1,715
Views
132
CrossRef citations to date
0
Altmetric
Review Article

Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research

, &
Pages 379-393 | Received 08 May 2018, Accepted 08 Aug 2018, Published online: 05 Sep 2018

References

  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75:1–18.
  • Rampino A, Borgogna M, Blasi P, et al. Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm. 2013;455:219–228.
  • Diop M, Auberval N, Viciglio A, et al. Design, characterisation, and bioefficiency of insulin-chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Int J Pharm. 2015;491:402–408.
  • Vimal S, Taju G, Nambi KSN, et al. Synthesis and characterization of CS/TPP nanoparticles for oral delivery of gene in fish. Aquaculture 2012;358–359:14–22.
  • Tømmeraas K, Strand SP, Christensen BE, et al. Preparation and characterization of branched chitosans. Carbohydr Res. 2011;83:1558–1564.
  • Chua BY, Kobaisi MAl, Zeng W, et al. Chitosan microparticles and nanoparticles as biocompatible delivery vehicles for peptide and protein-based immunocontraceptive vaccines. Mol Pharmaceutics. 2012;9:81–90.
  • Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62:3–11.
  • Kafetzopoulos D, Martinou A, Bouriotis V. Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc Natl Acad Sci USA. 1993;90:2564–2568.
  • Eijsink V, Hoell I, Vaaje-Kolstada G. Structure and function of enzymes acting on chitin and chitosan. Biotechnol Genet Eng Rev. 2010;27:331–366.
  • Agrawal P, Strijkers GJ, Nicolay K. Chitosan-based systems for molecular imaging. Adv Drug Deliv Rev. 2010;62:42–58.
  • Nishimura K, Nishimura S, Seo H, et al. Macrophage activation with multiparous beads prepared from partially deacetylated chitin. J Biomed Mater Res. 1986;20:1359–1372.
  • Kwon S, Park JH, Chung H, et al. Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5â-cholanic acid. Langmuir 2003;19:10188–10193.
  • Yang Y, Wang S, Wang Y, et al. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol Adv. 2014;32:1301–1316.
  • Ding F, Deng H, Du Y, et al. Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 2014;6:9477–9493.
  • Hu X, Tang Y, Wang Q, et al. Rheological behaviour of chitin in NaOH/urea aqueous solution. Carbohydr Polym. 2011;83:1128–1133.
  • Wang Q, Zhang N, Hu X, et al. Chitosan/starch fibers and their properties for drug controlled release. Eur J Pharm Biopharm. 2007;66:398–404.
  • Wang Q, Jamal S, Detamore MS, et al. PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells. J Biomed Mater Res A 2011;96A:520–527.
  • Qun W, Yu-min D, Li h. F, et al. Structures and properties of chitosan-starch-sodium benzoate blend films. J Wuhan Univ (Nat Sci Ed) 2003;49:725–730.
  • Ohya Y, Shiratani M, Kobayashi H, et al. Release behaviour of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. J Macromol Sci A. 1994;31:629–642.
  • Kawashima Y, Handa T, Takenaka H, et al. Novel method for the preparation of controlled-release theophylline granules coated with a polyelectrolyte complex of sodium polyphosphate-chitosan. J Pharm Sci. 1985;74:264–268.
  • Kawashima Y, Handa T, Kasai A, et al. The effects of thickness and hardness of the coating film on the drug release rate of theophylline granules coated with chitosan-sodium tripolyphosphate complex. Chem Pharm Bull. 1985;33:2469–2474.
  • Fernandez-Urrusuno R, Cavlo P, Remunan LC, et al. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 1999;16:1576–1581.
  • Pan Y, Li Y, Zhao H, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm. 2002;249:139–147.
  • Aydin RST, Pulat M. 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater. 2012;2012:1.
  • Doustgani A, Faraahani EV, Imani M. Preparation of chitosan nanoparticles loaded bydexamethasone sodium phosphate. Iran J Pharm Res 2008;4:111–114.
  • Leelapornpisid P, Leesawat P, Natakarnkitkul S, et al. Application of chitosan for preparation of arbutin nanoparticles as skin whitening. JMMM 2010;20:101–105.
  • Saha P, Goyal AK, Rath G. Formulation and evaluation of chitosan-based ampicillin trihydrate nanoparticles. Trop J Pharm Res. 2010;9:483–488.
  • Rajendran NN, Natrajan R, Kumar RS, et al. Acyclovir-loaded chitosan nanoparticles for ocular delivery. Asian J Pharm. 2010;4:220–226.
  • Motwani SK, Chopra S, Talegaonkar S, et al. Chitosan-Sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimization and in vitro characterization. Eur J Pharm Biopharm 2008;68:513–525.
