266
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nanotechnology revolutionises breast cancer treatment: harnessing lipid-based nanocarriers to combat cancer cells

, , , , , , , & show all
Pages 794-816 | Received 18 Apr 2023, Accepted 26 Jul 2023, Published online: 06 Aug 2023

References

  • Bhattacharyya GS, Doval DC, Desai CJ, et al. Overview of breast cancer and implications of overtreatment of early-stage breast cancer: an Indian perspective. J Clin Oncol Glob Oncol. 2020;6:789–798. doi: 10.1200/go.20.00033.
  • Mehrotra R, Yadav K. Breast cancer in India: present scenario and the challenges ahead. World J Clin Oncol. 2022;13(3):209–218. doi: 10.5306/WJCO.V13.I3.209.
  • Verma R, Bowen RL, Slater SE, et al. Pathological and epidemiological factors associated with advanced stage at diagnosis of breast cancer. Br Med Bull. 2012;103(1):129–145. doi: 10.1093/BMB/LDS018.
  • Akram M, Iqbal M, Daniyal M, et al. Awareness and current knowledge of breast cancer. Biol Res. 2017; 50(1):33. doi: 10.1186/S40659-017-0140-9.
  • Thorsen L, Gjerset GM, Loge JH, et al. Cancer patients’ needs for rehabilitation services. Acta Oncol. 2011;50(2):212–222. doi: 10.3109/0284186X.2010.531050.
  • Curigliano G, Criscitiello C. Successes and limitations of targeted cancer therapy in breast cancer. Prog Tumor Res. 2014;41:15–35. doi: 10.1159/000355896.
  • Ataollahi MR, Sharifi J, Paknahad MR, et al. Breast cancer and associated factors: a review. J Med Life. 2015;8(Spec Iss 4):6.
  • Sheoran S, Arora S, Samsonraj R, et al. Lipid-based nanoparticles for treatment of cancer. Heliyon. 2022;8(5):e09403. doi: 10.1016/J.HELIYON.2022.E09403.
  • García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, et al. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials. 2019;9(4):638. doi: 10.3390/nano9040638.
  • Talluri SV, Kuppusamy G, Karri VVSR, et al. Lipid-based nanocarriers for breast cancer treatment – comprehensive review. Drug Deliv. 2016;23(4):1291–1305. doi: 10.3109/10717544.2015.1092183.
  • Daraee H, Etemadi A, Kouhi M, et al. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–391. doi: 10.3109/21691401.2014.953633.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6(DEC):286. doi: 10.3389/FPHAR.2015.00286.
  • Sánchez-López E, Guerra M, Dias-Ferreira J, et al. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials. 2019;9(6):821. doi: 10.3390/nano9060821.
  • Tagde P, et al. Nanomedicine-Based delivery strategies for breast cancer treatment and management. Int J Mol Sci. 2022;23(5):2856. doi: 10.3390/IJMS23052856.
  • Greish K, Mathur A, Al Zahrani R, et al. Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer. J Control Release. 2018;291:184–195. doi: 10.1016/J.JCONREL.2018.10.030.
  • Saraiva DP, Guadalupe Cabral M, Jacinto A, et al. How many diseases is triple negative breast cancer: the protagonism of the immune microenvironment. ESMO Open. 2017;2(4):e000208. doi: 10.1136/ESMOOPEN-2017-000208.
  • Joshi H, Press MF. Molecular oncology of breast cancer. Breast Compr Manag Benign Malig Dis. 2018:282.e5–307.e5. doi: 10.1016/B978-0-323-35955-9.00022-2.
  • Hammond MEH, Hayes DF, Dowsett M, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28(16):2784–2795. doi: 10.1200/JCO.2009.25.6529.
  • Pandey YR, Kumar S, Gupta BK, et al. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: formulation, behavioural and biochemical estimation. Nanotechnology. 2016;27(2):025102. doi: 10.1088/0957-4484/27/2/025102.
  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–1672. doi: 10.1056/NEJMOA052306.
  • Wolff AC, Hammond MEH, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice guideline update. J Clin Oncol. 2013;31(31):3997–4013. doi: 10.1200/JCO.2013.50.9984.
