3,588
Views
148
CrossRef citations to date
0
Altmetric
Review Article

Liposome: composition, characterisation, preparation, and recent innovation in clinical applications

, , , , &
Pages 742-761 | Received 01 May 2018, Accepted 19 Sep 2018, Published online: 15 Oct 2018

References

  • Petersen GH, Alzghari SK, Chee W, et al. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J Control Release. 2016;232:255–264.
  • Ito K, Hamamichi S, Asano M, et al. Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models. Cancer Sci. 2016;107:60–67.
  • Drulis-Kawa Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Int J Pharm. 2010;387:187–198.
  • Jung SW, Thamphiwatana S, Zhang L, et al. Mechanism of antibacterial activity of liposomal linolenic acid against helicobacter pylori. PloS One. 2015;10:e0116519.
  • Ghanbarzadeh S, Arami S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes. Bio Med Res Int. 2013;2013:1.
  • Fujisawa T, Miyai H, Hironaka K, et al. Liposomal diclofenac eye drop formulations targeting the retina: Formulation stability improvement using surface modification of liposomes. Int J Pharm. 2012;436:564–567.
  • Teagle AR, Birchall JC, Hargest R. Gene therapy for pyoderma gangrenosum: optimal transfection conditions and effect of drugs on gene delivery in the HaCaT cell line using cationic liposomes. Skin Pharmacol Physiol. 2016;29:119–129.
  • Zylberberg C, Gaskill K, Pasley S, et al. Engineering liposomal nanoparticles for targeted gene therapy. Gene Therapy. 2017;24:441–452.
  • Perez AP, Altube MJ, Schilrreff P, et al. Topical amphotericin B in ultradeformable liposomes: formulation, skin penetration study, antifungal and antileishmanial activity in vitro. Colloids Surf B Biointerfaces. 2016;139:190–198.
  • Della Pepa R, Picardi M, Sorà F, et al. Successful management of chronic disseminated candidiasis in hematologic patients treated with high-dose liposomal amphotericin B: a retrospective study of the SEIFEM registry. Support Care Cancer. 2016;24:3839–3845.
  • Allen TM, Moase EH. Therapeutic opportunities for targeted liposomal drug delivery. Adv Drug Deliv Rev. 1996;21:117–133.
  • Ming-Kung Y. Clinically-proven liposome-based drug delivery: formulation, characterization and therapeutic efficacy. Sci Rep. 2012;7:49–60.
  • Makino K, Shibata A. Surface properties of liposomes depending on their composition. Adv Planar Lipid Bilayers Liposomes. 2006;4:49–77.
  • Jesorka A, Orwar O. Liposomes: technologies and analytical applications. Annu Rev Anal Chem (Palo Alto Calif). 2008;1:801–832.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8:102.
  • Shehata T, Ogawara K-i, Higaki K, et al. Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int J Pharm. 2008;359:272–279.
  • Biswas S, Dodwadkar NS, Sawant RR, et al. Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting. J Drug Target. 2011;19:552–561.
  • Zhou J, Zhao W-Y, Ma X, et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials. 2013;34:3626–3638.
  • Paltauf F, Hermetter A. Phospholipids — natural, semisynthetic, synthetic. In: Hanin I, Pepeu G, editors. Phospholipids: biochemical, pharmaceutical, and analytical considerations. Boston, MA: Springer US; 1990. p. 1–12.
  • Li J, Wang X, Zhang T, et al. A review on phospholipids and their main applications in drug delivery systems. Asia J Pharma Sci. 2015;10:81–98.
  • D'Avanzo N. Chapter twelve - lipid regulation of sodium channels. In: French RJ, Noskov SY, editors. Current Topics in Membranes. Vol. 78. Cambridge, MA: Academic Press; 2016. p. 353–407.
  • McIntosh TJ, Simon SA, Needham D, et al. Structure and cohesive properties of sphingomyelin/cholesterol bilayers. Biochemistry. 1992;31:2012–2020.
  • Carter KA, Luo D, Razi A, et al. Sphingomyelin liposomes containing porphyrin-phospholipid for irinotecan chemophototherapy. Theranostics. 2016;6:2329–2336.
  • Chiho Uemori TK, Siti M. Achmudah, W, et al. Production of Liposome from Sphingomyelin by Ultrasonic Device under Supercritical Carbon Dioxide. Asia J App Sci. 2017;5:1042–1048.
  • Sim JS, Nakai S. Egg uses and processing technologies: new developments. Cab Int. 1994;158–176.
  • Wang H, Yao L, Lee S-L, et al. Extraction of phospholipids from egg yolk flakes using aqueous alcohols. J Am Oil Chem Soc. 2017;94:309–314.