  • Senthil V, Kumar RS, Nagaraju CVV, et al. Design and development of hydrogel nanoparticles for mercaptopurine. J Adv Pharm Tech Res. 2010;1:334–337.
  • Nanjwade BK, Singh J, Parikh KA, et al. Preparation and evaluation of carboplatin biodegradable polymeric nanoparticles. Int J Pharm. 2010;385:176–180.
  • Meng J, Sturgis TF, Youan BC. Engineering tenofovir loaded chitosan nanoparticles tomaximize microbicide mucoadhesion. Eur J Pharm Sci. 2011;44:57–67.
  • Alam S, Khan ZI, Mustafa G, et al. Development and evaluation of thymoquinone encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int J Nanomed. 2012;7:5705–5718.
  • De Campos AM, Sanchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224:159–168.
  • Wu Y, Yang W, Wang C, et al. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm. 2005;295:235–245.
  • Bhattarai N, Ramay HR, Chou SH, et al. Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery. Int J Nanomed. 2006;1:181–187.
  • Grenha A. Chitosan nanoparticles: a survey of preparation methods. J Drug Target. 2012;20:291–300.
  • Songjiang Z, Lixiang W. Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB. AAPS PharmSciTech. 2009;10:900–905.
  • Ngan LTK, Wang SL, Hiep ÐM, et al. Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Res Chem Intermed. 2014;40:2165–2175.
  • Sinsuebpol C, Chatchawalsaisin J, Kulvanich P. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery. Drug Des Devel Ther. 2013;7:861–873.
  • Li FQ, Ji RR, Chen X, et al. Cetirizine dihydrochloride loaded microparticles design using ionotropic cross-linked chitosan nanoparticles by spray drying method. Arch Pharm Res. 2010;33:1967–1973.
  • Mehrotra A, Nagarwal RC, Pandit JK. Fabrication of lomustine loaded chitosan nanoparticles by spray drying and in vitro cytostatic activity on human lungcancer cell line L132. J Nanomed Nanotechnol. 2010;1:1–7.
  • Tokumitsu H, Ichikawa H, Fukumori Y. Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: preparation by novel emulsion-droplet coalescence technique and characterization. Pharm Res. 1999;16:1830–1835.
  • Reddy YD, Dhachinamoorthi D, Chandra SKB. Formulation and in vitro evaluation of antineoplastic drug loaded nanoparticles as drug delivery system. Afr J Pharm Pharmacol. 2013;7:1592–1604.
  • Luque-Alcaraz AG, Lizardi-Mendoza J, Goycoolea FM, et al. Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Adv. 2016;6:59250–59256.
  • Melo EP, Aires-Barros MR, Cabra JMS. Reverse micelles and protein biotechnology. Biotechnol Annu Rev. 2001;7:87–129.
  • Pileni MP. Reverse micelles used as templates: a new understanding in nanocrystal growth. J Exp Nanosci. 2006;1:13–27.
  • Banerjee T, Mitra S, Singh AK, et al. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm. 2002;243:93–105.
  • Mitra S, Gaur U, Ghosh PC, et al. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release. 2001;74:317–323.
  • Kafshgari MH, Khorram M, Mansouri M, et al. Preparation of alginate and chitosan nanoparticles using a new reverse micellar system. Iran Polym J. 2012;21:99–107.
  • Alonso MJ. Nanoparticulate drug carrier technology. In: Cohen S, Bernstein H, editors. Microparticulate systems for the delivery of proteins and vaccines. New York: Marcel Dekker; 1996. p. 203–242.
  • Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev. 2001;47:83–97.
  • Poncelet D. Microencapsulation: fundamentals, methods and applications. In: Blitz JP, Gun'ko VM, editors. Surface chemistry in biomedical and environmental science. Dordrecht: Springer; 2006. p. 23–34.
  • Mao HQ, Roy K, Troung-Le VL, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release. 2001;70:399–421.
  • Borges O, Borchard G, Verhoef JC, et al. Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm. 2005;299:155–166.
  • Atyabi F, Talaie F, Dinarvand R. Thiolated chitosan nanoparticles as an oral delivery system for amikacin: in vitro and ex vivo evaluations. J Nanosci Nanotechnol. 2009;9:4593–4603.
  • Agnihotri SA, Aminabhavi TM. Chitosan nanoparticles for prolonged delivery of timolol maleate. Drug Dev Ind Pharm. 2007;33:1254–1262.
  • Hu Y, Jiang X, Ding Y, et al. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials 2002;23:3193–3201.
  • Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm. 2006;325:147–154.
  • Sajeesh S, Sharma CP. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery. J Biomed Mater Res. 2006;76B:298–305.