  • Vahidfar N, Aghanejad A, Ahmadzadehfar H, et al. Theranostic advances in breast cancer in nuclear medicine. Int J Mol Sci. 2021;22(9):4597. doi: 10.3390/IJMS22094597.
  • Nagayama A, Vidula N, Ellisen L, et al. Novel antibody-drug conjugates for triple negative breast cancer. Ther Adv Med Oncol. 2020;12:1758835920915980. doi: 10.1177/1758835920915980.
  • Lev S. Targeted therapy and drug resistance in triple-negative breast cancer: the EGFR axis. Biochem Soc Trans. 2020;48(2):657–665. doi: 10.1042/BST20191055.
  • Sharma GN, Dave R, Sanadya J, et al. Various types and management of breast cancer: an overview. J Adv Pharm Technol Res. 2010;1(2):109.
  • Henriksen EL, Carlsen JF, Vejborg IMM, et al. The efficacy of using computer-aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review. Acta Radiol. 2019;60(1):13–18. doi: 10.1177/0284185118770917.
  • Chitalia RD, Kontos D. Role of texture analysis in breast MRI as a cancer biomarker: a review. J Magn Reson Imaging. 2019;49(4):927–938. doi: 10.1002/JMRI.26556.
  • Rahbar H, Lee JM, Lee CI. Optimal screening in breast cancer survivors with dense breasts on mammography. J Clin Oncol. 2020;38(33):3833–3840. doi: 10.1200/JCO.20.01641.
  • Pesapane F, Downey K, Rotili A, et al. Imaging diagnosis of metastatic breast cancer. Insights Imaging. 2020;11(1):79. doi: 10.1186/S13244-020-00885-4.
  • Houssami N, Kirkpatrick-Jones G, Noguchi N, et al. Artificial intelligence (AI) for the early detection of breast cancer: a scoping review to assess AI’s potential in breast screening practice. Expert Rev Med Dev. 2019;16(5):351–362. doi: 10.1080/17434440.2019.1610387.
  • Sheth D, Giger ML. Artificial intelligence in the interpretation of breast cancer on MRI. J Magn Reson Imaging. 2020;51(5):1310–1324. doi: 10.1002/JMRI.26878.
  • M Deshpande T, Pandey A, Shyama S. Review: breast cancer and etiology. Trends Med. 2017;17(1):1–7. doi: 10.15761/TiM.1000110.
  • Cavalieri EL, Rogan EG. The etiology and prevention of breast cancer. Drug Discov Today Dis Mech. 2012;9(1-2):e55–e69. doi: 10.1016/J.DDMEC.2013.02.001.
  • Stoddard FR, Brooks AD, Eskin BA, et al. Iodine alters gene expression in the MCF7 breast cancer cell line: evidence for an anti-estrogen effect of iodine. Int J Med Sci. 2008;5(4):189–196. doi: 10.7150/IJMS.5.189.
  • Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106. doi: 10.1016/J.GENDIS.2018.05.001.
  • Sakurai Y, Akita H, Harashima H. Targeting tumor endothelial cells with nanoparticles. Int J Mol Sci. 2019;20(23):5819. doi: 10.3390/IJMS20235819.
  • Salama L, Pastor ER, Stone T, et al. Emerging nanopharmaceuticals and nanonutraceuticals in cancer management. Biomed. 2020;8(9):347. doi: 10.3390/biomedicines8090347.
  • Yao Y, Zhou Y, Liu L, et al. Nanoparticle-Based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:193. doi: 10.3389/FMOLB.2020.00193/BIBTEX.
  • Sutradhar KB, Amin ML. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol. 2014;2014:1–12. doi: 10.1155/2014/939378.
  • Zhao G, Rodriguez BL. Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int J Nanomed. 2013;8:61–71. doi: 10.2147/IJN.S37859.
  • Nguyen KT. Targeted nanoparticles for cancer therapy: promises and challenges. J Nanomedic Nanotechnol. 2011;02(05). doi: 10.4172/2157-7439.1000103e.