  • Wang H, Yao L, Lee SL, et al. Simultaneous texturization and extraction of phospholipids from liquid egg yolk using renewable solvents. Europe J Lipid Sci Technol. 2017;119(2):1500523.
  • Liu Z-Y, Zhou D-Y, Wu Z-X, et al. Extraction and detailed characterization of phospholipid-enriched oils from six species of edible clams. Food Chem. 2018;239:1175–1181.
  • Ali AH, Zou X, Lu J, et al. Identification of phospholipids classes and molecular species in different types of egg yolk by using UPLC-Q-TOF-MS. Food Chem. 2017;221:58–66.
  • Walczak J, Bocian S, Kowalkowski T, et al. Determination of omega fatty acid profiles in egg yolk by HILIC-LC-MS and GC-MS. Food Anal Methods. 2017;10:1264–1272.
  • Belayneh HD, Wehling RL, Reddy AK, et al. Ethanol-modified supercritical carbon dioxide extraction of the bioactive lipid components of camelina sativa seed. J Am Oil Chem Soc. 2017;94:855–865.
  • Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007;4:297–305.
  • Bangham A, Standish MM, Watkins J. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–252.
  • Bhatia A, Kumar R, Katare OP. Tamoxifen in topical liposomes: development, characterization and in-vitro evaluation. J Pharm Pharm Sci 2004;7:252–259.
  • Ghanbarzadeh S, Valizadeh H, Zakeri-Milani P. Application of response surface methodology in development of sirolimus liposomes prepared by thin film hydration technique. Bio Impacts: BI. 2013;3:75.
  • Mathai JC, Sitaraman V. Preparation of large uni-lamellar liposomes by the ether injection method and evaluation of the physical integrity by osmometry. Biochem Educ. 1987;15:147–149.
  • Charcosset C, Juban A, Valour J-P, et al. Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices. Chem Eng Res Design. 2015;94:508–515.
  • Jaafar-Maalej C, Diab R, Andrieu V, et al. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res. 2010;20:228–243.
  • Sriwongsitanont S, Ueno M. Effect of freeze-thawing process on the size and lamellarity of peg-lipid liposomes. Colloid Sci J. 2010;4(1):4.
  • Costa AP, Xu X, Burgess DJ. Freeze-anneal-thaw cycling of unilamellar liposomes: effect on encapsulation efficiency. Pharm Res. 2014;31:97–103.
  • Mayer L, Hope M, Cullis P, et al. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta Biomembr. 1985;817:193–196.
  • Mugabe C, Azghani AO, Omri A. Preparation and characterization of dehydration–rehydration vesicles loaded with aminoglycoside and macrolide antibiotics. Int J Pharm. 2006;307:244–250.
  • Gregoriadis G, Leathwood PD, Ryman BE. Enzyme entrapment in liposomes. FEBS Lett. 1971;14:95–99.
  • Gregoriadis G, da Silva H, Florence AT. A procedure for the efficient entrapment of drugs in dehydration-rehydration liposomes (DRVs). Int J Pharm. 1990;65:235–242.
  • Budisa N, Schulze-Makuch D. Supercritical carbon dioxide and its potential as a life-sustaining solvent in a planetary environment. Life. 2014;4(3):331–340.
  • Lesoin L, Crampon C, Boutin O, et al. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. J Supercrit Fluids. 2011;57:162–174.
  • Trucillo P, Campardelli R, Reverchon E. Production of liposomes loaded with antioxidants using a supercritical CO2 assisted process. Powder Technol. 2018;323:155–162.
  • Otake K, Shimomura T, Goto T, et al. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir. 2006;22:2543–2550.
  • Santo IE, Campardelli R, Albuquerque EC, et al. Liposomes preparation using a supercritical fluid assisted continuous process. Chem Eng J. 2014;249:153–159.
  • Misra A, Jinturkar K, Patel D, et al. Recent advances in liposomal dry powder formulations: preparation and evaluation. Exp Opin Drug Deliv. 2009;6:71–89.
  • Chatterjee S, Banerjee DK. Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids. In: Basu SC, Basu M, editors. Liposome methods and protocols. Totowa, NJ: Humana Press; 2002. p. 3–16.
  • Maulucci G, De Spirito M, Arcovito G, et al. Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys J. 2005;88:3545–3550.
  • Patty PJ, Frisken BJ. The pressure-dependence of the size of extruded vesicles. Biophys J. 2003;85:996–1004.
  • Ong SGM, Chitneni M, Lee KS, et al. Evaluation of Extrusion Technique for Nanosizing Liposomes. Pharmaceutics. 2016;8:36.]
  • Wagner A, Vorauer-Uhl K. Liposome Technology for Industrial Purposes. J Drug Deliv. 2011;2011:1.