  • El-Shabouri MH. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm. 2002;249:101–108.
  • Grasianto S, Siswanta, Andriani Y, et al. Retracted-glutaraldehyde-crosslinked chitosan-pectin nanoparticles as a potential carrier for curcumin delivery and its in vitro release study. Int J Drug Deliver. 2015;7:167–173.
  • Zhao LM, Shi LE, Zhang ZL, et al. Preparation and application of chitosan nanoparticles.and nanofibers. Braz J Chem Eng. 2011;28:353–362.
  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100:5–28.
  • Balaguer MP, Gomez-Estaca J, Gavara R, et al. Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde. J Agric Food Chem. 2011;59:6689–6695.
  • Babu VN, Kannan S. Enhanced delivery of baicalein using cinnamaldehyde cross-linked chitosan nanoparticle inducing apoptosis. Int J Biol Macromol. 2012;51:1103–1108.
  • Li PW, Wang G, Yang ZM, et al. Development of drug-loaded chitosan-vanillin nanoparticles and its cytotoxicity against HT-29 cells. Drug Deliv. 2016;23:30–35.
  • Wang G, Li PW, Peng Z, et al. Formulation of vanillin crosslinked chitosan nanoparticles and its characterization. AMR. 2011;335-336:474–477.
  • Liu Z, Jiao Y, Wang Y, et al. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650–1662.
  • Konecsni K, Low NH, Nickerson MT. Chitosan-tripolyphosphate submicron particles as the carrier of entrapped rutin. Food Chem. 2012;134:1775–1779.
  • Servat-Medina L, González-Gómez A, Reyes-Ortega F, et al. Chitosan-tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and anti ulcerogenic activity. Int J Nanomed. 2015;10:3897–3909.
  • Hu B, Pan C, Sun Y, et al. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. J Agric Food Chem. 2008;56:7451–7458.
  • Elzoghby AO, Samy WM, Elgindy NA. Novel spray-dried genipin-crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharm Res. 2013;30:512–522.
  • Elzoghby AO, Helmy MW, Samy WM, et al. Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: formulation, characterization, and in vivo pharmacokinetics. Eur J Pharm Biopharm. 2013;84:487–496.
  • Song F, Zhang LM, Yang C, et al. Genipin-crosslinked casein hydrogels for controlled drug delivery. Int J Pharm. 2009;373:41–47.
  • Kumar GV, Su CH, Velusamy P. Ciprofloxacin loaded genipin cross-linked chitosan/heparin nanoparticles for drug delivery application. Mater Lett. 2016;180:119–122.
  • Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Dev Ther. 2016;10:483–507.
  • Bagheri M, Younesi H, Hajati S, et al. Application of chitosan-citric acid nanoparticles for removal of chromium (VI). Int J Biol Macromol. 2015;80:431–444.
  • Bodnar M, Hartmann JF, Borbely J. Preparation and characterization of chitosan-based nanoparticles. Biomacromolecules 2005;6:2521–2527.
  • Mayyas MA, Remawi A. Properties of chitosan nanoparticles formed using sulfate anions as crosslinking bridges. Am J Appl Sci. 2012;9:1091–1100.
  • Ringe K, Walz C, Sabel B. Nanoparticle drug delivery to the brain. In: Nalwa HS, editor. Encyclopedia of nanoscience and nanotechnology, vol. 7. New York: American Scientific Publishers; 2004.
  • Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B: Biointerfaces. 2007;59:24–34.
  • Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60:110–111.
  • Peppas NA, Korsmeyer RW. Dynamically swelling hydrogels in controlled release applications. In: Peppas NA, editor. Hydrogels in medicine and pharmacy. Boca Raton, FL: CRC Press; 1987. p. 103–135.
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55:329–347.
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.
  • Nagarwal RC, Singh PN, Kant S, et al. Chitosan nanoparticles of 5-fluorouracil for ophthalmic delivery: characterization, in-vitro and in-vivo study. Chem Pharm Bull. 2011;59:272–278.
  • Kreuter J. Peroral administration of nanoparticles. Adv Drug Deliv Rev. 1991;7:71–86.
  • Tiyaboonchai W. Chitosan nanoparticles. A promising system for drug delivery. Naresuan Univ J. 2003;11:51–66.
  • Ing LY, Zin NM, Sarwar A, et al. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater. 2012;2012:1–9.
  • Gaserod O, Jolliffe IG, Hampson FC, et al. The enhancement of the bioadhesive properties of calcium alginate gel beads bycoating with chitosan. Int J Pharm. 1998;175:237–246.
  • Smith J, Wood E, Dornish M. Effect of chitosan on epithelial cell tight junctions. Pharm Res. 2004;21:43–49.