  • Nattinger AB, Mitchell JL. Breast cancer screening and prevention. Ann Intern Med. 2016;164(11):ITC81–ITC96. doi: 10.7326/AITC201606070.
  • Winters S, Martin C, Murphy D, et al. Breast cancer epidemiology, prevention, and screening. Prog Mol Biol Transl Sci. 2017;151:1–32. doi: 10.1016/BS.PMBTS.2017.07.002.
  • Schirrmacher V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int J Oncol. 2019;54(2):407–419. doi: 10.3892/IJO.2018.4661/HTML.
  • Nounou MI, Elamrawy F, Ahmed N, et al. Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer. 2015;9(Suppl 2):17–34. doi: 10.4137/BCBCR.S29420.
  • Berkowitz MJ, Thompson CK, Zibecchi LT, et al. How patients experience endocrine therapy for breast cancer: an online survey of side effects, adherence, and medical team support. J Cancer Surviv. 2021;15(1):29–39. doi: 10.1007/S11764-020-00908-5.
  • Czajka ML, Pfeifer C. Breast cancer surgery. Br J Med Pract. 2022;13(1):1. doi: 10.1093/med/9780198839248.003.0013.
  • Angahar LT. An overview of breast cancer epidemiology, risk factors, pathophysiology, and cancer risks reduction. MOJBM. 2017;1(4):92–96. doi: 10.15406/mojbm.2017.01.00019.
  • Spano J-P, Falandry C, Chaibi P, et al. Current targeted therapies in breast cancer: clinical applications in the elderly woman. Oncologist. 2011;16(8):1144–1153. doi: 10.1634/THEONCOLOGIST.2011-0028.
  • Foroughi-Nia B, Barar J, Memar MY, et al. Progresses in polymeric nanoparticles for delivery of tyrosine kinase inhibitors. Life Sci. 2021;278:119642. doi: 10.1016/J.LFS.2021.119642.
  • Kadkhoda J, Tarighatnia A, Barar J, et al. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis Photodyn Ther. 2022;37:102697. doi: 10.1016/J.PDPDT.2021.102697.
  • Praveen Kumar G, Divya A, Kumar GP. Nanoemulsion based targeting in cancer therapeutics. Med Chem Open Access J. 2015;5(6):272–284. doi: 10.4172/2161-0444.1000275.
  • Tagne J-B, Kakumanu S, Ortiz D, et al. A nanoemulsion formulation of tamoxifen increases its efficacy in a breast cancer cell line. Mol Pharm. 2008;5(2):280–286. doi: 10.1021/mp700091j.
  • Alkhatib MH, Albishi HM. In vitro evaluation of antitumor activity of doxorubicin-loaded nanoemulsion in MCF-7 human breast cancer cells. J Nanopart Res. 2013;15(3):1–5. doi: 10.1007/s11051-013-1489-5.
  • Bu H, He X, Zhang Z, et al. A TPGS-incorporating nanoemulsion of paclitaxel circumvents drug resistance in breast cancer. Int J Pharm. 2014;471(1-2):206–213. doi: 10.1016/j.ijpharm.2014.05.039.
  • Üner M, Yener G, Ergüven M. Design of colloidal drug carriers of celecoxib for use in treatment of breast cancer and leukemia. Mater Sci Eng C. 2019;103:109874. doi: 10.1016/j.msec.2019.109874.
  • Mendes Miranda SE, Alcântara Lemos J D, Fernandes RS, et al. Enhanced antitumor efficacy of lapachol-loaded nanoemulsion in breast cancer tumor model. Biomed Pharmacother. 2021;133:110936. doi: 10.1016/J.BIOPHA.2020.110936.
  • Attari F, Hazim H, Zandi A, et al. Circumventing paclitaxel resistance in breast cancer cells using a nanoemulsion system and determining its efficacy: via an impedance biosensor. Analyst. 2021;146(10):3225–3233. doi: 10.1039/D0AN02013C.
  • Han B, Wang T, Xue Z, et al. Elemene nanoemulsion inhibits metastasis of breast cancer by ROS scavenging. Int J Nanomed. 2021;16:6035–6048. doi: 10.2147/IJN.S327094.