  • Barnadas-Rodriguez R, Sabes M. Factors involved in the production of liposomes with a high-pressure homogenizer. Int J Pharm 2001;213:175–186.
  • Baalousha M, Stolpe B, Lead JR. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatography A. 2011;8;1218:4078–4103.
  • Borghi F. Flow Field–Flow Fractionation for size analysis and characterization of nanoparticles for applications in Life Sciences [Dissertation thesis], Alma Mater Studiorum UniversitÈ di Bologna. Dottorato di ricerca in Chimica, 26 Ciclo; 2014.
  • Kaszuba M, McKnight D, Connah MT, et al. Measuring sub nanometre sizes using dynamic light scattering. J Nanopart Res. 2008;10:823–829.
  • Mohr K, Müller SS, Müller LK, et al. Evaluation of multifunctional liposomes in human blood serum by light scattering. Langmuir. 2014;30:14954–14962.
  • Bhattacharjee S. DLS and zeta potential–What they are and what they are not? J Control Release. 2016;235:337–351.
  • Ong SGM, Ming LC, Lee KS, et al. Influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Pharmaceutics. 2016;8:25.
  • Fetih G, Fathalla D, El-Badry M. Liposomal gels for site-specific, sustained delivery of celecoxib: in vitro and in vivo evaluation. Drug Dev Res. 2014;75:257–266.
  • Camacho KM, Menegatti S, Vogus DR, et al. DAFODIL: a novel liposome-encapsulated synergistic combination of doxorubicin and 5FU for low dose chemotherapy. J Control Release. 2016;229:154–162.
  • Erdoğ A, Limasale P, Dwi Y, et al. In vitro characterization of a liposomal formulation of celecoxib containing 1, 2‐distearoyl‐sn‐glycero‐3‐phosphocholine, cholesterol, and polyethylene glycol and its functional effects against colorectal cancer cell lines. J Pharm Sci. 2013;102:3666–3677.
  • Deniz A, Sade A, Severcan F, et al. Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci Rep. 2010;30:365–373.
  • Moghimipour E, Salami A, Monjezi M. Formulation and evaluation of liposomes for transdermal delivery of celecoxib. Jundishapur J Nat Pharm Prod. 2015;1010(1):17653.
  • Jain SK, Gupta Y, Jain A, et al. Multivesicular liposomes bearing celecoxib-β-cyclodextrin complex for transdermal delivery. Drug Deliv. 2007;14:327–335.
  • Moghimipour E, Handali S. Utilization of thin film method for preparation of celecoxib loaded liposomes. Adv Pharm Bullet. 2012;2:93.
  • Yamamoto E, Miyazaki S, Aoyama C, et al. A simple and rapid measurement method of encapsulation efficiency of doxorubicin loaded liposomes by direct injection of the liposomal suspension to liquid chromatography. Int J Pharm. 2017;536:21–28.
  • Ohnishi N, Yamamoto E, Tomida H, et al. Rapid determination of the encapsulation efficiency of a liposome formulation using column-switching HPLC. Int J Pharm. 2013;441:67–74.
  • Ran C, Chen D, Xu M, et al. A study on characteristic of different sample pretreatment methods to evaluate the entrapment efficiency of liposomes. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1028:56–62.
  • Briuglia M-L, Rotella C, McFarlane A, et al. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5:231–242.
  • Plourde K, Derbali RM, Desrosiers A, et al. Aptamer-based liposomes improve specific drug loading and release. J Control Release. 2017;251:82–91.
  • Fritze A, Hens F, Kimpfler A, et al. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta Biomembr. 2006;1758:1633–1640.
  • Zucker D, Marcus D, Barenholz Y, et al. Liposome drugs' loading efficiency: a working model based on loading conditions and drug's physicochemical properties. J Control Release. 2009;139:73–80.
  • Sadeghi N, Deckers R, Ozbakir B, et al. Influence of cholesterol inclusion on the doxorubicin release characteristics of lysolipid-based thermosensitive liposomes. Int J Pharm. 2017;548(2):778–782.
  • Fang YP, Hu PY, Huang YB. Diminishing the side effect of mitomycin C by using pH-sensitive liposomes: in vitro characterization and in vivo pharmacokinetics. Drug Des Devel Ther. 2018;12:159–169.
  • Okazaki S, Iwasaki T, Yuba E, et al. Evaluation of pH-sensitive fusogenic polymer-modified liposomes co-loaded with antigen and alpha-galactosylceramide as an anti-tumor vaccine. The Journal of Veterinary Medical Science 2017.
  • Miyazaki M, Yuba E, Hayashi H, et al. Hyaluronic acid-based ph-sensitive polymer-modified liposomes for cell-specific intracellular drug delivery systems. Bioconjugate Chem. 2018;29:44–55.