  • Dong Y, Feng SS. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 2004;25:2843–2849.
  • Mu L, Feng SS. Fabrication, characterization and in vitro release of paclitaxel (Taxol®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J Control Release. 2001;76:239–254.
  • Abdelwahed W, Degobert G, Stainmesse S, et al. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58:1688–1713.
  • Hunter RJ. Foundations of colloid science, vol. I. New York: Oxford Science Publications; 1993. p. 489–491.
  • López-León T, Carvalho ELS, Seijo B, et al. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J Colloid Interface Sci. 2005;283:344–351.
  • Pan AW, Wu BB, Wu JM. Chitosan nanoparticles cross linked by glycidoxy propyl trimethoxy silane for pH triggered release of protein. Chin Chem Lett. 2009;20:79–83.
  • Fan L, Wu H, Zhang H, et al. Novel super pH-sensitive nanoparticles responsive totumor extracellular pH. Carbohydr Polym. 2008;73:390–400.
  • Hu B, Ting Y, Zen X, et al. Cellular uptake and cytotoxicity of chitosan-caseinophos phopeptides nanocomplexes loaded with epigallo catechin gallate. Carbohydr Polym. 2012;89:362–370.
  • Corsi K, Chellat F, Yahia LHocine, et al. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials 2003;24:1255–1264.
  • Mansouri S, Cuie Y, Winnik F, et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 2006;27:2060–2065.
  • Qi L, Xu Z, Jiang X, et al. Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg Med Chem Lett. 2005;15:1397–1399.
  • Loh JW, Yeoh G, Saunders M, et al. Uptake and cytotoxicity of chitosan nanoparticles in human liver cells. Toxicol Appl Pharmacol. 2010;249:148–157.
  • Liu M, Zhang J, Shan W, et al. Developments of mucus penetrating nanoparticles. Asian J Pharmacol. 2015;10:275–282.
  • Lavelle E. Targeted mucosal delivery of drugs and vaccines. Expert Opin Ther Pat. 2000;10:179–190.
  • Lubben IMV, Verhoef JC, Borchard G, et al. Chitosan for mucosal vaccination. Adv Drug Deliv Rev. 200;52:139–144.
  • Vila A, Sa´nchez A, Tobı´o M, et al. Design of biodegradable particles for protein delivery. J Control Release. 2002;78:15–24.
  • Baltzley S, Mohammad A, Malkawi AH, et al. Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS Pharm Sci Tech. 2014;15:1598–1602.
  • Al-Ghananeem AM, Saeed H, Florence R, et al. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by aids viruses. J Drug Target. 2010;18:381–388.
  • Prabaharan M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol. 2015;72:1313–1322.
  • Yang X, Zhang Q, Wang Y, et al. Self-aggregated nanoparticles from methoxy poly(ethylene glycol)-modified chitosan: synthesis, characterization; aggregation and methotrexate release in vitro. Colloids Surf B: Biointerfaces. 2008;61:125–131.
  • Zheng Y, Yang W, Wang C, et al. Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: preparation, characterization and the use for 5-fluorouracil delivery. Eur J Pharm Biopharm. 2007;67:621–631.
  • Anitha A, Chennazhi KP, Nair SV, et al. 5-Flourouracil loaded N,O-carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast cancer. J Biomed Nanotechnol. 2012;8:29–42.
  • Cha J, Lee WB, Park CR, et al. Preparation and characterization of cisplatin-incorporated chitosan hydrogels, microparticles, and nanoparticles. Macromol Res. 2006;14:573–578.
  • Wang YS, Liu LR, Jiang Q, et al. Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin. Eur Polym J. 2007;43:43–51.
  • Anitha A, Maya S, Deepa N, et al. Curcumin-loaded N,O-Carboxymethyl chitosan nanoparticles for cancer drug delivery. J Biomater Sci Polym Ed. 2012;23:1381–1400.
  • Anitha A, Deepagan VG, Divya Rani VV, et al. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr Polym. 2011;84:1158–1164.
  • Bilensoy E, Sarisozen C, Esendağli G, et al. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of mitomycin C to bladder tumors. Int J Pharm. 2009;371:170–176.
  • Hwang IS, Kim HY, Kwon IC, et al. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2008;128:23–31.
  • Janes KA, Fresneau MP, Marazuela A, et al. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73:255–267.
  • Li F, Li J, Wen X, et al. Anti-tumor activity of paclitaxel-loaded chitosan nanoparticles: an in vitro study. Mater Sci Eng C. 2009;29:2392–2397.
  • Vivek R, Nipun Babu V, Thangam R, et al. pH-responsive drug delivery of chitosan nanoparticles as tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf B: Biointerfaces. 2013;111:117–123.
