303
Views
17
CrossRef citations to date
0
Altmetric
Review Article

A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles

ORCID Icon
Pages 502-524 | Received 21 Dec 2018, Accepted 24 Feb 2019, Published online: 19 Mar 2019

References

  • Pelaz B, Alexiou C, Alvarez-Puebla R, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11:2313–2381.
  • Shi J, Votruba AR, Farokhzad OC, et al. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10:3223–3230.
  • Juliano R. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 2016;44:6518–6548.
  • Park J, Park J, Pei Y, et al. Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines. Adv Drug Deliv Rev. 2016;104:93–109.
  • Anchordoquy TJ, Barenholz Y, Boraschi D, et al. Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions. ACS Nano. 2017;11:12–18.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–951.
  • Ross KA, Brenza YM, Binnebose AM, et al. Nano-enabled delivery of diverse payloads across complex biological barriers. J Control Release. 2015;219:548–559.
  • Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017;42:742–755.
  • Barrenholz Y. Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Rel. 2012;160:117–134.
  • Arias JL, Reddy LH, Othman M, et al. Squalene based nanocomposites: a new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano. 2011;5:1513–1521.
  • Bui DT, Nicolas J, Maksimenko A, et al. Multifunctional squalene-based prodrug nanoparticles for targeted cancer therapy. Chem Commun (Camb). 2014;50:5336–5338.
  • Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm. 2011;8:2101–2141.
  • Lacombe S, Porcel E, Scifoni E. Particle therapy and nanomedicine: state of art and research perspectives. Cancer Nanotechnol. 2017;8:9.
  • Lherm C, Couvreur P, Loiseau P, et al. Unloaded polyisobutylcyanoacrylate nanoparticles: efficiency against bloodstream trypanosomes. J Pharm Pharmacol. 1987;39:650–652.
  • Pradines B, Bories C, Vauthier C, et al. Drug-free nanoparticles are active against Trichomonas vaginalis and non-toxic towards pig vaginal mucosa. Pharm Res. 2015;32:1229–1236.
  • von Maltzahn G, Park JH, Lin KY, et al. Nanoparticles that communicate in vivo to amplify tumour targeting, Nat Mater. 2011;10:545–552.
  • Agrawal U, Gupta M, Jadon RS, et al. Multifunctional nanomedicines: potentials and prospects. Drug Deliv Transl Res. 2013;3:479–497.
  • Hassanzadeh P, Atyabi F, Dinarvand R. Linkers: the key elements for the creation of efficient nanotherapeutics. J Control Release. 2018;270:260–267.
  • Kunjachan S, Ehling J, Storm G, et al. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev. 2015;115:10907–10937.
  • Lammers T, Kiessling F, Hennink WE, et al. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm. 2010;7:1899–1912.
  • Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev. 2012;64:1394–416.
  • Mura S, Couvreur P. Combining imaging and drug delivery for the treatment of severe diseases. In: Mura S, Couvreur P, editors. Nanotheranostics for personalized medicine. Singapore: World Scientific; 2016. p. 1–6.
  • Reddy LH, Couvreur P. Nanotechnology for therapy and imaging of liver diseases. J Hepatol. 2011;55:1461–1466.
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1:10–29.
  • Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–2387.
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9:E12.
  • Caster JM, Patel AN, Zhang T, et al. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9:e1416.
  • Cicha I, Chauvierre C, Texier I, et al. From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovasc Res. 2018;114:1714–1727.
  • Lee MS, Dees EC, Wang AZ. Nanoparticle-delivered chemotherapy: old drugs in new packages. Oncology (Williston Park). 2017;31:198–208.
  • Li Z, Tan S, Li S, Shen Q, et al. Cancer drug delivery in the nano era: an overview and perspectives (review). Oncol Rep. 2017;38:611–624.
  • Hainfeld JF, Lin L, Slatkin DN, et al. Gold nanoparticle hyperthermia reduces radiotherapy dose, Nanomedicine. 2014;10:1609–1617.
  • Lamch L, Pucek A, Kulbacka J, et al. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci. 2018;261:62–81.
  • Mi Y, Shao Z, Vang J, et al. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol. 2016;7:11.
  • Andrieux K, Couvreur P. Nanomedicine as a promising approach for the treatment and diagnosis of brain diseases: the example of Alzheimer’s disease. Ann Pharm Françaises 2013;71:225–233.
  • Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev. 2014;71:2–14.
  • Saraiva C, Praça C, Ferreira R, et al. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.
  • Zhou Y, Peng Z, Seven ES, et al. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270:290–303.
  • Chan CKW, Zhang L, Cheng CK, et al. Recent advances in managing atherosclerosis via nanomedicine. Small. 2018;14:1702793.
  • Dormont F, Varna M, Couvreur P. Nanoplumbers: biomaterials to fight cardiovascular diseases. Materials Today. 2018;21:22–143.
  • Ferreira MP, Balasubramanian V, Hirvonen J, et al. Advanced nanomedicines for the treatment and diagnosis of myocardial infarction and heart failure. Curr Drug Targets. 2015;16:1682–1697.
  • Suarez S, Almutairi A, Christmann KL. Micro- and nanoparticles for treating cardiovascular disease. Biomaterials Sci. 2015;3:564–580.
  • Varna M, Juenet M, Bayles R, et al. Nanomedicine as a strategy to fight thrombotic diseases. Future Sci OA. 2015;1:FSO46.
  • Aguirre TA, Teijeiro-Osorio D, Rosa M, et al. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev. 2016;106:223–241.
  • Lakkireddy HR, Urmann M, Besenius M, et al. Oral delivery of diabetes peptides – comparing standard formulations incorporating functional excipients and nanotechnologies in the translational context. Adv Drug Deliv Rev. 2016;106:196–222.
  • Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv. 2015;12:1459–1473.
  • Wong CY, Al-Salami H, Dass CR. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release. 2017;264:247–275.
  • Dusinska M, Boland S, Saunders M, et al. Towards an alternative testing strategy for nanomaterials used in nanomedicine: lessons from NanoTEST. Nanotoxicology. 2015;9:118–132.
  • Lakkireddy HR, Bazile DV. Nanocarriers for drug routing – towards a new era. J Drug Target. 2018. DOI:10.1080/1061186X.2018.1561891.
  • Satalkar P, Elger BS, Hunziker P, et al. Challenges of clinical translation in nanomedicine: a qualitative study. Nanomedicine. 2016;12:893–900.
  • Su H, Wang Y, Gu Y, et al. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol. 2018;38:3–24.
  • Alonso MJ, Couvreur P. Historical view of the design and development of nanocarriers overcoming biological barriers. In: Alonso MJ, Csaba NS, editors. Nanostructured biomaterials for overcoming barriers. Dorchester (UK): RSC Publishing; 2012. p. 3–36.
  • Krukemeyer MG, Krenn V, Huebner F, et al. History and possible uses of nanomedicine based on nanoparticles and nanotechnological progress. J Nanomed Nanotechnol. 2015;6:1000336.
  • Ehrlich P. Partial cell function. Nobel lecture. 1908 Dec 11 [cited 2018 Dec 12]. Available from: https://www.nobelprize.org/prizes/medicine/1908/ehrlich/lecture/
  • Bosch F, Rosich L. The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his Nobel Prize. Pharmacology. 2008;82:171–179.
  • Strebhardt K, Ullrich A. Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8:473–480.
  • Valent P, Groner B, Schumacher U, et al. Paul Ehrlich (1854-1915) and His Contributions to the Foundation and Birth of Translational Medicine. J Innate Immun. 2016;8:111–120.
  • Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex diseases. Pharm Res. 2006;23:1417–1450.
  • Hoffman AS. The origins and evolution of "controlled" drug delivery systems. J Control Release. 2008;132:153–163.
  • Karra N, Benita S. The ligand nanoparticle conjugation approach for targeted cancer therapy. Curr Drug Metab. 2012;13:22–41.
  • De Duve C. Exploring cells with a centrifuge. Nobel Prize Lecture, 1974 Dec 12 [cited 2018 Dec 12]. Available from: https://www.nobelprize.org/prizes/medicine/1974/duve/lecture/
  • Couplan RE. Electron microscopic observations on the structure of the rat adrenal medulla. I. The ultrastructure and organization of chromaffin cells in the normal adrenal medulla. J Anat. 1965;99:231–254.
  • Taxi J. Recherches en vue de l’identification au microscope électronique des cellules interstitielles de Cajal. In: Bargmann W, Peters D, Wolpers C, editors. Verhandlungen Band II/Biologisch-Medizinischer Teil. Berlin: Springer; 1960. p. 440–443.
  • de Duve C, de Barsy T, Poole B, et al. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974;23:2495–2531.
  • Kopecek J, Kopecková P. HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev. 2010;62:122–149.
  • Ringsdorf H. Structure and properties of pharmacologically active polymers, J Polym Sci Polym Symp. 1975;51:135–153.
  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–252.
  • Gregoriadis G. Liposomology: delivering the message. J Liposome Res. 2018;28:1–4.
  • Gregoriadis G. Drug entrapment in liposomes. Febs Lett. 1973;36:292–296.
  • Perrie Y. Gregory Gregoriadis: Introducing liposomes to drug delivery. J Drug Target. 2008;16:518–519.
  • Birrenbach G, Speiser PP. Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci. 1976;65:1763–1766.
  • Kreuter J. Neue Adjuvantien auf polymethylmethacrylatbasis. Dissertation ETH Zurich Nr.5417. 1974.
  • Speiser PP. Non-liposomal nanocapsules, methodology and application. Front Biol. 1979;48:653–668.
  • Kreuter J. Nanoparticles – a historical perspective. Int J Pharm. 2007;331:1–10.
  • Puisieux F, Barratt G. Takeru Higuchi, the man and the scientist. Int J Pharm. 2011;418:3–5.
  • Stella VJ. My mentors. J Pharm Sci. 2001;90:969–978.
  • Stanwix H. Patrick Couvreur: inspiring pharmaceutical innovation. Nanomedicine (Lond). 2014;9:759–7561.
  • Couvreur P, Tulkens P, Roland M, et al. Nanocapsules: a new type of lysosomotropic carrier. FEBS Lett. 1977;84:323–326.
  • Couvreur P, Kante B, Roland M, et al. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol. 1979;31:331–332.
  • Couvreur P, Kante B, Roland M, et al. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci 1979;68:1521–1624.
  • Couvreur P, Roland M, Speiser P. Particules submicroscopiques biodegradables contenant une substance biologiquement active, leur preparation et leur application. Patent application in Belgium Priority 1978-07-19 BE869107. Publication 1979-01-19 BE869107A.
  • Couvreur P, Roland M, Speiser P. Nanoparticules biodégradables, compositions pharmaceutiques les contenant et procédé pour leur préparation. European patent Application Priority EP79870017 - 1979-07-16 publication: EP0007895 - 1980-02-06.
  • Couvreur P. Design of biodegradable polyalkylcyanoacrylate nanoparticles as a drug carrier. In: Davis SS, Illum L, McVie JG, et al., editors. Microspheres and drug therapy. Amsterdam (The Netherlands): Elsevier Science; 1984. p. 103–115.
  • Couvreur P. Polyalkylcyanoacrylates as colloidal drug carriers. Crit Rev Therap Drug Carrier Syst. 1988;5:1–20.
  • Douglas SJ, Davis SS, Illum L. Nanoparticles in drug delivery. Crit Rev Ther Drug Carrier Syst. 1987;3:233–261.
  • Kattan J, Droz JP, Couvreur P, et al. Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest New Drugs. 1992;10:191–192.
  • Kreuter J. Evaluation of nanoparticles as drug delivery systems I: preparation methods. Pharm Acta Helv. 1983;58:196–209.
  • Kreuter J. Possibilities of using nanoparticles as carriers for drugs and vaccines. J Microencapsul. 1988;5:115–127.
  • NCT01655693. Efficacy and safety doxorubicin Transdrug study in patients suffering from advanced hepatocellular carcinoma (ReLive). 2012. [cited 2018 Nov 17]. Available from: https://clinicaltrials.gov/ct2/show/record/NCT01655693?show_locs=Y.
  • Oppenheim RC. Solid colloidal drug delivery systems: nanoparticles. Int J Pharm. 1981;8:217–234.
  • Soma E, Attali P, Merle P. A clinically relevant case study: the development of Livatag® for the treatment of advanced hepatocellular carcinoma. In: Alonso MJ, Csaba NS, editors. RSC drug discovery series N°22: nanostructured biomaterials for overcoming biological barriers. Dorchester (UK): The Royal Society of Chemistry; 2012. p. 591–600.
  • Zhou Q, Sun X, Zeng L, et al. A randomized multicenter phase II clinical trial of mitoxantrone-loaded nanoparticles in the treatment of 108 patients with unresected hepatocellular carcinoma. Nanomedicine. 2009;5:419–423.
  • Couvreur P, Roland M, Speiser P. Procédé de préparation de particules submicroscopiques, particules ainsi obtenues et compositions pharmaceutiques les contenant. Priority date FR8108172 - 1981-04-24. Publication EP0064967 - 1982-11-17.
  • Couvreur P, Rolad M, Speiser P. Process for preparing biodegradable submicroscopic particles containing a biologically active substance and their use. US Patent application Priority 1982-02-17 US06/349,545, Publication: 1984-12-18, US4489055A.
  • Gurny R, Peppas NA, Harrington DD, et al. Development of biodegradable and injectable lattices for controlled release of potent drugs. Drug Dev Ind Pharm. 1981;7:1–25.
  • Couvreur P, Kante B, Lenaerts V, et al. Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles. J Pharm Sci. 1980;69:199–202.
  • Kante B, Couvreur P, Lenaerts V, et al. Tissue distribution of [3H] actinomycine D adsorbed on polybutylcyanoacrylate nanoparticles. Int J Pharm. 1980;7:45–53.
  • Couvreur P, Kante B, Roland M. Les vecteurs lysosomotropes. J Pharm Belg. 1980;35:51–60.
  • Gregoriadis G, Neerunjun DE, Hunt R. Fate of a liposome-associated agent injected into normal and tumour-bearing rodents. Attempts to improve localization in tumour tissues. Life Sci. 1977;21:357–369.
  • Kante B, Couvreur P, Dubois-Krack G, et al. Toxicity of polyalkylcyanoacrylate nanoaprticles I: free nanoparticles. J Pharm Sci. 1982:71:786–790.
  • Thorn CF, Oshiro C, Marsh S, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21:440–446.
  • Couvreur P, Kante B, Grislain L, et al. Toxicity of polyalkylcyanoacrylate nanoparticles II: doxorubicin-loaded nanoparticles. J Pharm Sci. 1982;71:790–792.
  • Lenaerts V, Couvreur P, Christiaensleyh D, et al. Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials. 1984;5:65–68.