  • Saraiva SM, Gutiérrez-Lovera C, Martínez-Val J, et al. Edelfosine nanoemulsions inhibit tumor growth of triple negative breast cancer in zebrafish xenograft model. Sci Rep. 2021;11(1):9873. doi: 10.1038/S41598-021-87968-4.
  • Harde H, Das M, Jain S. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv. 2011;8(11):1407–1424. doi: 10.1517/17425247.2011.604311.
  • Rostami E, Kashanian S, Azandaryani AH, et al. Drug targeting using solid lipid nanoparticles. Chem Phys Lipids. 2014;181:56–61. doi: 10.1016/J.CHEMPHYSLIP.2014.03.006.
  • Rompicharla SVK, Bhatt H, Shah A, et al. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity. Chem Phys Lipids. 2017;208:10–18. doi: 10.1016/J.CHEMPHYSLIP.2017.08.009.
  • da Rocha MCO, da Silva PB, Radicchi MA, et al. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J Nanobiotechnology. 2020;18(1):43. doi: 10.1186/S12951-020-00604-7/FIGURES/12.
  • Wang W, et al. Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells. Molecules. 2017;22(11):1814. doi: 10.3390/MOLECULES22111814.
  • Xu W, Bae EJ, Lee MK. Enhanced anticancer activity and intracellular uptake of paclitaxel-containing solid lipid nanoparticles in multidrug-resistant breast cancer cells. Int J Nanomed. 2018;13:7549–7563. doi: 10.2147/IJN.S182621.
  • Wang W, et al. Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules. 2018;23(7):1578. doi: 10.3390/MOLECULES23071578.
  • Pindiprolu SKSS, Chintamaneni PK, Krishnamurthy PT, et al. Formulation-optimization of solid lipid nanocarrier system of STAT3 inhibitor to improve its activity in triple negative breast cancer cells. Drug Dev Ind Pharm. 2019;45(2):304–313. doi: 10.1080/03639045.2018.1539496.
  • Granja A, Lima-Sousa R, Alves CG, et al. Mitoxantrone-loaded lipid nanoparticles for breast cancer therapy - quality-by-design approach and efficacy assessment in 2D and 3D in vitro cancer models. Int J Pharm. 2021;607:121044. doi: 10.1016/J.IJPHARM.2021.121044.
  • Sun M, Nie S, Pan X, et al. Quercetin-nanostructured lipid carriers: characteristics and anti-breast cancer activities in vitro. Colloids Surf B Biointerfaces. 2014;113:15–24. doi: 10.1016/J.COLSURFB.2013.08.032.
  • Liu Q, Li J, Pu G, et al. Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy. Drug Deliv. 2016;23(4):1364–1368. doi: 10.3109/10717544.2015.1031295.
  • Ng WK, Saiful Yazan L, Yap LH, et al. Thymoquinone-loaded nanostructured lipid carrier exhibited cytotoxicity towards breast cancer cell lines (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). Biomed Res Int. 2015;2015:1–10. doi: 10.1155/2015/263131.
  • Godugu C, Doddapaneni R, Safe SH, et al. Novel diindolylmethane derivatives based NLC formulations to improve the oral bioavailability and anticancer effects in triple negative breast cancer. Eur J Pharm Biopharm. 2016;108:168–179. doi: 10.1016/J.EJPB.2016.08.006.
  • Varshosaz J, Davoudi MA, Rasoul-Amini S. Docetaxel-loaded nanostructured lipid carriers functionalized with trastuzumab (herceptin) for HER2-positive breast cancer cells. J Liposome Res. 2018;28(4):285–295. doi: 10.1080/08982104.2017.1370471.
  • Sabzichi M, Mohammadian J, Mohammadi M, et al. Vitamin D-loaded nanostructured lipid carrier (NLC): a new strategy for enhancing efficacy of doxorubicin in breast cancer treatment. Nutr Cancer. 2017;69(6):840–848. doi: 10.1080/01635581.2017.1339820.
  • Poonia N, Kaur Narang J, Lather V, et al. Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: systematic development, characterization and pharmacokinetic evaluation. Colloids Surf B Biointerfaces. 2019;181:756–766. doi: 10.1016/J.COLSURFB.2019.06.004.
