47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Trimethyl chitosan–cysteine-based nanoparticles as an effective delivery system for portulacerebroside A in the management of hepatocellular carcinoma cells in vitro and in vivo

, , , , , & show all
Received 14 Dec 2023, Accepted 11 Apr 2024, Published online: 29 Apr 2024

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660.
  • Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584–590. doi:10.1097/CM9.0000000000002108.
  • Llovet JM, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19(3):151–172. doi:10.1038/s41571-021-00573-2.
  • Zhang C, Peng L, Zhang Y, et al. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Med Oncol. 2017;34(6):101. doi:10.1007/s12032-017-0963-9.
  • Zhao S, Wu W, Jiang H, et al. Selective inhibitor of the c-Met receptor tyrosine kinase in advanced hepatocellular carcinoma: no beneficial effect with the use of tivantinib? Front Immunol. 2021;12:731527. doi:10.3389/fimmu.2021.731527.
  • Chen L, Zhao C, Yao W, et al. Efficacy and safety of Yanggan Jian in hepatitis B virus-related decompensated cirrhosis: a randomized, double-blind, controlled trial. J Clin Transl Hepatol. 2023;11(1):136–143.
  • Tsai TY, Livneh H, Hung TH, et al. Associations between prescribed Chinese herbal medicine and risk of hepatocellular carcinoma in patients with chronic hepatitis B: a nationwide population-based cohort study. BMJ Open. 2017;7(1):e014571. doi:10.1136/bmjopen-2016-014571.
  • Liu X, Li M, Wang X, et al. Effects of adjuvant traditional Chinese medicine therapy on long-term survival in patients with hepatocellular carcinoma. Phytomedicine. 2019;62:152930. doi:10.1016/j.phymed.2019.152930.
  • Parham S, Kharazi AZ, Bakhsheshi-Rad HR, et al. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants (Basel). 2020;9(12):1309. doi:10.3390/antiox9121309.
  • Farshori NN, Al-Sheddi ES, Al-Oqail MM, et al. Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2). Asian Pac J Cancer Prev. 2014;15(16):6633–6638. doi:10.7314/apjcp.2014.15.16.6633.
  • Ji Q, Zheng GY, Xia W, et al. Inhibition of invasion and metastasis of human liver cancer HCCLM3 cells by portulacerebroside A. Pharm Biol. 2015;53(5):773–780. doi:10.3109/13880209.2014.941505.
  • Chen S, Tang J, Liu F, et al. Changes of tumor microenvironment in non-small cell lung cancer after TKI treatments. Front Immunol. 2023;14:1094764. doi:10.3389/fimmu.2023.1094764.
  • Peng S, Wang R, Zhang X, et al. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Mol Cancer. 2019;18(1):165. doi:10.1186/s12943-019-1073-4.
  • Sasada T, Azuma K, Ohtake J, et al. Immune responses to Epidermal Growth Factor Receptor (EGFR) and their application for cancer treatment. Front Pharmacol. 2016;7:405. doi:10.3389/fphar.2016.00405.
  • Arkhypov I, Özbay Kurt FG, Bitsch R, et al. HSP90alpha induces immunosuppressive myeloid cells in melanoma via TLR4 signaling. J Immunother Cancer. 2022;10(9):e005551. doi:10.1136/jitc-2022-005551.
  • Kang X, Li P, Zhang C, et al. The TLR4/ERK/PD‑L1 axis may contribute to NSCLC initiation. Int J Oncol. 2020;57(2):456–465. doi:10.3892/ijo.2020.5068.
  • Wang YH, Cao YW, Yang XC, et al. Effect of TLR4 and B7-H1 on immune escape of urothelial bladder cancer and its clinical significance. Asian Pac J Cancer Prev. 2014;15(3):1321–1326. doi:10.7314/apjcp.2014.15.3.1321.
  • Budimir N, Thomas GD, Dolina JS, et al. Reversing T-cell exhaustion in cancer: lessons learned from PD-1/PD-L1 immune checkpoint blockade. Cancer Immunol Res. 2022;10(2):146–153. doi:10.1158/2326-6066.CIR-21-0515.
  • Zhang L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional chinese medicine. Drug Deliv. 2019;26(1):860–869. doi:10.1080/10717544.2019.1660732.
  • Zhang SL, Ma L, Zhao J, et al. The phenylethanol glycoside liposome inhibits PDGF-Induced HSC activation via regulation of the FAK/PI3K/Akt signaling pathway. Molecules. 2019;24(18):3282. doi:10.3390/molecules24183282.
  • Zhang X, Huang G. Synthetic lipoprotein as nano-material vehicle in the targeted drug delivery. Drug Deliv. 2017;24(sup1):16–21. doi:10.1080/10717544.2017.1384518.
  • Sepasi T, Ghadiri T, Ebrahimi-Kalan A, et al. CDX-modified chitosan nanoparticles remarkably reduce therapeutic dose of fingolimod in the EAE model of mice. Int J Pharm. 2023;636:122815. doi:10.1016/j.ijpharm.2023.122815.
  • Kumar A, Vimal A, Kumar A. Why Chitosan? From properties to perspective of mucosal drug delivery. Int J Biol Macromol. 2016;91:615–622. doi:10.1016/j.ijbiomac.2016.05.054.