  • Leyh D, Couvreur P, Lenaerts V, et al. Etude du mécanisme de dégradation des nanoaprticules de polycyanoacrylate d’alkyle. Labo-Pharm-Prob Tech. 1984;32:100–104.
  • Douglas SJ, Davis SS, Illum L. Biodistribution of poly(butyl-2-cyanoacrylate) nanoparticles in rabbits. Int J Pharm. 1986;34:145–152.
  • El-Samaligy MS, Rohdewald P, Mahmoud HA. Polyalkyl cyanoacrylate nanocapsules. J Pharm Pharmacol. 1986;38:216–218.
  • Gasco MR, Trotta M. Nanoparticles from microemulsions. Int J Pharm. 1986;29:267–268.
  • Illum L, Jones PDE, Kreuter J, et al. Adsorption of monoclonal antibodies to polyhexylcyanoacrylate nanoparticles and subsequent immunospecific binding to tumour cells in vitro. Int J Pharm. 1983;17:65–76.
  • Illum L, Jones PDE, Baldwin RW, et al. Tissue distribution of poly(hexyl 2-cyanoacrylate) nanoparticles coated with monoclonal antibodies in mice bearing human tumor xenografts. J Pharmacol Exp Ther. 1984;230:733–736.
  • Kreuter J. Physicochemical characterization of polyacrylic nanoparticles. Int J Pharm. 1983;14:43–58.
  • Andrieux K, Couvreur P. Polyalkylcyanoacrylate nanoparticles for delivery of drugs across the blood-brain barrier. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:463–474.
  • Bawa KK, Oh JK. Stimulus-responsive degradable polylactide-based block copolymer nanoassemblies for controlled/enhanced drug delivery. Mol Pharm. 2017;14:2460–2474.
  • Couvreur P, Roblot-Treupel L, Poupon MF, et al. Nanoparticles as microcarriers for anticancer drugs. Adv Drug Deliv Rev. 1990;5:200–230.
  • Couvreur P, Vauthier C. Polyalkylcyanoacrylate nanoparticles as drug carriers: present state and perspectives. J Control Release. 1991;17:187–198.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:506–522.
  • Fattal E, Vauthier C, Aynie I, et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J Control Release. 1998;53:137–143.
  • Graf A, McDowell A, Rades T. Poly(alkylcyanoacrylate) nanoparticles for enhanced delivery of therapeutics - is there real potential? Expert Opin Drug Deliv. 2009;6:371–87.
  • James R, Manoukian OS, Kumbar SG. Poly(lactic acid) for delivery of bioactive macromolecules. Adv Drug Deliv Rev. 2016;107:277–288.
  • Kreuter J. Nanoparticles. In: Kreuter J, editor. Colloidal drug delivery systems. New York (NY): Marcel Dekker; 1994. p. 219–242.
  • Lai P, Daear W, Löbenberg R, Prenner EJ. Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d,l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf B Biointerfaces. 2014;118:154–163.
  • Lakkireddy HR, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))-poly(ethylene glycol) nanotechnology as a model: an industrial viewpoint. Adv Drug Deliv Rev. 2016;107:289–332.
  • Lee BK, Yun Y, Park K. PLA micro- and nano-particles. Adv Drug Deliv Rev. 2016;5:176–191.
  • Mundargi RC, Babu VR, Rangaswamy V, et al. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J Control Release. 2008;125:193–209.
  • Murthy RSR, Reddy LH. Poly(alkyl cyanoacrylate) nanoparticles for delivery of anti-cancer drugs. In: Amiji MM, editor. Nanotechnology for cancer therapy. Boca Raton (FL): Taylor and Francis Group; 2006. p. 251–288.
  • Nicolas J, Couvreur P. Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:111–127.
  • Nicolas J, Vauthier C. Poly(alkylcyanoacrylate) nanosystems. In: Prokop A, editor. Intracellular delivery: fundamentals and applications, fundamental biomedical technologies. The Netherlands: Springer; 2011. p. 225–250.
  • Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev. 2016;107:163–175.
  • Vauthier C, Dubernet C, Fattal E, et al. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Delivery Rev. 2003;55:519–548.
  • Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release. 2003;93:151–160.
  • Vauthier C, Labarre D, Ponchel G. Design aspects of poly(alkylcyanoacrylate) nanoparticles for targeted drug delivery. J Drug Target. 2007;15:641–663.
  • Yordanov GG. Poly(alkylcyanoacrylate) nanoparticles as drug carriers: 33 years later. Bulg J Chem. 2012;1:61–73.
  • Vauthier C, Seiller M, Weingarten C, et al. Contribution to the development of oral dosage form for insulin delivery. STP Pharma Sci. 1999;9:391–396.
  • Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–453.
  • Narvekar M, Xue HY, Eoh JY, et al. Nanocarrier for poorly water-soluble anticancer drugs–barriers of translation and solutions. AAPS PharmSciTech. 2014;15:822–833.
  • van Hoogevest P, Liu X, Fahr A. Drug delivery strategies for poorly water-soluble drugs: the industrial perspective. Expert Opin Drug Deliv. 2011;8:1481–1500.
  • Zhang X, Xing H, Zhao Y, et al. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics. 2018;10:E74.
  • Couvreur P, Puisieux F. Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev. 1993;10:141–162.
  • Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2018;18:19–40.
  • Chung SW, Hil-lal TA, Byun Y. Strategies for non-invasive delivery of biologics. J Drug Target. 2012;20:481–501.
  • Mahato RI. Challenges of turning nucleic acids into therapeutics. Adv Drug Deliv Rev. 2000;44:79–80.
  • Silva AC, Lopes CM, Sousa Lobo JM, et al. Nucleic acids delivery systems: a challenge for pharmaceutical technologists. Curr Drug Metab. 2015;16:3–16.
  • Chavany C, Le Doua T, Couvreur P, et al. Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharm Res. 1992;9:441–449.
  • Damgé C, Michel C, Aprahamian M, et al. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes. 1988;37:246–251.
  • Fattal E, Couvreur P. Polymeric nanoparticles and microparticles as carriers for antisense oligonucleotides. In: Couvreur P, Malvy C, editors. Pharmaceutical aspects of oligonucleotides. Philaderphia (PA): Taylor & Francis Group; 2000. p. 129–147.
  • Charrueau C, Zandanel C. Associating drugs with polymer nanoparticles: a challenge. In: Vauthier C, Ponchel G, editors. Polymer nanoparticles for nanomedicines. Cham (Switzerland): Springer; 2016. p. 381–437.
  • Vauthier C. Methods for the preparation of nanoparticles by polymerization. In: Vauthier C, Ponchel G, editors. Polymer nanoparticles for nanomedicines. Cham (Switzerland): Springer; 2016. p. 123–157.
  • Chauvierre C, Labarre D, Couvreur P, Vauthier C. Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles. Pharm Res. 2003;20:1786–1793.
  • Al Khouri-Falhou N, Roblot-Treupel L, Fessi H, et al. Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. Int J Pharm. 1986;28:125–132.
  • Lambert G, Fattal E, Pinto-Alphandary H, et al. Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm Res. 2000;17:707–714.
  • Watnasirichaikul S, Davies NM, Rades T, et al. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm Res. 2000;17:684–689.
  • Rajaonarivony M, Vauthier C, Couarraze G, et al. Development of a new drug carrier made from alginate. J Pharm Sci. 1993;82:912–917.
  • Ahmad Z, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents. 2005;26:298–303. Erratum in: Int J Antimicrob Agents. 2010;36:195.
  • Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60:1638–1649.
  • He J, Li R, Sun X, et al. Effects of calcium alginate submicroparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Polymers. 2018;10:1154.
  • Lopes M, Abrahim B, Veiga F, et al. Preparation methods and applications behind alginate-based particles. Expert Opin Drug Deliv. 2017;14:769–782.
  • Mukhopadhyay P, Maity S, Mandal S, et al. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym. 2018;182:42–51.
  • Sarmento B, Ferreira D, Veiga F, et al. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym. 2006;66:1–7.
  • Venkatesan J, Anil S, Kim SK, et al. Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery. Polymers. 2016;8:30.
  • Calvo P, Remuñán‐López C, Vila-Rato JL, et al. Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers. J Applied Polym Sci. 1997;63:125–132.
  • Li P, Dai YN, Zhang JP, et al. Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci. 2008;4:221–228.
  • Sarmento B, Ribeiro AJ, Veiga F, et al. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol. 2007;7:2833–2841.
  • Garcia-Fuentes M, Alonso MJ. Chitosan-based drug nanocarriers: where do we stand? J Control Release. 2012;161:496–504.
  • Islam N, Ferro V. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery. Nanoscale. 2016;8:14341–14358.
  • Key J, Park K. Multicomponent, tumor-homing chitosan nanoparticles for cancer imaging and therapy. Int J Mol Sci. 2017;18:E594.
  • Mokhtarzadeh A, Alibakhshi A, Hashemi M, et al. Biodegradable nano-polymers as delivery vehicles for therapeutic small non-coding ribonucleic acids. J Control Release. 2017;245:116–126.
  • Vauthier C, Zandanel C, Ramon AL. Chitosan-based nanoparticles for in vivo delivery of interfering agents including siRNA. Curr Opin Colloid Interf Sci. 2013;18:406–418.
  • Wang D, Qian J, Ding F. Recent advances in engineered chitosan-based nanogels for biomedical applications. J Mater Chem B. 2017;5:6986–7007.
  • Daoud-Mahammed S, Grossiord JL, Bergua T, et al. Self-assembling cyclodextrin based hydrogels for the sustained delivery of hydrophobic drugs. J Biomed Mater Res A. 2008;86:736–48.
  • Daoud-Mahammed S, Ringard-Lefebvre C, Razzouq N, et al. Spontaneous association of hydrophobized dextran and poly-beta-cyclodextrin into nanoassemblies. Formation and interaction with a hydrophobic drug. J Colloid Interface Sci. 2007;307:83–93.
  • Gref R, Amiel C, Molinard K, et al. New self-assembled nanogels based on host-guest interactions: characterization and drug loading. J Control Release. 2006;111:316–324.
  • Daoud-Mahammed S, Couvreur P, Bouchemal K, et al. Cyclodextrin and polysaccharide-based nanogels: entrapment of two hydrophobic molecules, benzophenone and tamoxifen. Biomacromolecules. 2009;10:547–554.
  • Diaz-Salmeron R, Ponchel G, Gallard JF, et al. Hierarchical supramolecular platelets from hydrophobically-modified polysaccharides and α-cyclodextrin: effect of hydrophobization and α-cyclodextrin concentration on platelet formation. Int J Pharm. 2018;548:227–236.
  • Mejia-Ariza R, Graña-Suárez L, Berboom W, et al. Cyclodextrin-based supramolecular nanoparticles for biomedical applications. J Mater Chem B. 2017;5:36–52.
  • Wankar J, Salzano G, Pancani E, et al. Efficient loading of ethionamide in cyclodextrin-based carriers offers enhanced solubility and inhibition of drug crystallization. Int J Pharm. 2017;531:568–576.
  • Couvreur P, Stella B, Reddy LH, et al. Squalenoyl nanomedicines as potential therapeutics. Nano Lett. 2006;6:2544–2548.
  • Desmaële D, Gref R, Couvreur P. Squalenoylation: a generic platform for nanoparticular drug delivery. J Control Release. 2012;161:609–618.
  • Feng J, Lepetre-Mouelhi S, Couvreur P. Design, preparation and characterization of modular squalene-based nanosystems for controlled drug release. Curr Top Med Chem. 2017;17:2849–2865.
  • Mura S, Fattal E, Nicolas J. From Drug loaded poly(alkylcyanoacrylate) nanoparticles to squalene-based prodrug nanoparticles. J Drug Targeting. This Volume.
  • Reddy RH, Dubernet C, Mouelhi SL, et al. A new nanomedicine of gemcitabine displays enhanced anticancer activity in sensitive and resistant leukemia types. J Control Release. 2007;124 :20–27.
  • Le Droumaguet B, Nicolas J, Brambilla D, et al. Versatile and efficient targeting using a single nanoparticulate platform: application to cancer and Alzheimer's disease. ACS Nano. 2012;6:5866–5879.
  • Nicolas J, Bensaid F, Desmaële D, et al. Synthesis of highly functionalized poly (alkyl cyanoacrylate) nanoparticles by means of click chemistry. Macromolecules. 2008;41:8418–8428.
  • Nicolas J, Mura S, Brambilla D, et al. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013;42:1147–1235.
  • Delplace V, Couvreur P, Nicolas J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polymer Chem. 2014;5:1529–1544.
  • Li Y, Wang Y, Huang G, et al. Cooperativity principles in self-assembled nanomedicine. Chem Rev. 2018;118:5359–5391.
  • Mohammadi M, Ramezani M, Abnous K, et al. Biocompatible polymersomes-based cancer theranostics: Towards multifunctional nanomedicine. Int J Pharm. 2017;519:287–303.
  • Nicolas, J. Drug-initiated synthesis of polymer prodrugs: combining simplicity and efficacy in drug delivery. Chem Mater. 2016;28:1591–1606.
  • Yang X, Shi X, D'arcy R, et al. Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. J Control Release. 2018;272:114–144.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003.
  • Cappel MJ, Kreuter J. Effect of nanoparticles on transdermal drug delivery. J Microencapsul. 1991;8:369–374.
  • Mesiha MS, Sidhom MB, Fasipe B. Oral and subcutaneous absorption of insulin poly(isobutylcyanoacrylate) nanoparticles. Int J Pharm. 2005;288:289–293.
  • Alonso MJ, Csaba NS. Nanostructured biomaterials for overcoming barriers. Dorchester (UK): RSC Publishing; 2012.
  • Batista P, Castro PM, Madureira AR, et al. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides. 2018;101:112–123.
  • Fonte P, Araújo F, Silva C, et al. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnol Adv. 2015;33:1342–1354.
  • Gedawy A, Martinez J, Al-Salami H, et al. Oral insulin delivery: existing barriers and current counter-strategies. J Pharm Pharmacol. 2018;70:197–213.
  • Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31–64.
  • Dai Q, Wilhelm S, Ding D, et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano. 2018;12:8423–8435.
  • Duncan R, Richardson SC. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm. 2012;9:2380–2402.
  • Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev. 2016;106:256–276.
  • Hare JI, Lammers T, Ashford MB, et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.
  • Lammers T, Kiessling F, Hennink WE, et al. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161:175–187.
  • Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2011;12:39–50.
  • Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–157.
  • Brigger I, Morizet J, Laudani L, et al. Negative preclinical results with stealth nanospheres-encapsulated Doxorubicin in an orthotopic murine brain tumor model. J Control Release. 2004;100:29–40.
  • Calvo P, Gouritin B, Brigger I, et al. PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J Neurosci Methods. 2001;111:151–155.