  • Pedro IDR, Almeida OP, Martins HR, et al. Optimization and in vitro/in vivo performance of paclitaxel-loaded nanostructured lipid carriers for breast cancer treatment. J Drug Deliv Sci Technol. 2019;54:101370. doi: 10.1016/j.jddst.2019.101370.
  • Nordin N, Yeap SK, Rahman HS, et al. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci Rep. 2019;9(1):1614. doi: 10.1038/s41598-018-38214-x.
  • Soni NK, Sonali LJ, Singh A, et al. Nanostructured lipid carrier potentiated oral delivery of raloxifene for breast cancer treatment. Nanotechnology. 2020;31(47):475101. doi: 10.1088/1361-6528/ABAF81.
  • Gilani SJ, Bin-Jumah M, Rizwanullah M, et al. Chitosan coated luteolin nanostructured lipid carriers: optimization, in vitro-ex vivo assessments and cytotoxicity study in breast cancer cells. Coatings. 2021;11(2):158. doi: 10.3390/coatings11020158.
  • Brown S, Khan DR. The treatment of breast cancer using liposome technology. J Drug Deliv. 2012;2012:1–6. doi: 10.1155/2012/212965.
  • Jeong M, Kim H, Kim S, et al. Liposomal borrelidin for treatment of metastatic breast cancer. Drug Deliv Transl Res. 2018;8(5):1380–1388. doi: 10.1007/S13346-018-0563-Z.
  • Wang Q, Luo M, Wei N, et al. Development of a liposomal formulation of acetyltanshinone IIA for breast cancer therapy. Mol Pharm. 2019;16(9):3873–3886. doi: 10.1021/ACS.MOLPHARMACEUT.9B00493.
  • Chowdhury N, Chaudhry S, Hall N, et al. Targeted delivery of doxorubicin liposomes for her-2+ breast cancer treatment. AAPS PharmSciTech. 2020;21(6):202. doi: 10.1208/S12249-020-01743-8.
  • Fu M, Tang W, Liu J-J, et al. Combination of targeted daunorubicin liposomes and targeted emodin liposomes for treatment of invasive breast cancer. J Drug Target. 2020;28(3):245–258. doi: 10.1080/1061186X.2019.1656725.
  • Burande AS, Viswanadh MK, Jha A, et al. EGFR targeted paclitaxel and piperine Co-loaded liposomes for the treatment of triple negative breast cancer. AAPS PharmSciTech. 2020;21(5):151. doi: 10.1208/S12249-020-01671-7.
  • Tang H, Chen J, Wang L, et al. Co-delivery of epirubicin and paclitaxel using an estrone-targeted PEGylated liposomal nanoparticle for breast cancer. Int J Pharm. 2020;573:118806. doi: 10.1016/J.IJPHARM.2019.118806.
  • Elamir A, Ajith S, Sawaftah NA, et al. Ultrasound-triggered herceptin liposomes for breast cancer therapy. Sci Rep. 2021;11(1):7545. doi: 10.1038/s41598-021-86860-5.
  • Bustanji Y, Taneera J, Semreen MH, et al. Gold nanoparticles and breast cancer: a bibliometric analysis of the current state of research and future directions. OpenNano. 2023;12:100164. doi: 10.1016/j.onano.2023.100164.
  • Lee J, Chatterjee DK, Lee MH, et al. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett. 2014;347(1):46–53. doi: 10.1016/J.CANLET.2014.02.006.
  • Radenkovic D, Kobayashi H, Remsey-Semmelweis E, et al. Quantum dot nanoparticle for optimization of breast cancer diagnostics and therapy in a clinical setting. Nanomedicine. 2016;12(6):1581–1592. doi: 10.1016/J.NANO.2016.02.014.
  • Fang M, Peng CW, Pang DW, et al. Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med. 2012;9(3):151–163. doi: 10.7497/J.ISSN.2095-3941.2012.03.001.
  • Wu M, Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol Clin Oncol. 2017;7(5):738–746. doi: 10.3892/MCO.2017.1399.
