372
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Nanosystem functionalization strategies for prostate cancer treatment: a review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 808-821 | Received 15 Sep 2020, Accepted 15 Feb 2021, Published online: 01 Mar 2021

References

  • Velcheti V, Karnik S, Bardot SF, et al. Pathogenesis of prostate cancer: lessons from basic research. Ochsner J. 2008;8(4):213–218.
  • Nader R, El Amm J, Aragon-Ching J. Role of chemotherapy in prostate cancer. Asian J Androl. 2018;20(3):221–229.
  • Lee SH, Shen MM. Cell types of origin for prostate cancer. Curr Opin Cell Biol. 2015;37:35–41.
  • Castillejos-Molina RA, Gabilondo-Navarro FB. Prostate cancer. Salud Publica Mex. 2016;58(2):279–284.
  • Costello LC, Franklin RB. A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch Biochem Biophys. 2016;611:100–112.
  • Merriel SWD, Funston G, Hamilton W. Prostate cancer in primary care. Adv Ther. 2018;35(9):1285–1294.
  • Olender J, Lee NH. Role of alternative splicing in prostate cancer aggressiveness and drug resistance in African Americans. Adv Exp Med Biol. 2019;176(3):119–139.
  • Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10(2):63–89.
  • Simoes GF, Sakuramoto P, dos Santos CB, et al. An overview on prostate pathophysiology: new insights into prostate cancer clinical diagnosis. In: Pathophysiology – altered physiological states. InTech; 2018. p. 183–202.
  • Gasnier A, Parvizi N. Updates on the diagnosis and treatment of prostate cancer. Br J Radiol. 2017;90(1075):20170180–20170184.
  • Evans AJ. Treatment effects in prostate cancer. Mod Pathol. 2018;31(S1):110–121.
  • Culig Z, Santer FR. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev. 2014;33(2–3):413–427.
  • De Velasco MA, Uemura H. Prostate cancer immunotherapy: where are we and where are we going? Curr Opin Urol. 2018;28(1):15–24.
  • Porter CM, Shrestha E, Peiffer LB, et al. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis. 2018;21(3):345–354.
  • Komura K, Sweeney CJ, Inamoto T, et al. Current treatment strategies for advanced prostate cancer. Int J Urol. 2018;25(3):220–231.
  • Sartor O, de Bono JS. Metastatic prostate cancer. N Engl J Med. 2018;378(7):645–657.
  • Hurwitz M. Chemotherapy in prostate cancer. Curr Oncol Rep. 2015;17(10):44.
  • Gao T, Bi A, Yang S, et al. Applications of nanoparticles probes for prostate cancer imaging and therapy. In: Schatten H, editor. Advances in experimental medicine and biology. Vol. 1126. Cham: Springer International Publishing; 2018. p. 99–115.
  • Sanna V, Sechi M. Nanoparticle therapeutics for prostate cancer treatment. Nanomedicine. 2012;8:S31–S36.
  • Da Silva LC, Carmoa FA, Nasciutti L, et al. Targeted nanosystems to prostate cancer. Curr Pharm Des. 2016;22(39):5962–5975.
  • Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48(3):416–427.
  • Magro M, Venerando A, Macone A, et al. Nanotechnology-based strategies to develop new anticancer therapies. Biomolecules. 2020;10(5):735.
  • Raj S, Khurana S, Choudhari R, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol. 2019.
  • Calixto G, Fonseca-Santos B, Chorilli M, et al. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomedicine. 2014;9(1):3719–3735.
  • Xie J, Yang Z, Zhou C, et al. Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol Adv. 2016;34(4):343–353.
  • Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.
  • Nassir AM, Ibrahim IAA, Md S, et al. Surface functionalized folate targeted oleuropein nano-liposomes for prostate tumor targeting: in vitro and in vivo activity. Life Sci. 2019;220:136–146.
  • Melegh Z, Oltean S. Targeting angiogenesis in prostate cancer. Int J Mol Sci. 2019;20(11):2676.
  • Kasten BB, Liu T, Nedrow-Byers JR, et al. Targeting prostate cancer cells with PSMA inhibitor-guided gold nanoparticles. Bioorg Med Chem Lett. 2013;23(2):565–568.
  • Nagesh PKB, Johnson NR, Boya VKN, et al. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf B Biointerfaces. 2016;144:8–20.