  • Yan X, An X. Thermal and photic stimuli-responsive polydiacetylene liposomes with reversible fluorescence. Nanoscale. 2013;5:6280–6283.
  • Kim MS, Lee DW, Park K, et al. Temperature-triggered tumor-specific delivery of anticancer agents by cRGD-conjugated thermosensitive liposomes. Colloids Surf B Biointerfaces. 2014;116:17–25.
  • Park SM, Kim MS, Park SJ, et al. Novel temperature-triggered liposome with high stability: formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU). J Control Release. 2013;170:373–379.
  • Mathiyazhakan M, Yang Y, Liu Y, et al. Non-invasive controlled release from gold nanoparticle integrated photo-responsive liposomes through pulse laser induced microbubble cavitation. Colloids Surf B Biointerfaces. 2015;126:569–574.
  • Mathiyazhakan M, Chan W, Ohl CD, et al. Synthesis of gold nanoparticle integrated photo-responsive liposomes and measurement of their microbubble cavitation upon pulse laser excitation. J Vis Exp. 2016;24:53619.
  • Hansen AH, Mouritsen OG, Arouri A. Enzymatic action of phospholipase A(2) on liposomal drug delivery systems. Int J Pharm. 2015;491:49–57.
  • Sangtani A, Petryayeva E, Wu M, et al. Intracellularly actuated quantum dot-peptide-doxorubicin nanobioconjugates for controlled drug delivery via the endocytic pathway. Bioconjugate Chem. 2018;29:136–148.
  • Fan Y, Wang Q, Lin G, et al. Combination of using prodrug-modified cationic liposome nanocomplexes and a potentiating strategy via targeted co-delivery of gemcitabine and docetaxel for CD44-overexpressed triple negative breast cancer therapy. Acta Biomaterialia. 2017;62:257–272.
  • Kono Y, Nakai T, Taguchi H, et al. Development of magnetic anionic liposome/atelocollagen complexes for efficient magnetic drug targeting. Drug Delivery. 2017;24:1740–1749.
  • Zhu HM, Gu JH, Xie Y, et al. Hydroxycamptothecin liposomes based on thermal and magnetic dual-responsive system: preparation, in vitro and in vivo antitumor activity, microdialysis-based tumor pharmacokinetics. J Drug Target. 2018;26:345–356.
  • Spera R, Apollonio F, Liberti M, et al. Controllable release from high-transition temperature magnetoliposomes by low-level magnetic stimulation. Colloids Surf B Biointerfaces. 2015;131:136–140.
  • Patel VR, Agrawal YK. Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Tech Res. 2011;2:81–87.
  • Bhattacharjee S. DLS and zeta potential – What they are and what they are not? J Control Release. 2016;235:337–351.
  • Staudenecker J. Friedrich-Alexander-UniversitÌt Erlangen-NÏrnberg (FAU), doctoral Thesis [Studies on the Manufacture & Spray Drying of Liposomes and Membrane Lipids]. 2016.
  • Nounou M, El-Khordagui LK, Khalafallah N, et al. Influence of different sugar cryoprotectants on the stability and physicochemical characteristics of freeze-dried 5-fluorouracil plurilamellar vesicles. DARU Journal of Pharmaceutical Sciences 2005;13(4):133–142
  • Yang S, Liu C, Liu W, et al. Preparation and Characterization of Nanoliposomes Entrapping Medium-Chain Fatty Acids and Vitamin C by Lyophilization. Int J Mol Sci. 2013;14:19763–19773.
  • Hua Z-Z, Li B-G, Liu Z-J, et al. Freeze-Drying of Liposomes with Cryoprotectants and Its Effect on Retention Rate of Encapsulated Ftorafur and Vitamin A. Drying Technol. 2003;21:1491–1505.
  • Sylvester B, Porfire A, Van Bockstal PJ, et al. Formulation optimization of freeze-dried long-circulating liposomes and in-line monitoring of the freeze-drying process using an nir spectroscopy tool. J Pharm Sci. 2018;107:139–148.
  • Rushmi ZT, Akter N, Mow RJ, et al. The impact of formulation attributes and process parameters on black seed oil loaded liposomes and their performance in animal models of analgesia. Saudi Pharm J. 2017;25:404–412.
  • El-Nesr OH, Yahiya SA, El-Gazayerly ON. Effect of formulation design and freeze-drying on properties of fluconazole multilamellar liposomes. Saudi Pharm J. 2010;18:217–224.
  • Thor Ingvarsson P, Yang M, Nielsen H, et al. Stabilization of liposomes during drying. Expert Opin Drug Deliv. 2011;8:375–388.
  • Franzé S, Selmin F, Samaritani E, et al. Lyophilization of liposomal formulations: still necessary, still challenging. Pharmaceutics. 2018;10:139.