  • Alavijeh AA, Barati M, Barati M, et al. The potential of magnetic nanoparticles for diagnosis and treatment of cancer based on body magnetic field and organ-on-the-chip. Adv Pharm Bull. 2019;9(3):360–373. doi: 10.15171/APB.2019.043.
  • Crintea A, Motofelea AC, Șovrea AS, et al. Dendrimers: advancements and potential applications in cancer diagnosis and treatment—an overview. Pharm. 2023;15(5):1406. doi: 10.3390/pharmaceutics15051406.
  • Alven S, Aderibigbe BA. The therapeutic efficacy of dendrimer and micelle formulations for breast cancer treatment. Pharmaceutics. 2020;12(12):1–49. doi: 10.3390/PHARMACEUTICS12121212.
  • Singh R, Kumar S. Cancer targeting and diagnosis: recent trends with carbon nanotubes. Nanomaterials. 2022;12(13):2283. doi: 10.3390/nano12132283.
  • Bura C, Mocan T, Grapa C, et al. Carbon nanotubes-based assays for cancer detection and screening. Pharmaceutics. 2022;14(4):781. doi: 10.3390/PHARMACEUTICS14040781.
  • Zhang C, Wu L, de Perrot M, et al. Carbon nanotubes: a summary of beneficial and dangerous aspects of an increasingly popular group of nanomaterials. Front Oncol. 2021;11:693814. doi: 10.3389/FONC.2021.693814/BIBTEX.
  • Oshiro-Junior JA, Sato MR, Boni FI, et al. Phthalocyanine-loaded nanostructured lipid carriers functionalized with folic acid for photodynamic therapy. Mater Sci Eng C Mater Biol Appl. 2020;108:110462. doi: 10.1016/J.MSEC.2019.110462.
  • Zhang Q, Zhao J, Hu H, et al. Construction and in vitro and in vivo evaluation of folic acid-modified nanostructured lipid carriers loaded with paclitaxel and chlorin e6. Int J Pharm. 2019;569:118595. doi: 10.1016/J.IJPHARM.2019.118595.
  • Moraes S, Marinho A, Lima S, et al. Targeted nanostructured lipid carriers for doxorubicin oral delivery. Int J Pharm. 2021;592:120029. doi: 10.1016/J.IJPHARM.2020.120029.
  • Ma Z, et al. Enhanced anticancer efficacy of dual drug-loaded self-assembled nanostructured lipid carriers mediated by pH-responsive folic acid and human-derived cell penetrating peptide dNP2. Pharmaceutics. 2021;13(5):600. doi: 10.3390/PHARMACEUTICS13050600.
  • Lin M, Teng L, Wang Y, et al. Curcumin-guided nanotherapy: a lipid-based nanomedicine for targeted drug delivery in breast cancer therapy. Drug Deliv. 2016;23(4):1420–1425. doi: 10.3109/10717544.2015.1066902.
  • Rezazadeh M, Emami J, Hassanzadeh F, et al. Targeted nanostructured lipid carriers for delivery of paclitaxel to cancer cells: preparation, characterization, and cell toxicity. CDD. 2017;14(8):1189–1200. doi: 10.2174/1567201814666170503143646.
  • Li B, Tan T, Chu W, et al. Co-delivery of paclitaxel (PTX) and docosahexaenoic acid (DHA) by targeting lipid nanoemulsions for cancer therapy. Drug Deliv. 2022;29(1):75–88. doi: 10.1080/10717544.2021.2018523.
  • Yadav S, Gupta S. Development and in vitro characte­rization of docetaxel-loaded ligand appended solid fat nanoemulsions for potential use in breast cancer therapy. Artif Cells Nanomed Biotechnol. 2015;43(2):93–102. doi: 10.3109/21691401.2013.845569.
  • Song B, Wu S, Li W, et al. Folate modified long circulating nano-emulsion as a promising approach for improving the efficiency of chemotherapy drugs in cancer treatment. Pharm Res. 2020;37(12):242. doi: 10.1007/S11095-020-02811-1.