  • Eloy JO, Ruiz A, de Lima FT, et al. EGFR-targeted immunoliposomes efficiently deliver docetaxel to prostate cancer cells. Colloids Surf B Biointerfaces. 2020;194(May):111185.
  • Begum AA, Wan Y, Toth I, et al. Bombesin/oligoarginine fusion peptides for gastrin releasing peptide receptor (GRPR) targeted gene delivery. Bioorg Med Chem. 2018;26(2):516–526.
  • Swami R, Singh I, Jeengar MK, et al. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting. Int J Pharm. 2015;486(1–2):287–296.
  • Fitzgerald KA, Rahme K, Guo J, et al. Anisamide-targeted gold nanoparticles for SiRNA delivery in prostate cancer – synthesis, physicochemical characterisation and in vitro evaluation. J Mater Chem B. 2016;4(13):2242–2252.
  • Xiao Z, Levy-Nissenbaum E, Alexis F, et al. Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano. 2012;6(1):696–704.
  • Wang Y, Zhang Y, Ru Z, et al. A ROS-responsive polymeric prodrug nanosystem with self-amplified drug release for PSMA (–) prostate cancer specific therapy. J Nanobiotechnol. 2019;17(1):1–16.
  • Owiti AO, Pal D, Mitra A. PSMA antibody-conjugated pentablock copolymer nanomicellar formulation for targeted delivery to prostate cancer. AAPS PharmSciTech. 2018;19(8):3534–3549.
  • Bashari O, Redko B, Cohen A, et al. Discovery of peptide drug carrier candidates for targeted multi-drug delivery into prostate cancer cells. Cancer Lett. 2017;408:164–173.
  • Flores O, Santra S, Kaittanis C, et al. PSMA-targeted theranostic nanocarrier for prostate cancer. Theranostics. 2017;7(9):2477–2494.
  • Dhas NL, Ige PP, Kudarha RR. Design, optimization and in-vitro study of folic acid conjugated-chitosan functionalized PLGA nanoparticle for delivery of bicalutamide in prostate cancer. Powder Technol. 2015;283:234–245.
  • Xue HY, Wong HL. Solid lipid–PEI hybrid nanocarrier: an integrated approach to provide extended, targeted, and safer SiRNA therapy of prostate cancer in an all-in-one manner. ACS Nano. 2011;5(9):7034–7047.
  • Heger Z, Polanska H, Merlos Rodrigo MA, et al. Prostate tumor attenuation in the Nu/Nu murine model due to anti-sarcosine antibodies in folate-targeted liposomes. Sci Rep. 2016;6(August):1–11.
  • Arora D, Jaglan S. Nanocarriers based delivery of nutraceuticals for cancer prevention and treatment: a review of recent research developments. Trends Food Sci Technol. 2016;54:114–126.
  • Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol. 2011;9(1):55.
  • Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–146.
  • Sabra R, Billa N, Roberts CJ. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. Int J Pharm. 2019;572:118775.
  • Mimeault M, Batra SK. Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells. Biochim Biophys Acta. 2011;1816(1):25–37.
  • Sasikumar A, Kamalasanan K. Nanomedicine for prostate cancer using nanoemulsion: a review. J Control Release. 2017;260:111–123.
  • Ferreira LMB, Alonso JD, Kiill CP, et al. Exploiting supramolecular interactions to produce bevacizumab-loaded nanoparticles for potential mucosal delivery. Eur Polym J. 2018;103:238–250.
  • Nebija D, Noe CR, Urban E, et al. Quality control and stability studies with the monoclonal antibody, trastuzumab: application of 1D- vs. 2D-gel electrophoresis. Int J Mol Sci. 2014;15(4):6399–6411.
  • Lin J, Kelly WK. Targeting angiogenesis as a promising modality for the treatment of prostate cancer. Urol Clin North Am. 2012;39(4):547–560.
  • Li N, Xie X, Hu Y, et al. Herceptin-conjugated liposomes co-loaded with doxorubicin and simvastatin in targeted prostate cancer therapy. Am J Transl Res. 2019;11(3):1255–1269.
  • Katsogiannou M, Peng LV, Catapano C, et al. Active-targeted nanotherapy strategies for prostate cancer. Curr Cancer Drug Targets. 2011;11(8):954–965.