  • Chonn A, Cullis PR, Devine DV. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol. 1991;146:4234.
  • Tall AR, Tabas I, Williams KJ. Lipoprotein-liposome interactions. Meth Enzymol. 1986;128:647–657.
  • Liu D, Huang L, Moore MA, et al. Interactions of serum proteins with small unilamellar liposomes composed of dioleoylphosphatidylethanolamine and oleic acid: high-density lipoprotein, apolipoprotein A1, and amphipathic peptides stabilize liposomes. Biochemistry. 1990;29:3637–3643.
  • Fatouros DG, Piperoudi S, Gortzi O, et al. Physical stability of sonicated arsonoliposomes: effect of calcium ions. J Pharm Sci. 2005;94:46–55.
  • Collins D, Connor J, Ting-Beall H-P, et al. Proton and divalent cations induce synergistic but mechanistically different destabilizations of pH-sensitive liposomes composed of dioleoyl phosphatidylethanolamine and oleic acid. Chem Phys Lipids. 1990;55:339–349.
  • Mady M. Serum stability of non-cationic liposomes used for DNA delivery. 2018 Romanian J Biophys. 2004;14(1–4):89-97.
  • Vermehren C, Hansen HS, Clausen-Beck B, et al. In vitro and in vivo aspects of N-acyl-phosphatidylethanolamine-containing liposomes. Int J Pharm. 2003;254:49–53.
  • Clary L, Verderone G, Santaella C, et al. Membrane permeability and stability of liposomes made from highly fluorinated double-chain phosphocholines derived from diaminopropanol, serine or ethanolamine. Biochim Biophys Acta Biomembr. 1997;1328:55–64.
  • Santaella C, Frézard F, Vierling P, et al. Extended in vivo blood circulation time of fluorinated liposomes. FEBS Letters. 1993;336:481–484.
  • Gasselhuber A, Dreher MR, Rattay F, et al. Comparison of conventional chemotherapy, stealth liposomes and temperature-sensitive liposomes in a mathematical model. Plos One. 2012;7:e47453.
  • Sahil K, Premjeet S, Bilandi A, et al. Stealth liposomes: a review. International Journal of Research in Ayurveda & Pharmacy Vol. 2. 2011;2(5).
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–284.
  • Hallahan D, Geng L, Qu S, et al. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell. 2003;3:63–74.
  • Pasqualini R, Koivunen E, Kain R, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000;60:722–727.
  • Ulbrich K, Šubr V. Polymeric anticancer drugs with pH-controlled activation. Adv Drug Deliv Rev. 2004;56:1023–1050.
  • Soe ZC, Thapa RK, Ou W, et al. Folate receptor-mediated celastrol and irinotecan combination delivery using liposomes for effective chemotherapy. Colloids Surf B Biointerfaces. 2018;170:718–728.
  • Xie Q, Deng W, Yuan X, et al. Selenium-functionalized liposomes for systemic delivery of doxorubicin with enhanced pharmacokinetics and anticancer effect. Europe J Pharma Biopharm. 2018;122:87–95.
  • Yang W, Hu Q, Xu Y, et al. Antibody fragment-conjugated gemcitabine and paclitaxel-based liposome for effective therapeutic efficacy in pancreatic cancer. ‎Mater Sci Eng C. 2018;89:328–335.
  • Jose A, Labala S, Ninave KM, et al. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS Pharm SciTech 201819(1):166–75.
  • Dorrani M, Garbuzenko OB, Minko T, et al. Development of edge-activated liposomes for siRNA delivery to human basal epidermis for melanoma therapy. J Control Release. 2016;228:150–158.
  • Lu M, Zhao X, Xing H, et al. Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA. Int J Pharm. 2018;550:100–113.
  • Fisher RK, Mattern-Schain SI, Best MD, et al. Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. J Surg Res. 2017;219:136–144.
  • Golkar N, Samani SM, Tamaddon AM. Modulated cellular delivery of anti-VEGF siRNA (bevasiranib) by incorporating supramolecular assemblies of hydrophobically modified polyamidoamine dendrimer in stealth liposomes. Int J Pharm. 2016;510:30–41.
  • Wang J, Ayano E, Maitani Y, et al. Enhanced cellular uptake and gene silencing activity of siRNA using temperature-responsive polymer-modified liposome. Int J Pharm. 2017;523:217–228.
  • Chen X, Zhang Y, Tang C, et al. Co-delivery of paclitaxel and anti-survivin siRNA via redox-sensitive oligopeptide liposomes for the synergistic treatment of breast cancer and metastasis. Int J Pharm. 2017;529:102–115.
  • Sharma S, Rajendran V, Kulshreshtha R, et al. Enhanced efficacy of anti-miR-191 delivery through stearylamine liposome formulation for the treatment of breast cancer cells. Int J Pharm. 2017;530:387–400.
