation. Colloids Surf B Biointerfaces. 2014;116:757–760.
  • Shcharbin D, Klajnert B, Bryszewska M. The effect of PAMAM dendrimers on human and bovine serum albumin at different pH and NaCl concentrations. J Biomater Sci Polym Ed. 2005;16:1081–1093.
  • Sanders MR, Clifton LA, Neylon C, et al. Selected wheat seed defense proteins exhibit competitive binding to model microbial lipid interfaces. J Agric Food Chem. 2013;61:6890–6900.
  • Arsenault M, Bedard S, Boulet-Audet M, et al. Study of the interaction of lactoferricin B with phospholipid monolayers and bilayers. Langmuir. 2010;26:3468–3478.
  • Maget-Dana R. The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim Biophys Acta Biomembr. 1999;1462:109–140.
  • Majoros I, Williams C, Becker A, et al. Surface interaction and behavior of poly(amidoamine) dendrimers: deformability and lipid bilayer disruption. J Comp Theo Nano. 2009;6:1430–1436.
  • Mecke A, Majoros IJ, Patri AK, et al. Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group. Langmuir. 2005;21:10348–10354.
  • Mecke A, Uppuluri S, Sassanella TM, et al. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem Phys Lipids. 2004;132:3–14.
  • Wang YL, Lu ZY, Laaksonen A. Specific binding structures of dendrimers on lipid bilayer membranes. Phys Chem Chem Phys. 2012;14:8348–8359.
  • Lee H, Larson RG. Coarse-grained molecular dynamics studies of the concentration and size dependence of fifth- and seventh-generation PAMAM dendrimers on pore formation in DMPC bilayer. J Phys Chem B. 2008;112:7778–7784.
  • Lee H, Larson RG. Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model. J Phys Chem B. 2006;110:18204–18211.
  • Evans K, Laszlo J, Compton D. Carboxyl-terminated PAMAM dendrimer interaction with 1-palmitoyl-2-oleoyl phosphocholine bilayers. Biochim Biophys Acta Biomembr. 2014;1838:445–455.
  • Karolczak K, Rozalska S, Wieczorek M, et al. Poly(amido)amine dendrimers generation 4.0 (PAMAM G4) reduce blood hyperglycaemia and restore impaired blood-brain barrier permeability in streptozotocin diabetes in rats. Int J Pharm. 2012;436:508–518.
  • Li Y, Gu N. Computer simulation of the inclusion of hydrophobic nanoparticles into a lipid bilayer. J Nanosci Nanotech. 2010;10:7616–7619.
  • Wang B, Zhang L, Bae SC, et al. Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc Natl Acad Sci USA. 2008;105:18171–18175.
  • Zheng X, Wang T, Jiang H, et al. Incorporation of Carvedilol into PAMAM-functionalized MWNTs as a sustained drug delivery system for enhanced dissolution and drug-loading capacity. Asian J Pharm Sci. 2013;8:278–286.
  • Zolotarskaya OY, Xu L, Valerie K, et al. Click synthesis of a polyamidoamine dendrimer-based camptothecin prodrug. RSC Adv. 2015;5:58600–58608.
  • Pasut G, Veronese F. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release. 2012;161:461–472.
  • Fruijtier-Pölloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology. 2005;214:1–38.
  • Massenburg D, Lentz B. Poly(ethylene glycol)-induced fusion and rupture of dipalmitoylphosphatidylcholine large, unilamellar extruded vesicles. Biochemistry. 1993;32:9172–9180.
  • Boni LT, Stewart TP, Hui SW. Alterations in phospholipid polymorphism by polyethylene glycol. J Membr Biol. 1984;80:91–104.
  • Avaritt BR, Swaan PW. Intracellular Ca2+ release mediates cationic but not anionic poly(amidoamine) (PAMAM) dendrimer-induced tight junction modulation. Pharm Res. 2014;31:2429–2438.
  • Petrache HI, Zemb T, Belloni L, et al. Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proc Natl Acad Sci USA. 2006;103:7982–7987.
  • Lodish H. Intracellular ion environment and membrane electric potential. In: Lodish H, Berk A, Kaiser CA, et al., editors. Molecular cell biology. 7th ed. New York (NY): W.H. Freeman & Co Ltd; 2012. p. 483–494.
  • Aronson PS, Boron WF, Boulpaep EL. Transport of solutes and water. In: Boron WF, Boulpaep EL, editors. Medical physiology: a cellular and molecular approach. 2nd ed. Philadelphia (PA): Saunders; 2012. p. 106–146.
  • Zhao W, Rog T, Gurtovenko AA, et al. Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na + counterions. Biophys J. 2007;92:1114–1124.
  • Nisato G, Ivkov R, Amis E. J. Size invariance of polyelectrolyte dendrimers. Macromolecules. 2000;33:4172–4176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.