  • Zhang W, Garg S, Eldi P, et al. Targeting prostate cancer cells with genetically engineered polypeptide-based micelles displaying gastrin-releasing peptide. Int J Pharm. 2016;513(1–2):270–279.
  • Vecchio EA, White PJ, May LT. The adenosine A2B G protein-coupled receptor: recent advances and therapeutic implications. Pharmacol Ther. 2019;198:20–33.
  • Georgiadis MO, Karoutzou O, Foscolos AS, et al. Sigma receptor (ΣR) ligands with antiproliferative and anticancer activity. Molecules. 2017;22(9):1408.
  • van Waarde A, Rybczynska AA, Ramakrishnan NK, et al. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. Biochim Biophys Acta. 2015;1848(10 Pt B):2703–2714.
  • Lee SG, Kim CH, Sung SW, et al. RIPL peptide-conjugated nanostructured lipid carriers for enhanced intracellular drug delivery to hepsin-expressing cancer cells. Int J Nanomedicine. 2018;13:3263–3278.
  • Chen Y, Deng Y, Zhu C, et al. Anti prostate cancer therapy: aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid–polymer hybrid nanoparticles. Biomed Pharmacother. 2020;127(200):110181.
  • Zhang X, He Z, Xiang L, et al. Codelivery of GRP78 SiRNA and docetaxel via RGD-PEG-DSPE/DOPA/CaP nanoparticles for the treatment of castration-resistant prostate cancer. Drug Des Devel Ther. 2019;13:1357–1372.
  • Sanna V, Pintus G, Roggio AM, et al. Targeted biocompatible nanoparticles for the delivery of (–)-epigallocatechin 3-gallate to prostate cancer cells. J Med Chem. 2011;54(5):1321–1332.
  • Gao X, Luo Y, Wang Y, et al. Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy. Int J Nanomedicine. 2012;7:4037–4051.
  • Hrkach J, Von Hoff D, Ali MM, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4(128):128ra39.
  • Delie F, Petignat P, Cohen M. GRP78-targeted nanotherapy against castrate-resistant prostate cancer cells expressing membrane GRP78. Target Oncol. 2013;8(4):225–230.
  • Valencia PM, Pridgen EM, Perea B, et al. Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine (Lond). 2013;8(5):687–698.
  • Wang K, Guo L, Xiong W, et al. Nanoparticles of star-like copolymer mannitol-functionalized poly(lactide)-vitamin E TPGS for delivery of paclitaxel to prostate cancer cells. J Biomater Appl. 2014;29(3):329–340.
  • Kulhari H, Pooja D, Singh MK, et al. Bombesin-conjugated nanoparticles improve the cytotoxic efficacy of docetaxel against gastrin-releasing but androgen-independent prostate cancer. Nanomedicine (Lond). 2015;10(18):2847–2859.
  • Sanna V, Singh CK, Jashari R, et al. Targeted nanoparticles encapsulating (–)-epigallocatechin-3-gallate for prostate cancer prevention and therapy. Sci Rep. 2017;7(February):1–15.
  • Bharali DJ, Sudha T, Cui H, et al. Anti-CD24 nano-targeted delivery of docetaxel for the treatment of prostate cancer. Nanomedicine. 2017;13(1):263–273.
  • Menon JU, Tumati V, Hsieh J-T, et al. Polymeric nanoparticles for targeted radiosensitization of prostate cancer cells. J Biomed Mater Res A. 2015;103(5):1632–1639.
  • Banerjee SR, Foss CA, Horhota A, et al. 111 In- and IRDye800CW-labeled PLA–PEG nanoparticle for imaging prostate-specific membrane antigen-expressing tissues. Biomacromolecules. 2017;18(1):201–209.
  • Fang Y, Lin S, Yang F, et al. Aptamer-conjugated multifunctional polymeric nanoparticles as cancer-targeted, MRI-ultrasensitive drug delivery systems for treatment of castration-resistant prostate cancer. Biomed Res Int. 2020;2020:9186583.
  • Xu W, Siddiqui IA, Nihal M, et al. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials. 2013;34(21):5244–5253.
  • Wen D, Chitkara D, Wu H, et al. LHRH-conjugated micelles for targeted delivery of antiandrogen to treat advanced prostate cancer. Pharm Res. 2014;31(10):2784–2795.