  • Alves RF, Favaro MT, Balbino TA, et al. Recombinant protein-based nanocarriers and their association with cationic liposomes: Characterization and in vitro evaluation. Colloids Surf A Physicochem Eng Asp. 2017;513:1–10.
  • Pinnapireddy SR, Duse L, Strehlow B, et al. Composite liposome-PEI/nucleic acid lipopolyplexes for safe and efficient gene delivery and gene knockdown. Colloids Surf B Biointerfaces. 2017;158:93–101.
  • Xia Y, Wang X, Cheng H, et al. A polycation coated liposome as efficient siRNA carrier to overcome multidrug resistance. Colloids Surf B Biointerfaces. 2017;159:427–436.
  • Mallick S, Lee S, Park J-I, et al. Liposomes containing Cholesterol and Mitochondria-Penetrating Peptide (MPP) for targeted delivery of Antimycin A to A549 cells. Colloids Surf B Biointerfaces. 2017;161:356–364.
  • Inoh Y, Nagai M, Matsushita K, et al. Gene transfection efficiency into dendritic cells is influenced by the size of cationic liposomes/DNA complexes. Europe J Pharm Sci. 2017;102:230–236.
  • Bhavsar D, Subramanian K, Sethuraman S, et al. ‘Nano–in–nano’hybrid liposomes increase target specificity and gene silencing efficiency in breast cancer induced SCID mice. Europe J Pharm Biopharm. 2017;119:96–106.
  • Chen W, Deng W, Goldys EM. Light-triggerable liposomes for enhanced endolysosomal escape and gene silencing in PC12 cells. Mol Ther Nucleic Acids. 2017;7:366–377.
  • Chen Z, Zhang T, Wu B, et al. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes. Int J Nanomed. 2016;11:991.
  • UREY C, HILMERSSON KS, ANDERSSON B, et al. development and in vitro characterization of a gemcitabine-loaded MUC4-targeted immunoliposome against pancreatic ductal adenocarcinoma. Anticancer Res. 2017;37:6031–6039.
  • Han N-K, Shin DH, Kim JS, et al. Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells. Int J Nanomed. 2016;11:1413.
  • Alekseeva AA, Moiseeva EV, Onishchenko NR, et al. Liposomal formulation of a methotrexate lipophilic prodrug: assessment in tumor cells and mouse T-cell leukemic lymphoma. Int J Nanomed. 2017;12:3735.
  • Ciobanu AM, Bârcă M, Manda G, et al. Methotrexate liposomes-a reliable therapeutic option. In: Angel C, editor. Iiposomes. London: InTech; 2017 p. 268–293.
  • Ashley JD, Quinlan CJ, Schroeder VA, et al. Dual carfilzomib and doxorubicin–loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma. Mol Cancer Ther. 2016;15:1452–1459.
  • Eldin NE, Lila ASA, Kawazoe K, et al. Encapsulation in a rapid-release liposomal formulation enhances the anti-tumor efficacy of pemetrexed in a murine solid mesothelioma-xenograft model. Europe J Pharm Sci. 2016;81:60–66.
  • Luo D, Carter KA, Razi A, et al. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials. 2016;75:193–202.
  • Sriraman SK, Salzano G, Sarisozen C, et al. Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid. European J Pharm Biopharm. 2016;105:40–49.
  • Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines. 2014;2:159–182.
  • Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine. 2014;32:327–337.
  • Bovier PA. Epaxal: a virosomal vaccine to prevent hepatitis A infection. Expert Rev Vaccines. 2008;7:1141–1150.
  • Hanson MC, Abraham W, Crespo MP, et al. Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Vaccine. 2015;33:861–868.
  • Ofek G, Zirkle B, Yang Y, et al. Structural basis for HIV-1 neutralization by 2F5-like antibodies m66 and m66.6. J Virol. 2014;88:2426–2441.
  • Liu X, Da Z, Wang Y, et al. A novel liposome adjuvant DPC mediates Mycobacterium tuberculosis subunit vaccine well to induce cell-mediated immunity and high protective efficacy in mice. Vaccine. 2016;34:1370.
  • Liu F, Sun X, Fairman J, et al. A cationic liposome-DNA complexes adjuvant (JVRS-100) enhances the immunogenicity and cross-protective efficacy of pre-pandemic influenza A (H5N1) vaccine in ferrets. Virology. 2016;492:197–203.
  • Varypataki EM, van der Maaden K, Bouwstra J, et al. Cationic liposomes loaded with a synthetic long peptide and poly(i:c): a defined adjuvanted vaccine for induction of antigen-specific t cell cytotoxicity. Aaps J. 2015;17:216–226.