  • Bhagwat GS, Athawale RB, Gude RP, et al. Formulation and development of transferrin targeted solid lipid nanoparticles for breast cancer therapy. Front Pharmacol. 2020;11:614290. doi: 10.3389/FPHAR.2020.614290.
  • Mulik RS, Mönkkönen J, Juvonen RO, et al. Transferrin mediated solid lipid nanoparticles containing curcumin: ­enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm. 2022;618(1–2):121671. doi: 10.1016/J.IJPHARM.2010.07.021.
  • Yassemi A, Kashanian S, Zhaleh H. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm Dev Technol. 2020;25(4):397–407. doi: 10.1080/10837450.2019.1703739.
  • Gandhi R, Khatri N, Baradia D, et al. Surface-modified epirubicin-HCl liposomes and its in vitro assessment in breast cancer cell-line: MCF-7. Drug Deliv. 2016;23(4):1152–1162. doi: 10.3109/10717544.2014.999960.
  • de Oliveira Silva J, Fernandes RS, Ramos Oda CM, et al. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed Pharmacother. 2019;118:109323. doi: 10.1016/J.BIOPHA.2019.109323.
  • Monteiro LOF, Fernandes RS, Castro L, et al. Paclitaxel-loaded folate-coated pH-sensitive liposomes enhance cellular uptake and antitumor activity. Mol Pharm. 2019;16(8):3477–3488. doi: 10.1021/ACS.MOLPHARMACEUT.9B00329.
  • Chiani M, Norouzian D, Shokrgozar MA, et al. Folic acid conjugated nanoliposomes as promising carriers for targeted delivery of bleomycin. Artif Cells Nanomed Biotechnol. 2018;46(4):757–763. doi: 10.1080/21691401.2017.1337029.
  • Soe ZC, Thapa RK, Ou W, et al. Folate receptor-mediated celastrol and irinotecan combination delivery using liposomes for effective chemotherapy. Colloids Surf B Biointerfaces. 2018;170:718–728. doi: 10.1016/J.COLSURFB.2018.07.013.
  • Han NK, Shin DH, Kim JS, et al. Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells. Int J Nanomedicine. 2016;11:1413–1425. doi: 10.2147/IJN.S95850.
  • Awada A, Garcia AA, Chan S, et al. Two schedules of etirinotecan pegol (NKTR-102) in patients with previously treated metastatic breast cancer: a randomised phase 2 study. Lancet Oncol. 2013;14(12):1216–1225. doi: 10.1016/S1470-2045(13)70429-7.
  • Clinicaltrial.gov. Study to Evaluate the Safety of Nanoxel M Inj; 2019 [cited 2022 Sept 20]. Available from: https://clinicaltrials.gov/ct2/show/NCT04066335
  • Gaillard PJ, Appeldoorn CCM, Dorland R, et al. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One. 2014;9(1):e82331. doi: 10.1371/JOURNAL.PONE.0082331.
  • Clinicaldata.gov. US20150017245A1 - Methods of treating cancers with therapeutic nanoparticles - Google Patents; 2016 [cited 2022 Jul 17]. Available from: https://patents.google.com/patent/US20150017245A1/en
  • Awada A, Bondarenko IN, Bonneterre J, et al. A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol. 2014;25(4):824–831. doi: 10.1093/ANNONC/MDU025.
  • Boulikas T. Clinical overview on lipoplatin: a successful ­liposomal formulation of cisplatin. Expert Opin Investig Drugs. 2009;18(8):1197–1218. doi: 10.1517/13543780903114168.
  • Clinicaldata.gov. CALLISTO PHARMACEUTICALS INC - 10-K - 20110331 - BUSINESS; 2014 [cited 2022 Jul 17]. Available from: https://google.brand.edgar-online.com/efxapi/EFX_dll/EDGARpro.dll?FetchFilingHtmlSection1?SectionID=7833119-10536-71921&SessionID=bvfeeWvshM1Sxz7
  • Clinicaldata.gov. WO2017136770A1 - treatment of her2-intermediate cancer - Google patents; 2017 [cited 2022 Jul 17]. Available from: https://patents.google.com/patent/WO2017136770A1/en
  • Slingerland M, Guchelaar H-J, Rosing H, et al. Bioequivalence of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: a randomized, two-period crossover study in patients with advanced cancer. Clin Ther. 2013;35(12):1946–1954. doi: 10.1016/J.CLINTHERA.2013.10.009.