  • Gao Y, Li Y, Li Y, et al. PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking. Nanoscale. 2015;7(2):597–612.
  • Liu T, Huang Q. Biodegradable brush-type copolymer modified with targeting peptide as a nanoscopic platform for targeting drug delivery to treat castration-resistant prostate cancer. Int J Pharm. 2016;511(2):1002–1011.
  • Feng X, Zhou Y, Xie X, et al. Development of PSMA-targeted and core-crosslinked glycol chitosan micelles for docetaxel delivery in prostate cancer therapy. Mater Sci Eng C Mater Biol Appl. 2019;96(2):436–445.
  • Qu D, Jiao M, Lin H, et al. Anisamide-functionalized pH-responsive amphiphilic chitosan-based paclitaxel micelles for sigma-1 receptor targeted prostate cancer treatment. Carbohydr Polym. 2020;229:115498.
  • Barve A, Jain A, Liu H, et al. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater. 2020;113:501–511.
  • Jin J, Sui B, Gou J, et al. PSMA ligand conjugated PCL-PEG polymeric micelles targeted to prostate cancer cells. PLoS One. 2014;9(11):e112200.
  • Puri R, Kaur Bhatia R, Shankar Pandey R, et al. Sigma-2 receptor ligand anchored telmisartan loaded nanostructured lipid particles augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in prostate cancer cells. Drug Dev Ind Pharm. 2016;42:2020–2030.
  • Chen W, Guo M, Wang S. Anti prostate cancer using pegylated bombesin containing, cabazitaxel loading nano-sized drug delivery system. Drug Dev Ind Pharm. 2016;42(12):1968–1976.
  • Yuan L, Liu CY, Chen Y, et al. Antitumor activity of tripterine via cell-penetrating peptide-coated nanostructured lipid carriers in a prostate cancer model. Int J Nanomedicine. 2013;8:4339–4350.
  • Patil Y, Shmeeda H, Amitay Y, et al. Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via prostate-specific membrane antigen (PSMA). Nanomedicine. 2018;14(4):1407–1416.
  • Xiang B, Dong DW, Shi NQ, et al. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials. 2013;34(28):6976–6991.
  • Chen X, Wang X, Wang Y, et al. Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated BFGF peptide. J Control Release. 2010;145(1):17–25.
  • Zhang Y, Huang Y, Zhang P, et al. Incorporation of a selective sigma-2 receptor ligand enhances uptake of liposomes by multiple cancer cells. Int J Nanomedicine. 2012;7:4473–4485.
  • Zhang L, Shan X, Meng X, et al. The first integrins Β3-mediated cellular and nuclear targeting therapeutics for prostate cancer. Biomaterials. 2019;223(May):119471.
  • Yari H, Nkepang G, Awasthi V. Surface modification of liposomes by a lipopolymer targeting prostate specific membrane antigen for theranostic delivery in prostate cancer. Materials (Basel). 2019;12(5):756.
  • Zhen S, Takahashi Y, Narita S, et al. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified GRNA using a flexible aptamer-cationic liposome. Oncotarget. 2017;8(6):9375–9387.
  • Mahira S, Kommineni N, Husain GM, et al. Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: a new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed Pharmacother. 2019;110:803–817.
  • Ikemoto K, Shimizu K, Ohashi K, et al. Bauhinia purprea agglutinin-modified liposomes for human prostate cancer treatment. Cancer Sci. 2016;107(1):53–59.
  • Stuart CH, Singh R, Smith TL, et al. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells. Nanomedicine (Lond). 2016;11(10):1207–1222.
  • Bandekar A, Zhu C, Jindal R, et al. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular α-particle therapy of cancer. J Nucl Med. 2014;55(1):107–114.
  • Baek SE, Lee KH, Park YS, et al. RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. J Control Release. 2014;196:234–242.
  • Wang L, Qu M, Huang S, et al. A novel α-enolase-targeted drug delivery system for high efficacy prostate cancer therapy. Nanoscale. 2018;10(28):13673–13683.
  • Jayanna PK, Bedi D, Gillespie JW, et al. Landscape phage fusion protein-mediated targeting of nanomedicines enhances their prostate tumor cell association and cytotoxic efficiency. Nanomedicine. 2010;6(4):538–546.