  • Alipour Talesh G, Ebrahimi Z, Badiee A, et al. Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model. Immunol Lett. 2016;176:57–64.
  • Das P, Paik D, Naskar K, et al. Leishmania donovani serine protease encapsulated in liposome elicits protective immunity in experimental visceral leishmaniasis. Microbes and Infection. 2017;20(1):37–47.
  • Miao L, Yang Y, Yan M, et al. Enhanced immune response to rabies viruses by the use of a liposome adjuvant in vaccines. Viral Immunol. 2017;30(10):727–33.
  • Ghaffar KA, Marasini N, Giddam AK, et al. Liposome-based intranasal delivery of lipopeptide vaccine candidates against group A streptococcus. Acta Biomaterialia. 2016;41:161–168.
  • Tada R, Muto S, Iwata T, et al. Attachment of class B CpG ODN onto DOTAP/DC-chol liposome in nasal vaccine formulations augments antigen-specific immune responses in mice. BMC Res Notes. 2017;10:68.
  • Zheng H, Hu Y, Huang W, et al. Negatively charged carbon nanohorn supported cationic liposome nanoparticles: a novel delivery vehicle for anti-nicotine vaccine. j Biomed Nanotechnol. 2015;11:2197–2210.
  • Oberoi HS, Yorgensen YM, Morasse A, et al. PEG modified liposomes containing CRX-601 adjuvant in combination with methylglycol chitosan enhance the murine sublingual immune response to influenza vaccination. J Control Release. 2016;223:64–74.
  • Qiu Y, Guo L, Zhang S, et al. DNA-based vaccination against hepatitis B virus using dissolving microneedle arrays adjuvanted by cationic liposomes and CpG ODN. Drug Deliv. 2015;23:1– 2398.
  • Fan Y, Sahdev P, Ochyl LJ, et al. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J Control Release. 2015;208:121–129.
  • Iwama T, Uchida T, Sawada Y, et al. Vaccination with liposome-coupled glypican-3-derived epitope peptide stimulates cytotoxic T lymphocytes and inhibits GPC3-expressing tumor growth in mice. Biochem Biophys Res Commun. 2016;469:138–143.
  • Razazan A, Behravan J, Arab A, et al. Conjugated nanoliposome with the HER2/neu-derived peptide GP2 as an effective vaccine against breast cancer in mice xenograft model. PloS One. 2017;12:e0185099.
  • Mukherjee F, Prasad A, Bahekar V, et al. Evaluation of immunogenicity and protective efficacy of a liposome containing Brucella abortus S19 outer membrane protein in BALB/c mice. Iranian J Vet Res. 2016;17:1.
  • Huang Y, Liu Z, Bo R, et al. The enhanced immune response of PCV-2 vaccine using Rehmannia glutinosa polysaccharide liposome as an adjuvant. Int J BiolMacromol. 2016;86:929–936.
  • Guo LS. Liposome composition for treating dry eye. Google Patents 4,818,537. 1989.
  • Craig JP, Purslow C, Murphy PJ, et al. Effect of a liposomal spray on the pre-ocular tear film. Cont Lens Anterior Eye. 2010;33:83–87.
  • Morand K, Bartoletti AC, Bochot A, et al. Liposomal amphotericin B eye drops to treat fungal keratitis: physico-chemical and formulation stability. Int J Pharm. 2007;344:150–153.
  • Taha EI, El-Anazi MH, El-Bagory IM, et al. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J. 2014;22:231–239.
  • Huang Y, Tao Q, Hou D, et al. A novel ion-exchange carrier based upon liposome-encapsulated montmorillonite for ophthalmic delivery of betaxolol hydrochloride. Int J Nanomed. 2017;12:1731–1745.
  • Manca ML, Matricardi P, Cencetti C, et al. Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery. Int J Pharm. 2016;505:204–211.
  • Li X, Wang C, Xiao J, et al. Fibroblast growth factors, old kids on the new block. Seminars in Cell & Developmental Biology. 2016;53:155–167.
  • Xu HL, Chen PP, ZhuGe DL, et al. Liposomes with Silk Fibroin Hydrogel Core to Stabilize bFGF and Promote the Wound Healing of Mice with Deep Second-Degree Scald. Adv Healthc Mater 2017;6(19):1700344.
  • Sahu K, Kaurav M, Pandey RS. Protease loaded permeation enhancer liposomes for treatment of skin fibrosis arisen from second degree burn. Biomed Pharmacother.. 2017;94:747–757.
  • Cui M-D, Pan Z-H, Pan L-Q. Danggui Buxue Extract-Loaded Liposomes in Thermosensitive Gel Enhance In Vivo Dermal Wound Healing via Activation of the VEGF/PI3K/Akt and TGF-β/Smads Signaling Pathway. Evid Based Complement Alternat Med. 2017;2017:1.