  • Xu X, Wang L, Xu HQ, et al. Clinical comparison between paclitaxel liposome (lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev. 2013;14(4):2591–2594. doi: 10.7314/APJCP.2013.14.4.2591.
  • Hamaguchi T, Matsumura Y, Suzuki M, et al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer. 2005;92(7):1240–1246. doi: 10.1038/SJ.BJC.6602479.
  • Poon RTP, Borys N. Lyso-thermosensitive liposomal doxorubicin: an adjuvant to increase the cure rate of radiofrequency ablation in liver cancer. Future Oncol. 2011;7(8):937–945. doi: 10.2217/FON.11.73.
  • Clinicaldata.gov. Safety and efficacy study using rexin-G for breast cancer - full text view - ClinicalTrials.gov; 2007 [cited 2022 Sept 20]. Available from: https://clinicaltrials.gov/ct2/show/NCT00505271
  • Boddy AV, Plummer ER, Todd R, et al. A phase I and pharmacokinetic study of paclitaxel poliglumex (XYOTAX), investigating both 3-weekly and 2-weekly schedules. Clin Cancer Res. 2005;11(21):7834–7840. doi: 10.1158/1078-0432.CCR-05-0803.
  • Zamboni WC, Ramalingam S, Friedland DM, et al. Phase I and pharmacokinetic study of pegylated liposomal CKD-602 (S-CKD602) in patients with advanced malignancies. Clin Cancer Res. 2009;15(4):1466–1472. doi: 10.1158/1078-0432.CCR-08-1405.
  • Patnaik A, Papadopoulos KP, Tolcher AW, et al. Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly(ethylene) glycol and SN38, administered weekly in patients with advanced cancer. Cancer Chemother Pharmacol. 2013;71(6):1499–1506. doi: 10.1007/S00280-013-2149-2.
  • Ri M, Suzuki K, Iida S, et al. A phase I/II study for dose-finding, and to investigate the safety, pharmacokinetics and preliminary efficacy of NK012, an SN-38-Incorporating macromolecular polymeric micelle, in patients with multiple myeloma. Intern Med. 2018;57(7):939–946. doi: 10.2169/INTERNALMEDICINE.9567-17.
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed. 2006;1(3):297.
  • Clinicaldata.gov. Myocet liposomal (previously Myocet) | European Medicines Agency; 2008 [cited 2022 Jul 14]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/myocet-liposomal-previously-myocet
  • Nel J, Elkhoury K, Velot É, et al. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater. 2023;24:401–437. doi: 10.1016/j.bioactmat.2022.12.027.
  • Clinicaldata.gov. Drug approval package: abraxane; 2005 [cited 2022 Jul 14]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/21660_AbraxaneTOC.cfm
  • Clinicaldata.gov. Doxorubicin liposomal - Taiwan Liposome Company - AdisInsight; 1998 [cited 2022 Jul 14]. Available from: https://adisinsight.springer.com/drugs/800045848.
  • Clinicaldata.gov. “Genexol® PM,” Samyang Biopharmaceuticals Corporation. Genexol-PM(paclitaxel); 2007 [cited 2022 Jul 14]. Available from: https://www.samyangbiopharm.com/eng/ProductIntroduce/injection01
  • Rommasi F, Esfandiari N. Liposomal nanomedicine: applications for drug delivery in cancer therapy. Nanoscale Res Lett. 2021;16(1):1–20. doi: 10.1186/s11671-021-03553-8.
  • Alsawaftah NM, Awad NS, Pitt WG, et al. pH-Responsive nanocarriers in cancer therapy. Polymers. 2022;14(5):936. doi: 10.3390/POLYM14050936.
  • Liu C, Wu K, Li J, et al. Nanoparticle-mediated therapeutic management in cholangiocarcinoma drug targeting: current progress and future prospects. Biomed Pharmacother. 2023;158:114135. doi: 10.1016/J.BIOPHA.2022.114135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.