  • Gomes-Da-Silva LC, Ramalho JS, Pedroso De Lima MC, et al. Impact of anti-PLK1 SiRNA-containing F3-targeted liposomes on the viability of both cancer and endothelial cells. Eur J Pharm Biopharm. 2013;85(3 Pt A):356–364.
  • Mock JN, Costyn LJ, Wilding SL, et al. Evidence for distinct mechanisms of uptake and antitumor activity of secretory phospholipase A2 responsive liposome in prostate cancer. Integr Biol (Camb). 2013;5(1):172–182.
  • Accardo A, Salsano G, Morisco A, et al. Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent. Int J Nanomedicine. 2012;7:2007–2017.
  • Zappavigna S, Abate M, Cossu AM, et al. Urotensin-II-targeted liposomes as a new drug delivery system towards prostate and colon cancer cells. J Oncol. 2019;2019:9293560.
  • Paoli EE, Ingham ES, Zhang H, et al. Accumulation, internalization and therapeutic efficacy of neuropilin-1-targeted liposomes. J Control Release. 2014;178(530):108–117.
  • Beztsinna N, Tsvetkova Y, Bartneck M, et al. Amphiphilic phospholipid-based riboflavin derivatives for tumor targeting nanomedicines. Bioconjug Chem. 2016;27(9):2048–2061.
  • Luo D, Wang X, Zeng S, et al. Prostate-specific membrane antigen targeted gold nanoparticles for prostate cancer radiotherapy: does size matter for targeted particles? Chem Sci. 2019;10(35):8119–8128.
  • Mangadlao JD, Wang X, McCleese C, et al. Prostate-specific membrane antigen targeted gold nanoparticles for theranostics of prostate cancer. ACS Nano. 2018;12(4):3714–3725.
  • Al-Yasiri AY, Khoobchandani M, Cutler CS, et al. Mangiferin functionalized radioactive gold nanoparticles (MGF-198AuNPs) in prostate tumor therapy: green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy. Dalton Trans. 2017;46(42):14561–14571.
  • Mayle KM, Dern KR, Wong VK, et al. Engineering A11 minibody-conjugated, polypeptide-based gold nanoshells for prostate stem cell antigen (PSCA)-targeted photothermal therapy. SLAS Technol. 2017;22(1):26–35.
  • Wolfe T, Chatterjee D, Lee J, et al. Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo. Nanomedicine. 2015;11(5):1277–1283.
  • Kumar A, Huo S, Zhang X, et al. Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. ACS Nano. 2014;8(5):4205–4220.
  • Jiménez-Mancilla N, Ferro-Flores G, Santos-Cuevas C, et al. Multifunctional targeted therapy system based on (99m) Tc/(177) Lu-labeled gold nanoparticles-Tat(49-57)-Lys(3)-bombesin internalized in nuclei of prostate cancer cells. J Labelled Comp Radiopharm. 2013;56(13):663–671.
  • Shukla R, Chanda N, Zambre A, et al. Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci U S A. 2012;109(31):12426–12431.
  • Chaudhary Z, Subramaniam S, Khan GM, et al. Encapsulation and controlled release of resveratrol within functionalized mesoporous silica nanoparticles for prostate cancer therapy. Front Bioeng Biotechnol. 2019;7:225.
  • Rivero-Buceta E, Vidaurre-Agut C, Vera-Donoso CD, et al. PSMA-targeted mesoporous silica nanoparticles for selective intracellular delivery of docetaxel in prostate cancer cells. ACS Omega. 2019;4(1):1281–1291.
  • Tambe P, Kumar P, Paknikar KM, et al. Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. Int J Nanomedicine. 2018;13:7669–7680.
  • Lu XY, Wu DC, Li ZJ, et al. Polymer nanoparticles. Vol. 104. 1st ed. Cambridge: Elsevier Inc.; 2011.
  • Nasir A, Kausar A, Younus A. A review on preparation, properties and applications of polymeric nanoparticle-based materials. Polym Plast Technol Eng. 2015;54:325–341.
  • Almeida Furquim de Camargo B, Soares Silva DE, Noronha da Silva A, et al. New silver(I) coordination compound loaded into polymeric nanoparticles as a strategy to improve in vitro anti-Helicobacter pylori activity. Mol Pharm. 2020;17(7):2287–2298.