  • Zhang X, Zhang H, Yin L, et al. A pH-sensitive nanosystem based on carboxymethyl chitosan for tumor-targeted delivery of daunorubicin. J Biomed Nanotechnol. 2016;12:1688–1698.
  • Zheng H, Yin L, Zhang X, et al. Redox sensitive shell and core crosslinked hyaluronic acid nanocarriers for tumor-targeted drug delivery. J Biomed Nanotechnol. 2016;12:1641–1653.
  • Hu R, Zheng H, Cao J, et al. Synthesis and in vitro characterization of carboxymethyl chitosan-cba-doxorubicin conjugate nanoparticles as pH-sensitive drug delivery systems. J Biomed Nanotechnol. 2017;13:1097–1105.
  • Rajitha P, Gopinath D, Biswas R, et al. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin Drug Deliv. 2016;13:1177–1194.
  • Jamil B, Habib H, Abbasi S, et al. Cefazolin loaded chitosan nanoparticles to cure multidrug resistant gram-negative pathogens. Carbohydr Polym. 2015;78:1–33.
  • Dube A, Reynolds JL, Law WC, et al. Multimodal nanoparticles that provide immune modulation and intracellular drug delivery for infectious diseases. Nanomed Nanotechnol. 2014;10:831–838.
  • Garg T, Rath G, Goyal AK. Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artif Cells Nanomed Biotechnol. 2016;44:997–1001.
  • Moretton MA, Chiappetta DA, Andrade F, et al. Hydrolyzed galactomannan modified nanoparticles and flower-like polymeric micelles for the active targeting of rifampicin to macrophages. J Biomed Nanotechnol. 2013;9:1076–1087.
  • Costa JR, Silva NC, Sarmento B, et al. Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur J Clin Microbiol Infect Dis. 2015;34:1255–1262.
  • Üstündağ-Okur N, Gökçe EH, Bozbıyık Dİ, et al. Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified withchitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur J Pharm Sci. 2014;63:204–215.
  • Jain V, Gupta A, Pawar VK, et al. Chitosan-assisted immunotherapy for intervention of experimental leishmaniasis via amphotericin B-loaded solid lipid nanoparticles. Appl Biochem Biotechnol. 2014;174:1309–1330.
  • Zhou W, Wang Y, Jian J, et al. Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. Int J Nanomed. 2013;8:3715–3728.
  • Chhonker YS, Prasad YD, Chandasana H, et al. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int J Biol Macromol. 2015;72:1451–1458.
  • Kong Z, Yu M, Cheng K, et al. Incorporation of chitosan nanospheres into thin mineralized collagen coatings for improving the antibacterial effect. Colloids Surf B. Biointerfaces. 2013;111:536–541.
  • Pornpattananangkul D, Zhang L, Olson S, et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc. 2011;133:4132–4139.
  • Junise V, Saraswathi R. Development and characterization of inhaled chitosan nanoparticles loaded with isoniazid. JPTRM 2014;2:159–170.
  • Lin YH, Tsai SC, Lai CH, et al. Genipin-cross-linked fucose-chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials 2013;34:4466–4479.
  • Maya S, Indulekha S, Sukhithasri V, et al. Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. Int J Biol Macromol. 2012;51:392–399.
  • Gnanadhas DP, Thomas MB, Elango M, et al. Chitosan-dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intra phagosomal pathogen Salmonella. J Antimicrob Chemother. 2013;68:2576–2586.
  • Cota-Arriola O, Cortez-Rocha MO, Burgos HA, et al. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. J Sci Food Agric 2013;93:1525–1536.
  • Hua S, Marks E, Schneider JJ, et al. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomed Nanotechnol. 2015;11:1117–1132.
  • Bagre AP, Jain K, Jain NK. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm. 2013;456:31–40.
  • Tozaki H, Odoriba T, Okada N, et al. Chitosan capsules for colon-specific drug delivery: enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats. J Control Release. 2002;82:51–61.
  • Li P, Wang Y, Zeng F, et al. Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohydr Res. 2011;346:801–806.
  • Saboktakin MR, Tabatabaie RM, Maharramov A, et al. Synthesis and in vitro evaluation of carboxymethyl starch-chitosan nanoparticles as drug delivery system to the colon. Int J Biol Macromol. 2011;48:381–385.
  • Akhlaghi SP, Saremi S, Ostad SN, et al. Discriminated effects of thiolated chitosan-coated pMMA paclitaxel-loaded nanoparticles on different normal and cancer cell lines. Nanomed: Nanotechnol. 2010;6:689–697.
  • Kadiyala I, Loo Y, Roy K, et al. Transport of chitosan-DNA nanoparticles in human intestinal M-cell model versus normal intestinal enterocytes. Eur J Pharm Sci. 2010;39:103–109.