  • Xu HL, Chen PP, ZhuGe DL, et al. Liposomes with Silk Fibroin Hydrogel Core to Stabilize bFGF and Promote the Wound Healing of Mice with Deep Second‐Degree Scald. Adv Healthcare Mater. 2017;6:1700344.
  • Avachat AM, Takudage PJ. Design and characterization of multifaceted lyophilized liposomal wafers with promising wound healing potential. J Liposome Res. 2017;28(3):1–52.
  • Fukui T, Kawaguchi AT, Takekoshi S, et al. Liposome‐encapsulated hemoglobin accelerates skin wound healing in diabetic dB/dB mice. Artificial Organs. 2017;41:319–326.
  • Wang X, Liu B, Xu Q, et al. GHK‐Cu‐liposomes accelerate scald wound healing in mice by promoting cell proliferation and angiogenesis. Wound Rep and Reg. 2017;25:270–278.
  • Vogt PM, Hauser J, Mueller S, et al. Efficacy of conventional and liposomal povidone–iodine in infected mesh skin grafts: an exploratory study. Infect Dis Ther. 2017;6:545–555.
  • Jangde R, Singh D. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artif Cells Nanomed Biotechnol. 2016;44:635–641.
  • Rabbani PS, Zhou A, Borab ZM, et al. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing. Biomaterials. 2017;132:1–15.
  • Sahu K, Kaurav M, Pandey RS. Protease loaded permeation enhancer liposomes for treatment of skin fibrosis arisen from second degree burn. Biomed Pharmacother. 2017;94:747–757.
  • Li Z, Liu M, Wang H, et al. Increased cutaneous wound healing effect of biodegradable liposomes containing madecassoside: preparation optimization, in vitro dermal permeation, and in vivo bioevaluation. I J Nanomed. 2016;11:2995.
  • Nunes PS, Rabelo AS, de Souza JCC, et al. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. Int J Pharm. 2016;513:473–482.
  • Azimi H, Fallah-Tafti M, Khakshur AA, et al. A review of phytotherapy of acne vulgaris: perspective of new pharmacological treatments. Fitoterapia. 2012;83:1306–1317.
  • Bergler-Czop B, Bilewicz-Stebel M, Stańkowska A, et al. Side effects of retinoid therapy on the quality of vision. Acta Pharmaceutica 2016. 66: 471.
  • Rahman SA, Abdelmalak NS, Badawi A, et al. Tretinoin-loaded liposomal formulations: from lab to comparative clinical study in acne patients. Drug Deliv. 2015; 23:1– 93.
  • Jeong S, Lee J, Im BN, et al. Combined photodynamic and antibiotic therapy for skin disorder via lipase-sensitive liposomes with enhanced antimicrobial performance. Biomaterials. 2017;141:243–250.
  • Doppalapudi S, Jain A, Chopra DK, et al. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur J Pharm Sci. 2017;96:515–529.
  • Doppalapudi S, Mahira S, Khan W. Development and in vitro assessment of psoralen and resveratrol co-loaded ultradeformable liposomes for the treatment of vitiligo. J Photochem Photobiol B. 2017;174:44–57.
  • Lee S-H, Sato Y, Hyodo M, et al. Size-dependency of the surface ligand density of liposomes prepared by post-insertion. Biol Pharm Bullet. 2017;40:1002–1009.
  • Li H, Yuan D, Sun M, et al. Effect of ligand density and PEG modification on octreotide-targeted liposome via somatostatin receptor in vitro and in vivo. Drug Delivery. 2016;23:3562–3572.
  • Chu C, Xu P, Zhao H, et al. Effect of surface ligand density on cytotoxicity and pharmacokinetic profile of docetaxel loaded liposomes. Asia J Pharm Sci. 2016;11:655–661.
  • Toh M-R, Chiu GNC. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asia J Pharm Sci. 2013;8:88–95.
  • Singh B, Mundlamuri R, Friese T, et al. Benchmarking of sterilizing-grade filter membranes with liposome filtration. PDA J Pharm Sci Technol. 2018;72:223–235.
  • Solomon D, Gupta N, Mulla NS, et al. Role of in vitro release methods in liposomal formulation development: challenges and regulatory perspective. Aaps J. 2017;19:1669–1681.
  • Gaspar RS, Florindo HF, Silva LC, et al. Regulatory aspects of oncologicals: nanosystems main challenges. In: Alonso MJ, Garcia-Fuentes M, editors. Nano-oncologicals: new targeting and delivery approaches. Cham: Springer International Publishing; 2014. p. 425–452.
  • Sainz V, Conniot J, Matos A, et al. Regulatory Aspects on Nanomedicines. Biochem Biophys Res Commun. 2015;468:504–510.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.