  • Chiannilkulchai N, Driouich Z, Benoit JP, et al. Doxorubicin-loaded nanoparticles: increased efficiency in murine hepatic metastases. Sel Cancer Ther. 1989;5:1–11.
  • Fattal E, Youssef M, Couvreur P, et al. Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrob Agents Chemother. 1989;33:1540–1543.
  • Ramon AL, Bertrand JR, De Martimprey H. et al. SiRNA associated with immunonanoparticles directed against cd99 antigen improve gene expression inhibition in vivo in Ewing’s sarcoma. J Mol Recognition. 2013;26,318–329.
  • Schwab G, Duroux I, Chavany C, et al. An approach for new anticancer drugs: oncogene-targeted antisense DNA. Ann Oncol. 1994;5:55–58.
  • Fusser M, Øverbye A, Pandya AD, et al. Cabazitaxel-loaded Poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. J Control Release. 2019;293:183–192.
  • Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano. 2013;7:7442–7447.
  • Venditto VJ, Szoka FC Jr. Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev. 2013;65:80–88.
  • Balland O, Pinto-Alphandary H, Viron A, et al. Intracellular distribution of ampicillin in murine macrophages infected with Salmonella typhimurium and treated with (3H)ampicillin-loaded nanoparticles. J Antimicrob Chemother. 1996;37:105–115.
  • Colin de Verdière A, Dubernet C, Nemati F, et al. Uptake of doxorubicin from loaded nanoparticles in multidrug-resistant leukemic murine cells. Cancer Chemother Pharmacol. 1994;33:504–508.
  • Kim HR, Andrieux K, Delomenie C, et al. Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and Protein Lab-on-chip system. Electrophoresis. 2007;28:2252–2261
  • Kim HR, Andrieux K, Gil S, et al. Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules. 2007;8:793–799
  • Brambilla D, Verpillot R, Le Droumaguet B, et al. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer's disease. ACS Nano. 2012;6:5897–5908.
  • Coty JB, Eleamen Oliveira E, Vauthier C. Tuning complement activation and pathway through controlled molecular architecture of dextran chains in nanoparticle corona. Int J Pharm. 2017;532:769–778.
  • Peracchia MT, Fattal E, Desmaële D, et al. Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release. 1999;60:121–128.
  • Peracchia MT, Harnisch S, Pinto-Alphandary H, et al. Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials. 1999;20:1269–1275.
  • Sulheim E, Baghirov H, von Haartman E, et al. Cellular uptake and intracellular degradation of poly(alkyl cyanoacrylate) nanoparticles. J Nanobiotechnology. 2016;14:1.
  • Sulheim E, Iversen TG, To Nakstad V, et al. Cytotoxicity of poly(alkyl cyanoacrylate) nanoparticles. Int J Mol Sci. 2017;18:E2454.
  • Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents. 2014;43:485–496.
  • Abed N, Saïd-Hassane F, Zouhiri F, et al. An efficient system for intracellular delivery of beta-lactam antibiotics to overcome bacterial resistance. Sci Rep. 2015;5:13500.
  • Jiang L, Lin J, Taggart C, et al. Nanodelivery strategies for the treatment of multidrug-resistant bacterial infections. J Interdiscip Nanomed. 2018;3:111–121.
  • Lu J, Wang J, Ling D. Surface engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small. 2018;14(5). DOI:10.1002/smll.201702037.
  • Merle P, Pelletier G, Habersetzer F, et al. P1334: a multicentre, randomised, open-label study comparing the efficacy and safety of two doses of Doxorubicin TransdrugTM to best standard of care in patients with advanced Hepatocellular Carcinoma (HCC) after sorafenib. The relive study. J Hepatol. 2015;62:S856.
  • Bazile D, Prud'homme C, Bassoullet MT, et al. Stealth Me.PEG‐PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci. 1995;84:493–498.
  • Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990;1029:91–97.
  • Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263:1600–1603.
  • Jeon SI, Lee JH, Andrade JD, De Gennes PG. Protein-surface interactions in the presence of polyethylene oxide I. Simplified theory. J Coll Interf Sci. 1991;142:149–158.
  • Kreuter J, Alyautdin RN, Kharkevich DA, et al. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 1995;674:171–174.
  • Lourenco C, Teixeira M, Simoes S, et al. Steric stabilization of nanoparticles: size and surface properties. Int J Pharm. 1996;138:1–12.
  • Peracchia MT, Vauthier C, Passirani C, et al. Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Life Sci. 1997;61:749–761.
  • Peracchia MT, Vauthier C, Puisieux F, et al. Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). J Biomed Mater Res. 1997;34:317–326.
  • Choi YK, Bae YH, Kim SW. Block copolymer nanoparticles of ethylene oxide and isobutyl cyanoacrylate, Macromolecules. 1995;28:8419–8421.
  • Peracchia MT ,Desmaële D. Couvreur P, et al. Synthesis of a novel (poly(MePEG-cyanoacrylate-co-alkylcyanoacrylate) amphiphilic copolymer for nanoparticle technology. Macromolecules. 1997;30;656–851.
  • Nicolas J, Brambilla D, Carion O, et al. Quantum dot-loaded PEGylated poly(alkyl cyanoacrylate) nanoparticles for in vitro and in vivo imaging. Soft Matter. 2011;7:6187–6193.
  • Stella B, Arpicco S, Peracchia MT, et al. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci. 2000;89:1452–1464.
  • Stella B, Marsaud V, Arpicco S, et al. Biological characterization of folic acid-conjugated poly(H2NPEGCA-co-HDCA) nanoparticles in cellular models. J Drug Target. 2007;15:146–153.
  • Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res. 1999;16:1564–1569.
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54:631–651.
  • Brigger I, Morizet J, Aubert G, et al. Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther. 2002;303:928–936.
  • Calvo P, Gouritin B, Villarroya H, et al. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. Eur J Neurosci. 2002;15:1317–1326.
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392.
  • Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.
  • Ojha T, Pathak V, Shi Y, et al. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv Drug Deliv Rev. 2017;119:44–60.
  • Snipstad S, Berg S, Mørch Ý, et al. Ultrasound improves the delivery and therapeutic effect of nanoparticle-stabilized microbubbles in breast cancer xenografts. Ultrasound Med Biol. 2017;43:2651–2669.
  • Theek B, Baues M, Ojha T, et al. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. J Control Release. 2016;231:77–85.
  • Nakamura Y, Mochida A, Choyke PL, et al. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27:2225–2238.
  • Park K. Questions on the role of the EPR effect in tumor targeting. J Control Release. 2013;172:391.
  • Ambruosi A, Yamamoto H, Kreuter J. Body distribution of polysorbate-80 and doxorubicin-loaded [14C]poly(butyl cyanoacrylate) nanoparticles after i.v. administration in rats. J Drug Target. 2005;13:535–542.
  • Calvo P, Gouritin B, Chacun H, et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res. 2001;18:1157–1166.
  • Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release. 2012;161:264–273.
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001;47:65–81.
  • Alyautdin R, Khalin I, Nafeeza MI, et al. Nanoscale drug delivery systems and the blood-brain barrier. Int J Nanomedicine. 2014;9:795–811.
  • Andrieux K, Garcia-Garcia E, Couvreur P. Colloidal carriers: a promising way to treat central nervous system diseases. J Neurosci. 2009;1:17–34.
  • Brambilla D, Le Droumaguet B, Nicolas J, et al. Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomedicine. 2011;7:521–540.