  • Gatti THH, Eloy JO, Ferreira LMB, et al. Insulin-loaded polymeric mucoadhesive nanoparticles: development, characterization and cytotoxicity evaluation. Braz J Pharm Sci. 2018;54(1):1–10.
  • Sakima VT, Barbugli PA, Cerri PS, et al. Antimicrobial photodynamic therapy mediated by curcumin-loaded polymeric nanoparticles in a murine model of oral Candidiasis. Molecules. 2018;23(8):2075.
  • de Freitas LM, Calixto GMF, Chorilli M, et al. Polymeric nanoparticle-based photodynamic therapy for chronic periodontitis in vivo. Int J Mol Sci. 2016;17(5):769.
  • Sur S, Rathore A, Dave V, et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Obj. 2019;20:100397.
  • Chang SS. Overview of prostate-specific membrane antigen. Rev Urol. 2004;6(Suppl. 10):S13–S18.
  • Von Hoff DD, Mita MM, Ramanathan RK, et al. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res. 2016;22(13):3157–3163.
  • Autio KA, Dreicer R, Anderson J, et al. Safety and efficacy of BIND-014, a docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer. JAMA Oncol. 2018;4(10):1344.
  • He H, Liu L, Morin EE, et al. Survey of clinical translation of cancer nanomedicines – lessons learned from successes and failures. Acc Chem Res. 2019;52(9):2445–2683.
  • Yadav HKS, Almokdad AA, Shaluf SIM, et al. Polymer-based nanomaterials for drug-delivery carriers. Cambridge: Elsevier Inc.; 2019.
  • Rigon RB, Fachinetti N, Severino P, et al. Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid nanoparticles for skin disorder therapies. Molecules. 2016;21(1):116.
  • Rigon RB, Gonçalez ML, Severino P, et al. Solid lipid nanoparticles optimized by 22 factorial design for skin administration: cytotoxicity in NIH3T3 fibroblasts. Colloids Surf B Biointerfaces. 2018;501–505.
  • Paliwal R, Paliwal SR, Kenwat R, et al. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat. 2020;30(3):179–194.
  • Ekambaram P, Abdul A, Sathali H, et al. Solid lipid nanoparticles: a review. Sci Rev Chem Commun. 2012;2(1):80–102.
  • Jansook P, Fülöp Z, Ritthidej GC. Amphotericin B loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): physicochemical and solid-solution state characterizations. Drug Dev Ind Pharm. 2019;45(4):560–567.
  • Akanda MH, Rai R, Slipper IJ, et al. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles. Int J Pharm. 2015;493(1–2):161–171.
  • Shen H, Shi S, Zhang Z, et al. Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics. 2015;5(7):755–771.
  • Wang L, Jia E. Ovarian cancer targeted hyaluronic acid-based nanoparticle system for paclitaxel delivery to overcome drug resistance. Drug Deliv. 2016;23(5):1810–1817.
  • Kim JH, Kim Y, Bae KH, et al. Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles. Mol Pharm. 2015;12(4):1230–1241.
  • Shi S, Han L, Deng L, et al. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release. 2014;194:228–237.
  • Mulik RS, Mönkkönen J, Juvonen RO, et al. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm. 2010;398(1–2):190–203.
  • Khallaf RA, Salem HF, Abdelbary A. 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment. Drug Deliv. 2016;23(9):3452–3460.
  • Geetha T, Kapila M, Prakash O, et al. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer. J Drug Target. 2015;23(2):159–169.
  • Rigon RB, Fachinetti N, Severino P, et al. Quantification of trans-resveratrol-loaded solid lipid nanoparticles by a validated reverse-phase HPLC photodiode array. Appl Sci. 2019;9(22):4961.
  • Grillone A, Battaglini M, Moscato S, et al. Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment. Nanomedicine (Lond). 2019;14(6):727–752.
  • Xu Z, Chen L, Gu W, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials. 2009;30(2):226–232.
  • Agrawal U, Gupta M, Vyas SP. Capsaicin delivery into the skin with lipidic nanoparticles for the treatment of psoriasis. Artif Cells Nanomed Biotechnol. 2015;43(1):33–39.
  • Muntoni E, Martina K, Marini E, et al. Methotrexate-loaded solid lipid nanoparticles: protein functionalization to improve brain biodistribution. Pharmaceutics. 2019;11(2):65.