  • Jain A, Jain SK, Ganesh N, et al. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomed Nanotechnol. 2010;6:179–190.
  • Yang SJ, Shieh MJ, Lin FH, et al. Colorectal cancer cell detection by 5-aminolaevulinic acid-loaded chitosan nano-particles. Cancer Lett. 2009;273:210–220.
  • Park JS, Koh YS, Bang JY, et al. Antitumor effect of all-trans retinoic acid-encapsulated nanoparticles of methoxy poly (ethylene glycol)-conjugated chitosan against CT-26 colon carcinoma in vitro. J Pharm Sci. 2008;97:4011–4019.
  • Jain A, Jain SK. In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur J Pharm Sci. 2008;35:404–416.
  • Kapanigowda UG, Nagaraja SH, Ramaiah B, et al. Improved intraocular bioavailability of ganciclovir by mucoadhesive polymer based ocular microspheres: development and simulation process in wistar rats. DARU J Pharm Sci. 2015;23:11.
  • Werle M, Bernkop SA. Thiolated chitosans: useful excipients for oral drug delivery. J Pharm Pharmacol. 2008;60:273–281.
  • Yuan X, Li H, Yuan Y. Preparation of cholesterol-modified chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface. Carbohydr Polym. 2006;65:337–345.
  • De Salamanca AE, Diebold Y, Calonge M, et al. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci. 2006;47:1416–1425.
  • Diebold Y, Jarrı´n M, Sa´ez V, et al. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007;28:1553–1564.
  • Calvo P, Vila-Jato JL, Alonso MJ. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int J Pharm. 1997;153:41–50.
  • Calvo P, Alonso MJ, Vila-Jato JL, et al. Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol. 1996;48:1147–1152.
  • Kao HJ, Lo YL, Lin HR, et al. Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles. J Pharm Pharmacol. 2006;58:179–186.
  • Lin HR, Yu SP, Kuo CJ, et al. Pilocarpine-loaded chitosan-PAA nanosuspension for ophthalmic delivery. J Biomater Sci Polym Ed. 2007;18:205–221.
  • De la Fuente M, Seijo B, Alonso MJ. Bioadhesive hyaluronan/chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther. 2008;15:668–676.
  • Qu X, Khutoryanskiy VV, Stewart A, et al. Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude. Biomacromolecules 2006;7:3452–3459.
  • Vila A, Sanchez A, Janes K, et al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm. 2004;57:123–131.
  • Illum L, Jabbal-Gill I, Hinchcliffe M, et al. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev. 2001;51:81–96.
  • Amidi M, Romeijn SG, Verhoef JC, et al. N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine 2007;25:144–153.
  • Boonyo W, Junginger HE, Waranuch N, et al. Chitosan and trimethyl chitosan chloride (TMC) as adjuvants for inducing immune responses to ovalbumin in mice following nasal administration. J Control Release. 2007;121:168–175.
  • Svirshchevskaya EV, Alekseeva LG, Reshetov PD, et al. Mucoadjuvant properties of lipo- and glycoconjugated derivatives of oligochitosans. Eur J Med Chem. 2009;44:2030–2037.
  • Sayin B, Somavarapu S, Li XW, et al. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm. 2008;363:139–148.
  • Borges O, Cordeiro-da-Silva A, Tavares J, et al. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur J Pharm Biopharm. 2008;69:405–416.
  • Klas SD, Petrie CR, Warwood SJ, et al. A single immunization with a dry powder anthrax vaccine protects rabbits against lethal aerosol challenge. Vaccine 2008;26:5494–5502.
  • Florindo HF, Pandit S, Lacerda L, et al. The enhancement of the immune response against S. equi antigens through the intranasal administration of poly-epsilon-caprolactone-based nanoparticles. Biomaterials 2009;30:879–891.
  • Baudner BC, Giuliani MM, Verhoef JC, et al. The concomitant use of the LTK63 mucosal adjuvant and of chitosan-based delivery system enhances the immunogenicity and efficacy of intranasally administered vaccines. Vaccine 2003;21:3837–3844.
  • Amidi M, Mastrobattista E, Jiskoot W, et al. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010;62:59–82.
  • Cui Z, Mumper RJ. Chitosan-based nanoparticles for topical genetic immunization. J Control Release. 2001;75:409–419.
  • Madrigal-Carballo S, Esquivel M, Sibaja M, et al. Protein-loaded chitosan nanoparticles modulate uptake and antigen presentation of hen egg-white lysozyme by murine peritoneal macrophages. Int J Nanoparticles 2010;3:179–191.