  • Gaudin A, Andrieux K, Couvreur P. Nanomedicines and stroke: toward translational research. J Drug Deliv Sci Technol. 2015;30:278–299.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.
  • Åslund AKO, Sulheim E, Snipstad S, et al. Quantification and qualitative effects of different PEGylations on poly(butyl cyanoacrylate) nanoparticles. Mol Pharm. 2017;14:2560–2569.
  • Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:219–233.
  • Ibegbu DM, Boussahel A, Cragg SM, et al. Nanoparticles of alkylglyceryl dextran and poly(ethyl cyanoacrylate) for applications in drug delivery: preparation and characterization. Int J Polym Mater Polym Biomater. 2017;66:265–279.
  • Jin XF, Xu Y, Shen J, et al. Chitosan–glutathione conjugate-coated poly(butyl cyanoacrylate) nanoparticles: Promising carriers for oral thymopentin delivery. Carbohydr Polym. 2011;86:51–57.
  • Juenet M, Aid-Launais R, Li B, et al. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials. 2018;156:204–216.
  • Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm. 2004;58:327–341.
  • Yu K, Lai BF, Foley JH, et al. Modulation of complement activation and amplification on nanoparticle surfaces by glycopolymer conformation and chemistry. ACS Nano. 2014;8:7687–7703.
  • Alhareth K, Vauthier C, Bourasset F, et al. Pharmacokinetics and tissue biodistribution in rats of doxorubicin loaded poly(isobutylcyanoacrylate) nanoparticles prepared by redox radical emulsion polymerization. Eur J Pharm Biopharm. 2012;81:453–457.
  • Ho YT, Adriani G, Beyer S, et al. A facile method to probe the vascular permeability of nanoparticles in nanomedicine applications. Sci Rep. 2017;7:707.
  • Aktaş Y, Yemisci M, Andrieux K, et al. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem. 2005;16:1503–1511.
  • Karatas H, Aktas Y, Gursoy-Ozdemir Y, et al. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J Neurosci. 2009;29:13761–13769.
  • Qian ZM, Li H, Sun H, et al. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002;54:561–587.
  • Paterson J, Webster CI. Exploiting transferrin receptor for delivering drugs across the blood-brain barrier. Drug Discov Today Technol. 2016;20:49–52.
  • Rosenblum D, Joshi N, Tao W, et al. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9:1410.
  • Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release. 2012;161:152–163.
  • Arbit E, Kidron M. Oral insulin delivery in a physiologic context: review. J Diabetes Sci Technol. 2017;11:825–832.
  • Banting FG, Best CH. The internal secretion of the pancreas. J Lab Clin Med. 1922;7:251–266.
  • Fisher NF. The absorption of insulin from the intestine, vaginal and scrotal sac. Amer J Physiol. 1923;67:65–71.
  • Scott DA, Charles AF, Waters ET. The oral administration of insulin derivatives. Trans Royal Soc Canada. 1932;26:287–293 (available at the British Library).
  • Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release. 2007;117:163–170.
  • des Rieux A, Fievez V, Garinot M, et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116:1–27.
  • Maincent P, Devissaguet JP, Le Verge R, et al. Preparation and in vivo studies of a new drug delivery system. Appl Biochem Biotechnol. 1984;10,263–265.
  • Maincent P, Le Verge R, Sado P, et al. Disposition kinetics and oral bioavailability of vincamine-loaded polyalkyl cyanoacrylate nanoparticles. J Pharm Sci. 1986;75:955–958.
  • Aprahamian M, Michel C, Humbert W, et al. Transmucosal passage of polyalkylcyanoacrylate nanocapsules as a new drug carrier in the small intestine. Biol Cell. 1987;61:69–76.
  • Damgé C, Aprahamian M, Humbert W, et al. Ileal uptake of polyalkylcyanoacrylate nanocapsules in the rat. Pharm Pharmacol. 2000;52:1049–1056.
  • Lowe PH, Temple CS. Calcitonin and insulin in isobutylcyanoacrylate nanocapules: protection against proteases and effect on intestinal absorption in rats. J Pharm Pharmacol. 1994;46:547–552.
  • Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents. 2000;13:155–168.
  • Card JW, Magnuson BA. A review of the efficacy and safety of nanoparticle-based oral insulin delivery systems. Am J Physiol Gastrointest Liver Physiol. 2011;301:G956–G967.
  • Griffin BT, Guo J, Presas E, et al. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv Drug Deliv Rev. 2016;106:367–380.
  • Moroz E, Matoori S, Leroux JC. Oral delivery of macromolecular drugs: where we are after almost 100years of attempts. Adv Drug Deliv Rev. 2016;101:108–121.
  • Damgé C, Vonderscher J, Marbach P, et al. Poly(alkyl cyanoacrylate) nanocapsules as a delivery system in the rat for octreotide, a long-acting somatostatin analogue. J Pharm Pharmacol. 1997;49:949–954.
  • Kafka AP, McLeod BJ, Radesa T, et al. Release and bioactivity of PACA nanoparticles containing D-Lys6-GnRH for brushtail possum fertility control. J Contr Release. 2011;149:307–313.
  • Vranckx H, Demoustier M, Deleers M. A new nanocapsule formulation with hydrophilic core: application to the oral administration of salmon calcitonin in rats. Eur J Pharm Pharmacol. 1996;42:345–347.
  • Leroux JC. Editorial: Drug delivery: too much complexity, not enough reproducibility? Angew Chem Int Ed Engl. 2017;56:15170–15171.
  • Beloqui A, des Rieux A, Préat V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv Drug Deliv Rev. 2016;106:242–255.
  • Czuba E, Diop M, Mura C, et al. Oral insulin delivery, the challenge to increase insulin bioavailability: Influence of surface charge in nanoparticle system. Int J Pharm. 2018;542:47–55.
  • Garcia-Garcia E, Andrieux K, Gil S, et al. Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm. 2005;298:274–292.
  • Garcia-Garcia E, Gil S, Andrieux K, et al. A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles. Cell Mol Life Sci. 2005;62:1400–1408.
  • Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J Drug Target. 2002;10:317–325.
  • Michaelis K, Hoffmann MM, Dreis S, et al. Covalent linkage of apolipoproteine to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther. 2006;317:1246–1253.
  • Germann UA, Pastan I, Gottesman MM. P-glycoproteins: mediators of multidrug resistance. Semin Cell Biol. 1993;4:63–76.
  • Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427.
  • Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.
  • Gottesman MM, Pastan IH. The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. J Natl Cancer Inst. 2015;107:djv222.
  • Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers (Basel). 2014;6:1769–1792.
  • Bennis S, Chapey C, Couvreur P, et al. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Eur J Cancer. 1994;30A:89–93.
  • Colin de Verdière A, Dubernet C, Nemati F, et al. Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br J Cancer. 1997;76:198–205.
  • Cuvier C, Roblot-Treupel L, Millot JM, et al. Doxorubicin-loaded nanospheres bypass tumor cell multidrug resistance. Biochem Pharmacol. 1992;44:509–517.
  • Nemati F, Duvernet C, Colin de Verdière A, et al. Some parameters influencing cytotoxicity of free doxorubicin and doxorubicin-loaded nanoparticles in sensitive and resistant leukemic murine cells: incubation time, number of nanoparticles per cell. Int J Pharm. 1994;102:55–62.
  • Nemati F, Dubernet C, Fessi H, et al. Reversion of multidrug resistance using nanoparticles in vitro: influence of the nature of the polymer. Int J Pharm. 1996;138:237–246.