  • Goncalez ML, Rigon RB, Pereira-Da-Silva MA, et al. Curcumin-loaded cationic solid lipid nanoparticles as a potential platform for the treatment of skin disorders. Pharmazie. 2017;72(12):721–727.
  • Araujo VHS, da Silva PB, Szlachetka IO, et al. The influence of NLC composition on curcumin loading under a physicochemical perspective and in vitro evaluation. Colloids Surf A Physicochem Eng Aspects. 2020;602:125070.
  • Fachinetti N, Rigon RB, Eloy JO, et al. Comparative study of glyceryl behenate or polyoxyethylene 40 stearate-based lipid carriers for trans-resveratrol delivery: development, characterization and evaluation of the in vitro tyrosinase inhibition. AAPS PharmSciTech. 2018;19(3):1401–1409.
  • Sato MR, Oshiro Junior JA, Machado RTA, et al. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des Devel Ther. 2017;11:909–921.
  • Sato MR, Oshiro-Junior JA, Souza PC, et al. Copper(II) complex-loaded castor oil-based nanostructured lipid carriers used against Mycobacterium tuberculosis: development, characterisation, in vitro and in vivo biological assays. Pharmazie. 2019;74(12):715–720.
  • Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: a novel drug targeting carrier. J Drug Deliv Sci Technol. 2019;51:255–267.
  • Liu D, Liu F, Liu Z, et al. Tumor specific delivery and therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody. Mol Pharm. 2011;8(6):2291–2301.
  • Guo S, Zhang Y, Wu Z, et al. Synergistic combination therapy of lung cancer: cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-demethylnobiletin. Biomed Pharmacother. 2019;118:109225.
  • Han Y, Zhang Y, Li D, et al. Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int J Nanomedicine. 2014;9(1):4107–4116.
  • Emami J, Yousefian H, Sadeghi H. Targeted nanostructured lipid carrier for brain delivery of artemisinin: design, preparation, characterization, optimization and cell toxicity. J Pharm Pharm Sci. 2018;21(1s):225s–241s.
  • Abdolahpour S, Toliyat T, Omidfar K, et al. Targeted delivery of doxorubicin into tumor cells by nanostructured lipid carriers conjugated to anti-EGFRvIII monoclonal antibody. Artif Cells Nanomed Biotechnol. 2018;46(1):89–94.
  • Zhang S, Lu C, Zhang X, et al. Targeted delivery of etoposide to cancer cells by folate-modified nanostructured lipid drug delivery system. Drug Deliv. 2016;23(5):1838–1845.
  • Hajipour H, Hamishehkar H, Nazari Soltan Ahmad S, et al. Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. Artif Cells Nanomed Biotechnol. 2018;46(Suppl. 1):283–292.
  • Filipczak N, Pan J, Yalamarty SSK, et al. Recent advancements in liposome technology. Adv Drug Deliv Rev. 2020;156:4–188.
  • Mu LM, Ju RJ, Liu R, et al. Dual-functional drug liposomes in treatment of resistant cancers. Adv Drug Deliv Rev. 2017;115(38):46–56.
  • Chorilli M, Calixto G, Rimério TC, et al. Caffeine encapsulated in small unilamellar liposomes: characterization and in vitro release profile. J Dispers Sci Technol. 2013;34:1465–1470.
  • Carita AC, Eloy JO, Chorilli M, et al. Recent advances and perspectives in liposomes for cutaneous drug delivery. Curr Med Chem. 2017;25(5):606–635.
  • Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115(19):10938–10966.
  • Li M, Du C, Guo N, et al. Composition design and medical application of liposomes. Eur J Med Chem. 2019;164:640–653.
  • Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release. 2020;318:256–263.
  • Belfiore L, Saunders DN, Ranson M, et al. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: challenges and opportunities. J Control Release. 2018;277(March):1–13.
  • Lütje S, Slavik R, Fendler W, et al. PSMA ligands in prostate cancer – probe optimization and theranostic applications. Methods. 2017;130:42–50.
  • Barve A, Jin W, Cheng K. Prostate cancer relevant antigens and enzymes for targeted drug delivery. J Control Release. 2014;187:118–132.
  • Öğütveren ÜB, Öğütveren M. Green synthesis of iron nano-materials by plants and their use in removal of pollutants from wastewaters—a review. Desalination Water Treatment. 2017;78:141–154.