  • Xu W, Shen Y, Jiang Z, et al. Intranasal delivery of chitosan-DNA vaccine generates mucosal SIgA and anti-CVB3protection. Vaccine 2004;22:3603–3612.
  • Smitha KT, Sreelakshmi M, Nisha N, et al. Amidase encapsulated O-carboxymethyl chitosan nanoparticles for vaccine delivery. Int J Biol Macromol. 2014;63:154–157.
  • Pattani A, Patravale VB, Panicker L, et al. Immunological effects and membrane interactions of chitosan nanoparticles. Mol Pharm. 2009;6:345–352.
  • Bivas-Benita M, Van Meijgaarden KE, Franke KLMC, et al. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine 2004;22:1609–1615.
  • Tanner T, Marks R. Delivering drugs by the transdermal route: review and comment. Skin Res Technol. 2008;14:249–260.
  • Al-Kassas R, Wen J, E-M, Cheng A, et al. Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohydr Polym. 2016;153:176–186.
  • Hafner A, Lovrić J, Pepić I, et al. Lecithin/chitosan nanoparticles for transdermal delivery of melatonin. J Microencapsul. 2011;28:807–815.
  • Shah HA, Patel RP. Statistical modeling of zaltoprofen loaded biopolymeric nanoparticles: characterization and anti-inflammatory activity of nanoparticles loaded gel. Int J Pharma Investig. 2015;5:20–27.
  • Katas H, Hussain Z, Ling TC. Chitosan Nanoparticles as a percutaneous drug delivery system for hydrocortisone. J Nanomater. 2012;2012:1:1–11.
  • Fardet L, Flahault A, Kettaneh A, et al. Corticosteroid-induced clinical adverse events: frequency, risk factors and patient's opinion. Br J Dermatol. 2007;157:142–148.
  • Ridolfi DM, Marcato PD, Justo GZ, et al. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf B Biointerfaces. 2012;93:36–40.
  • Dev A, Binulal NS, Anitha A, et al. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr Polym. 2010;80:833–838.
  • Dahmane EM, Rhazi M, Taourirte M. Chitosan nanoparticles as a new delivery system for the Anti-HIV drug Zidovudine. Bull Korean Chem Soc. 2013;34:1333–1338.
  • Tripathy S, Das S, Chakraborty SP, et al. Synthesis, characterization of chitosan-tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: a dose and duration dependent approach. Int J Pharm. 2012;434:292–305.
  • Nanda RK, Patil SS, Navathar DA. Chiotsan nanoparticles loaded with Thiocolchicoside. Der Pharma Chemica 2012;4:1619–1625.
  • Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42:445–451.
  • Zhu X, Su M, Tang S, et al. Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery. Mol Vis. 2012;18:1973–1982.
  • Kast CE, Bernkop SA. Thiolated polymers-thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 2001;22:2345–2352.
  • Leitner VM, Walker GF, Bernkop-Schnürch A. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur J Pharm Biopharm. 2003;56:207–214.
  • Saremi S, Atyabi F, Akhlaghi SP, et al. Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation. Int J Nanomed. 2011;6:119–128.
  • Wang X, Zheng C, Wu Z, et al. Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J Biomed Mater Res Part B Appl Biomater. 2009;88:150–161.
  • Makhlof A, Werle M, Tozuka Y, et al. Nanoparticles of glycol chitosan and its thiolated derivative significantly improved the pulmonary delivery of calcitonin. Int J Pharm. 2010;397:92–95.
  • Verheul RJ, Slütter B, Bal S, et al. Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination. J Control Release. 2011;156:46–52.
  • Martien R, Loretz B, Sandbichler AM, et al. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture. Nanotechnology 2008;19:045101.
  • Bernkop-schnürch A, Weithaler A, Albrecht K, et al. Thiomers: preparation and in vitro evaluation of a mucoadhesive nanoparticulate drug delivery system. Int J Pharm. 2006;317:76–81.
  • Yoo HS, Lee JE, Chung H, et al. Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J Control Release. 2005;103:235–243.
  • Kim JH, Kim Y-S, Kim S, et al. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J Control Release. 2006;111:228–234.
  • Park K, Kim JH, Nam YS, et al. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J Control Release. 2007;122:305–314.
  • Kim J-H, Kim Y-S, Park K, et al. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials 2008;29:1920–1930.
  • Min KH, Park K, Kim YS, et al. Hydrophobically modified glycol chitosan nanoparticles encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release. 2008;127:208–208.
  • Nam HY, Won SMK, Chung H, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2009;135:259–267.
  • Chen KJ, Chiu YL, Chen YM, et al. Intracellularly monitoring/imaging the release of doxorubicin from pH-responsive nanoparticles using Förster resonance energy transfer. Biomaterials 2011;32:2586–2592.