  • Treupel L, Poupon MF, Couvreur P, et al. Doxorubicin carried in nanospheres and the reversal of multidrug resistance in tumor cells. CR Acad Sci Ser III. 1991;313:171–174.
  • Barraud L, Merle P, Soma E, et al. Doxorubicin-loaded nanoparticles shows increased cytotoxicity efficacy against hepatocellular carcinoma cells in vitro and in vivo. J Hepathol 2002;36:82.
  • Barraud L, Merle P, Soma E, et al. Increase of doxorubicine sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol. 2005;42:736–743.
  • EU/3/04/229 EUDRACT 2006-004088-77. Clinical trial on Doxorubicin-Transdrug®. 2007 [cited 2007 Aug 16]. Available from: https://www.clinicaltrialsregister.eu/ctr-search/trial/2006-004088-77/DE
  • Friberg S, Nyström AM. NANOMEDICINE: will it offer possibilities to overcome multiple drug resistance in cancer? J Nanobiotechnol. 2016;14:17.
  • Sobot D, Mura S, Couvreur P. Haw can nanomedicines overcome cellular-based anticancer drug resistance. J Mater Chem. 2016;4:5078–5100.
  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122–128.
  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26:2700–2707.
  • Kreuter J. Poly(alkyl acrylate) nanoparticles. Methods Enzymol. 1985;112:129–138.
  • Merkle HP. Drug delivery's quest for polymers: where are the frontiers? Eur J Pharm Biopharm. 2015;97:293–303.
  • Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA. 1978;75:285–288.
  • Christopher AF, Kaur RP, Kaur G, et al. MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res. 2016;7:68–74.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854.
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811.
  • De Martimprey H, Vauthier C, Malvy C, et al. Polymer nanocarriers for the delivery of small fragments of nucleic acids: oligonucleotides and siRNA. Eur J Pharm Biopharm. 2009;71:490–504.
  • Layre A, Couvreur P, Chacun H, et al. Novel composite core-shell nanoparticles as busulfan carriers. J Control Release. 2006;111:271–280.
  • Monza da Silveira A, Ponchel G, Puisieux F, et al. Combined poly(isobutylcyanoacrylate) and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drugs. Pharm Res. 1998;15:1051–1055.
  • Hillaireau H, Le Doan T, Appel M, et al. Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages. J Control Release. 2006;116:346–352.
  • Hillaireau H, Le Doan T, Chacun H, et al. Encapsulation of mono- and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. Int J Pharm. 2007;331:148–152.
  • Nicolas J, Couvreur P. Polymer nanoparticles for the delivery of anticancer drug. Med Sci. 2017;33:11–17.
  • Hu Q, Chen Q, Gu Z. Advances in transformable drug delivery systems. Biomaterials. 2018;178:546–558.
  • El-Sawy HS, Al-Abd AM, Ahmed TA, et al. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano. 2018;12:10636–10664.
  • Fornaguera C, García-Celma MJ. Personalized nanomedicine: a revolution at the nanoscale. J Pers Med. 2017;7:E12.
  • Mura S, Couvreur P. Nanoteranostic for personalized medicine. Singapore: World Scientific; 2016.
  • Ryu JH, Lee S, Son S, et al. Theranostic nanoparticles for future personalized medicine. J Control Release. 2014;190:477–84.
  • Desgouilles S, Vauthier C, Bazile D, et al. The design of nanoparticles obtained by solvent evaporation:a comprehensive study. Langmuir. 2003;19:9504–9510.
  • Verrecchia T, Huve P, Bazile D, et al. Adsorption/desorption of human serum albumin at the surface of poly(lactic acid) nanoparticles prepared by a solvent evaporation process. J Biomed Mater Res. 1993;27:1019–1028.
  • Lemarchand C, Couvreur P, Besnard M, Costantini D, Gref R. Novel polyester-polysaccharide nanoparticles. Pharm Res. 2003;20:1284–1292.
  • Fattal E, Couvreur P, Dubernet C. Smart delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv Drug Deliv Rev. 2004;56:931–946.
  • Laham A, Claperon N, Durussel JJ, et al. Intracarotidal administration of liposomally-entrapped ATP: improved efficiency against experimental brain ischemia. Pharmacol Res Commun. 1988;20:699–705.
  • Ropert C, Lavignon M, Dubernet C, et al. Oligonucleotides encapsulated in pH sensitive liposomes are efficient toward Friend retrovirus. Biochem Biophys Res Commun. 1992;183:879–885. Erratum in: Biochem Biophys Res Commun. 1993;192:982.
  • Ropert C, Malvy C, Couvreur P. Inhibition of the Friend retrovirus by antisense oligonucleotides encapsulated in liposomes: mechanism of action. Pharm Res. 1993;10:1427–1433.
  • Ropert C, Lavignon M, Imbach JL, et al. Inhibition of the Friend retrovirus by antisense oligonucleotides. Ann New Yorl Acad Sci. 1992;660:334–335.
  • Weingarten C, Moufti A, Delattre J, et al. Protection of insulin from degradation by its association to liposomes. Int J Pharm. 1985;26:251–257.
  • Couvreur P. "Squalenoylation": a new approach to the design of anticancer and antiviral nanomedicines. Bull Acad Natl Med. 2009;193:663–673. Discussion 673–674.
  • Horcajada P, Chalati T, Serre C, et al. “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging”. Nat Mater. 2010;9:172–178.
  • Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in biomedicine. Chem Rev. 2012;112:1232–1268.
  • Simon-Yarza T, Giménez-Marqués M, et al. A smart metal-organic framework nanomaterial for lung targeting. Angew Chem Int Ed Engl. 2017;56:15565–15569.
  • Luque-Michel E, Imbuluzqueta E, Sebastián V, et al. Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opin Drug Deliv. 2017;14:75–92.
  • Svenson S. Preclinical to clinical development of nanomedicines. In: Torchilin V, editor. Handbook of nanobiomedical research. Volume 3: Applications in diagnostic. Singapore (Singapore): World Scientific Publishing; 2014. p. 175–224.
  • Baldrick P. Pharmaceutical excipient development: the need for preclinical guidance. Regul Toxicol Pharmacol. 2000;32:210–218.
  • Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14:282–295.
  • Duncan R. Nanomedicine(s) and their regulation: an overview. In: Fadeel B, editor. Handbook of safety assessment: from toxicological testing to personalize medicine. Singapore (Singapore): Pan Stanford Publishing; 2015. p. 1–30.
  • Kamaly N, Xiao Z, Valencia PM, et al. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41:2971–3010.
  • Satalkar P, Elger BS, Shaw DM. Defining nano, nanotechnology and nanomedicine: why should it matter? Sci Eng Ethics. 2016;22:1255–1276.
  • Clogston JD, Patri AK. Importance of physicochemical characterization prior to immunological studies. In: Dobrovolskaia MA, McNeil SE, editors. Handbook of immunological properties of engineered nanomaterials. Singapore: World Scientific Publishing; 2013. p. 25–52.
  • Couvreur P. Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev. 2013;65:21–23.
  • Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol. 2016;299:78–89.
  • Gao X, Lowry GV. Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. NanoImpact. 2018;9:14–30.
  • Ilinskaya AN, Dobrovolskaia MA. Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future. Toxicol Appl Pharmacol. 2016;299:70–77.
  • Tinkle S, McNeil SE, Mühlebach S, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014;1313:35–56.
  • Szebeni J, Baranyi L, Savay S, et al. Liposome-induced pulmonary hypertension: properties and mechanism of a complement-mediated pseudoallergic reaction. Am J Physiol Heart Circ Physiol. 2000;279:H1319–H1328.