  • Ramos MADS, Da Silva PB, Sposito L, et al. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine. 2018;13:1179–1213.
  • Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60(11):1307–1315.
  • Kamat PV. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B. 2002;106(32):7729–7744.
  • More MP, Ganguly PR, Pandey AP, et al. Development of surface engineered mesoporous alumina nanoparticles: drug release aspects and cytotoxicity assessment. IET Nanobiotechnol. 2017;11(6):661–668.
  • Austin LA, Mackey MA, Dreaden EC, et al. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol. 2014;88(7):1391–1417.
  • Volpedo G, Costa L, Ryan N, et al. Nanoparticulate drug delivery systems for the treatment of neglected tropical protozoan diseases. J Venom Anim Toxins Incl Trop Dis. 2019;25:e144118.
  • Kong F-Y, Zhang J-W, Li R-F, et al. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 2017;22(9):1445.
  • da Silva PB, Machado RTA, Pironi AM, et al. Recent advances in the use of metallic nanoparticles with antitumoral action—review. Curr Med Chem. 2019;26(12):2108–2146.
  • Melo MA Jr., Santos LSS, Gonçalves MdC, et al. Preparação de nanopartículas de prata e ouro: um método simples para a introdução da nanociência em laboratório de ensino. Quim Nova. 2012;35(9):1872–1878.
  • Rastinehad AR, Anastos H, Wajswol E, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci U S A. 2019;116(37):18590–18596.
  • Tozuka Y, Wongmekiat A, Kimura K, et al. Effect of pore size of FSM-16 on the entrapment of flurbiprofen in mesoporous structures. Chem Pharm Bull (Tokyo). 2005;53(8):974–977.
  • Narayan R, Nayak UY, Raichur AM, et al. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10(3):118.
  • Sábio RM, Meneguin AB, Ribeiro TC, et al. New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. Int J Pharm. 2019;564:379–409.
  • Madhusoodana CD, Kameshima Y, Nakajima A, et al. Synthesis of high surface area Al-containing mesoporous silica from calcined and acid leached kaolinites as the precursors. J Colloid Interface Sci. 2006;297(2):724–731.
  • Yokoi T, Kubota Y, Tatsumi T. Amino-functionalized mesoporous silica as base catalyst and adsorbent. Appl Catal A Gen. 2012;421–422:14–37.
  • Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles for drug delivery. Adv Funct Mater. 2020;30(2):1902634.
  • Baeza A, Ruiz-Molina D, Vallet-Regí M. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opin Drug Deliv. 2017;14(6):783–796.
  • Lu J, Liong M, Li Z, et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6(16):1794–1805.
  • Grün M, Lauer I, Unger KK. The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater. 1997;9(3):254–257.
  • Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26(1):62–69.
  • Flodström K, Wennerström H, Alfredsson V. Mechanism of mesoporous silica formation. A time-resolved NMR and TEM study of silica-block copolymer aggregation. Langmuir. 2004;20(3):680–688.
  • Hollamby MJ, Borisova D, Brown P, et al. Growth of mesoporous silica nanoparticles monitored by time-resolved small-angle neutron scattering. Langmuir. 2012;28(9):4425–4433.
  • Edler KJ. Current understanding of formation mechanisms in surfactant-templated materials. Aust J Chem. 2005;58(9):627–643.
  • Danks AE, Hall SR, Schnepp Z. The evolution of ‘Sol–Gel’ chemistry as a technique for materials synthesis. Mater Horiz. 2016;3(2):91–112.
  • Saroj S, Rajput SJ. Etoposide encased folic acid adorned mesoporous silica nanoparticles as potent nanovehicles for enhanced prostate cancer therapy: synthesis, characterization, cellular uptake and biodistribution. Artif Cells Nanomed Biotechnol. 2018;46(Suppl. 3):S1115–S1130.
  • Hare JI, Lammers T, Ashford MB, et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.
  • Navya PN, Kaphle A, Srinivas SP, et al. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6(1):23.
  • Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–157.
  • Berrecoso G, Crecente-Campo J, Alonso MJ. Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers. Drug Deliv Transl Res. 2020;10(3):730–750.
  • Rampado R, Crotti S, Caliceti P, et al. Recent advances in understanding the protein corona of nanoparticles and in the formulation of “stealthy” nanomaterials. Front Bioeng Biotechnol. 2020;8:166–119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.