  • Zhang J, Chen XG, Li YY, et al. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomed: Nanotechnol, Biol Med. 2007;3:258–265.
  • Siew A, Le H, Thiovolet M, et al. Enhanced oral absorption of hydrophobic and hydrophilic drugs using quaternary ammonium palmitoylglycol chitosan nanoparticles. Mol Pharmaceutics. 2012;9:14–28.
  • Tan YL, Liu CG. Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan: Synthesis, characterization and application in vitro. Colloids Surf B: Biointerface. 2009;69:178–182.
  • Jin Y, Song Y, Zhu X, et al. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 2012;33:1573–1582.
  • Sahu S, Mallick SK, Santra S, et al. In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J Mater Sci: Mater Med. 2010;21:1587–1597.
  • Mourya VK, Inamdar NN. Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med. 2009;20:1057–1079.
  • Avadi MR, Zohuriaan-mehr MJ, Younessi P, et al. Optimized synthesis and characterization of N-triethylchitosan. J Bioact Compat Polym. 2003;18:469–479.
  • Avadi MR, Jalali A, Sadeghi AMM, et al. Diethyl methyl chitosan as an intestinal paracellular enhancer: ex vivo and in vivo studies. Int J Pharm. 2005;293:83–89.
  • Bayat A, Sadeghi AMM, Avadi MR, et al. Synthesis of N,N-dimethyl N-ethyl chitosan as a carrier for oral delivery of peptide drugs. J Bioact Compat Polym. 2006;21:433–444.
  • Avadi MR, Sadeghi AMM, Tahzibi A, et al. Diethylmethyl chitosan as antimicrobial agent: synthesis, characterization and antibacterial effects. Eur Polym J. 2004;40:1355–1361.
  • Thanou M, Verhoef JC, Marbach P, et al. Intestinal absorption of octreotide: N-trimethyl chitosanchloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J Pharmaceutical Sci. 2000;89:951–957.
  • Mi FL, Wu YY, Lin YH, et al. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(γ-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjugate Chem. 2008;19:1248–1255.
  • Slütter B, Jiskoot W. Dual role of CpG as immune modulator and physical crosslinker in ovalbumin loaded N-trimethyl chitosan (TMC) nanoparticles for nasal vaccination. J Control Release. 2010;148:117–121.
  • Wang S, Jiang T, Ma M, et al. Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosan chloride nanoparticles for brain-targeting. Int J Pharm. 2010;386:249–255.
  • Sadeghi AM, Dorkoosh FA, Avadi MR, et al. Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan(TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int J Pharm. 2008;355:299–306.
  • Amidi M, Romeijn SG, Borchard G, et al. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release. 2006;111:107–116.
  • Chen F, Zhang ZR, Yuan F, et al. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int J Pharm. 2008;349:226–233.
  • Menon D, Thomas RT, Narayanan S, et al. A novel chitosan/polyoxometalate nanocomplex for anti-cancer applications. Carbohydr Polym. 2011;84:887–893.
  • Bayat A, Larijani B, Ahmadian S, et al. Preparation and characterization of insulin nanoparticles using chitosan and its quaternized derivatives. Nanomedicine 2008;4:115–120.
  • Bayat A, Dorkoosh FA, Dehpour AR, et al. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: ex vivo and in vivo studies. Int J Pharm. 2008;356:259–266.
  • Jintapattanakit A, Junyaprasert VB, Mao S, et al. Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int J Pharm. 2007;342:240–249.
  • Lee D, Zhang W, Shirley SA, et al. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm Res. 2007;24:157–167.
  • Ki MH, Kim JE, Lee YN, et al. Chitosan-based hybrid nanocomplex for siRNA delivery and its application for cancer therapy . Pharm Res. 2014;31:3323–3334.
  • Park Y, Kang E, Kwon OJ, et al. Ionically crosslinked Ad/chitosan nanocomplexes processed by electrospinning for targeted cancer gene therapy. J Control Release. 2010;148:75–82.
  • Cheng X, Zhang F, Zhou G, et al. DNA/chitosan nanocomplex as a novel drug carrier for doxorubicin. Drug Deliv. 2009;16:135–144.
  • Shah HS, Al-Oweini R, Haider A, et al. Cytotoxicity and enzyme inhibition studies of polyoxometalates and their chitosan nanoassemblies. Toxicol Reports. 2014;1:341–352.
  • Zhao X, Yin L, Ding J, et al. Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency. J Control Release. 2010;144:46–54.
  • Bellich B, D’Agostino I, Semeraro S, et al. “The good, the bad and the ugly” of chitosans. Mar Drugs 2016;14:99.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.