  • Szebeni J, Fontana JL, Wassef NM, et al. Hemodynamic changes induced by liposomes and liposome-encapsulated hemoglobin in pigs: a model for pseudoallergic cardiopulmonary reactions to liposomes. Role of complement and inhibition by soluble CR1 and anti-C5a antibody. Circulation. 1999;99:2302–2309.
  • Szebeni J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Molec Immunol. 2014;61:163–173.
  • Merle P, Camus P, Abergel A, et al. Safety and efficacy of intra-arterial hepatic chemotherapy with doxorubicin-loaded nanoparticles in hepatocellular carcinoma. ESMO Open. 2017;2:e000238.
  • Merle P, Bodoky G, Lopez Lopez C, et al. The Relive study investigator group. Abstract of the International Liver Cancer Association (ILCA) annual conference; 2017 Sep 15–17; Seoul, South Korea. Abstract # O-020, page 13 [cited 2018 Sep 25]. Available from: https://www.ilca2017.org/programme/
  • Moghimi SM. Nanomedicine safety in preclinical and clinical development: focus on idiosyncratic injection/infusion reactions. Drug Discov Today. 2018;23:1034–1042.
  • Cucchetti A, Piscaglia F, Pinna AD, et al. Efficacy and safety of systemic therapies for advanced hepatocellular carcinoma: a network meta-analysis of phase III trials. Liver Cancer. 2017;6:337–348.
  • Desai JR, Ochoa S, Prins PA, et al. Systemic therapy for advanced hepatocellular carcinoma: an update. J Gastrointest Oncol. 2017;8:243–255.
  • Giglia JL, Antonia SJ, Berk LB, et al. Systemic therapy for advanced hepatocellular carcinoma: past, present, and future. Cancer Control. 2010;17:120–129.
  • Keating GM, Santoro A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs. 2009;69:223–240.
  • Raoul JL, Kudo M, Finn RS, et al. Systemic therapy for intermediate and advanced hepatocellular carcinoma: sorafenib and beyond. Cancer Treat Rev. 2018;68:16–24.
  • Onxeo. 2017. Press release from 11 September 2017 [cited 2018 Nov 8]. Available from: http://www.onxeo.com/en/onxeo-announces-top-line-results-relive-phase-iii-study-livatag-advanced-hepatocellular-carcinoma/
  • Onxeo. 2014. Press release from 19 May 2014 [cited 2018 Sep 19]. Available from: http://www.onxeo.com/en/livatag-obtient-le-statut-fast-track-de-la-fda-pour-le-traitement-du-cancer-primitif-du-foie/
  • Onxeo. 2017. Press Release from 17 September 2017 [cited 2018 Sep 25]. Available from: http://www.onxeo.com/fr/onxeo-announces-top-line-results-relive-phase-iii-study-livatag-advanced-hepatocellular-carcinoma/
  • Cabeza L, Ortiz R, Arias JL, et al. Enhanced antitumor activity of doxorubicin in breast cancer through the use of poly(butylcyanoacrylate) nanoparticles. Int J Nanomedicine. 2015;10:1291–1306.
  • Zhao L, Liu A, Sun M, et al. Enhancement of oral bioavailability of puerarin by polybutylcyanoacrylate nanoparticles. J Nanomater. 2011. Article ID 126562.
  • Matuszak J, Baumgartner J, Zaloga J, et al. Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing, Nanomedicine (Lond). 2016;11:597–616.
  • Matuszak J, Dörfler P, Lyer S, et al. Comparative analysis of nanosystems' effects on human endothelial and monocytic cell functions, Nanotoxicology. 2018;12:957–974.
  • Carradori D, Balducci C, Re F, et al. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer's disease-like transgenic mouse model, Nanomedicine. 2018;14:609–618.
  • Hu X, Yang F, Liao Y, et al. Cholesterol-PEG co-modified poly (N-butyl) cyanoacrylate nanoparticles for brain delivery: in vitro and in vivo evaluations. Drug Deliv. 2017;24:121–132.
  • Zandanel C, Legouffe R, Trochon-Joseph V, et al. Biodistribution of polycyanoacrylate nanoparticles encapsulating doxorubicin by Matrix-Assisted Laser Desorption Ionization (MALDI) Mass Spectrometry Imaging (MSI). J Drug Deliv Sci Technol. 2018;47:55–61.
  • Malli S, Bories C, Bourge M, et al. Surface-dependent endocytosis of poly(isobutylcyanoacrylate) nanoparticles by Trichomonas vaginalis. Int J Pharm. 2018;548:276–287.
  • Pradines B, Djabourov M, Vauthier C, et al. Gelation and micellization behaviors of pluronic(®) F127 hydrogel containing poly(isobutylcyanoacrylate) nanoparticles specifically designed for mucosal application. Colloids Surf B Biointerfaces. 2015;135:669–676.
  • Lira MC, Santos-Magalhães NS, Nicolas V, et al. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur J Pharm Biopharm. 2011;79:162–170.
  • Coty JB, Noiray M, Vauthier C. Assessment of complement activation by nanoparticles: development of a SPR based method and comparison with current high throughput methods. Pharm Res. 2018;35:129.
  • Coty JB, Varenne F, Benmalek A, et al. Characterization of nanomedicines' surface coverage using molecular probes and capillary electrophoresis. Eur J Pharm Biopharm. 2018;130:48–58.
  • Palazzo C, Ponchel G, Vachon JJ, et al. Obtaining non-spherical poly(alkylcyanoacrylate) nanoparticles by the stretching method applied with a marketed water-soluble film. Int J Polym Mater. 2017;66:416–424.
  • Moghimi SM, Peer D, Langer R. Reshaping the future of nanopharmaceuticals: ad iudicium, ACS Nano. 2011;5:8454–8458.
  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37.
  • Fang J, Nakamura H, Maeda H, et al. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–151.
  • Baghirov H, Melikishvili S, Mørch Y, et al. The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells. Colloids Surf B Biointerfaces. 2017;150:373–383.
  • Chiannilkulchai N, Ammoury N, Caillou B, et al. Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice. Cancer Chemother Pharmacol. 1990;26:122–126.
  • Da Silva CG, Peters GJ, Ossendorp F, et al. The potential of multi-compound nanoparticles to bypass drug resistance in cancer. Cancer Chemother Pharmacol. 2017;80:881–894.
  • Erdmann C, Mayer C. Permeability profile of poly(alkyl cyanoacrylate) nanocapsules. J Colloid Interface Sci. 2016;478:394–401.
  • Fattal E, Barratt G. Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA. Br J Pharmacol. 2009;157:179–194.
  • Gao S, Xu Y, Asghar S, et al. Polybutylcyanoacrylate nanocarriers as promising targeted drug delivery systems. J Drug Target. 2015;23:481–496.
  • Lambert G, Bertrand JR, Fattal E, et al. EWS fli-1 antisense nanocapsules inhibits ewing sarcoma-related tumor in mice. Biochem Biophys Res Commun. 2000;279:401–406.
  • Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005;57:1595–1639.
  • Toub N, Bertrand JR, Malvy C, et al. Antisense oligonucleotide nanocapsules efficiently inhibit EWS-Fli1 expression in a Ewing's sarcoma model. Oligonucleotides. 2006;16:158–168.
  • Toub N, Malvy C, Fattal E, et al. Innovative nanotechnologies for the delivery of oligonucleotides and siRNA. Biomed Pharmacother. 2006;60:607–620.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.