  • Matalqah SM, Aiedeh K, Mhaidat NM, et al. Chitosan nanoparticles as a novel drug delivery system: a review article. Curr Drug Targets. 2020;21(15):1613–1624. doi:10.2174/1389450121666200711172536.
  • Mikusova V, Mikus P. Advances in chitosan-based nanoparticles for drug delivery. Int J Mol Sci. 2021;22(17):9652.
  • Sharma DK, Pattnaik G, Behera A. Recent developments in nanoparticles for the treatment of diabetes. J Drug Target. 2023;31(9):908–919. doi:10.1080/1061186X.2023.2261077.
  • Babu A, Ramesh R. Multifaceted applications of chitosan in cancer drug delivery and therapy. Mar Drugs. 2017;15(4):96.
  • Kumar S, Garg P, Pandey S, et al. Enhanced chitosan-DNA interaction by 2-acrylamido-2-methylpropane coupling for an efficient transfection in cancer cells. J Mater Chem B. 2015;3(17):3465–3475. doi:10.1039/c4tb02070g.
  • Lee M, Nah JW, Kwon Y, et al. Water-soluble and low molecular weight chitosan-based plasmid DNA delivery. Pharm Res. 2001;18(4):427–431. doi:10.1023/a:1011037807261.
  • Akinc A, Lynn DM, Anderson DG, et al. Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J Am Chem Soc. 2003;125(18):5316–5323. doi:10.1021/ja034429c.
  • Brown MD, Schätzlein AG, Uchegbu IF. Gene delivery with synthetic (non viral) carriers. Int J Pharm. 2001;229(1-2):1–21. doi:10.1016/s0378-5173(01)00861-4.
  • Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release. 2005;103(3):643–653. doi:10.1016/j.jconrel.2005.01.001.
  • Mao S, Shuai X, Unger F, et al. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials. 2005;26(32):6343–6356. doi:10.1016/j.biomaterials.2005.03.036.
  • Mao Z, Ma L, Jiang Y, et al. N,N,N-Trimethylchitosan chloride as a gene vector: synthesis and application. Macromol Biosci. 2007;7(6):855–863. doi:10.1002/mabi.200700015.
  • Kawamura K, Oishi J, Kang JH, et al. Intracellular signal-responsive gene carrier for cell-specific gene expression. Biomacromolecules. 2005;6(2):908–913. doi:10.1021/bm0493887.
  • Zhao X, Yin L, Ding J, et al. Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency. J Control Release. 2010;144(1):46–54. doi:10.1016/j.jconrel.2010.01.022.
  • Zhao Y, Lin S, Fang R, et al. Mechanism of enhanced oral absorption of a nano-drug delivery system loaded with trimethyl chitosan derivatives. Int J Nanomedicine. 2022;17:3313–3324. doi:10.2147/IJN.S358832.
  • Roggi A, Guazzelli E, Resta C, et al. Vinylbenzyl chloride/Styrene-Grafted SBS copolymers via TEMPO-mediated polymerization for the fabrication of anion exchange membranes for water electrolysis. Polymers (Basel). 2023;15(8):1826. doi:10.3390/polym15081826.
  • Rahmani S, Hakimi S, Esmaeily A, et al. Novel chitosan based nanoparticles as gene delivery systems to cancerous and noncancerous cells. Int J Pharm. 2019;560:306–314. doi:10.1016/j.ijpharm.2019.02.016.
  • Operti MC, Bernhardt A, Sincari V, et al. Industrial scale manufacturing and downstream processing of PLGA-based nanomedicines suitable for fully continuous operation. Pharmaceutics. 2022;14(2):276. doi:10.3390/pharmaceutics14020276.
  • Li Z, Li X, Cao Z, et al. Camptothecin nanocolloids based on N,N,N-trimethyl chitosan: efficient suppression of growth of multiple myeloma in a murine model. Oncol Rep. 2012;27(4):1035–1040. doi:10.3892/or.2012.1635.
  • Li S, Zhang S, Liu Y, et al. Effects of ultrasound-assisted glycosylation on the interface and foaming characteristics of ovotransferrin. Ultrason Sonochem. 2022;84:105958. doi:10.1016/j.ultsonch.2022.105958.
  • Ma B, Li Q, Zhang J, et al. Improvement of the antioxidant and antitumor activities of Benzimidazole-chitosan quaternary ammonium salt on drug delivery nanogels. Mar Drugs. 2024;22(1):40. doi:10.3390/md22010040.
  • Chen T, Yuan Z, Lei Z, et al. Hippocalcin-Like 1 blunts liver lipid metabolism to suppress tumorigenesis via directly targeting RUVBL1-mTOR signaling. Theranostics. 2022;12(17):7450–7464. doi:10.7150/thno.75936.
  • Sakanyan V, Hulin P, Alves de Sousa R, et al. Activation of EGFR by small compounds through coupling the generation of hydrogen peroxide to stable dimerization of Cu/Zn SOD1. Sci Rep. 2016;6(1):21088. doi:10.1038/srep21088.
  • Li Q, Zhang L, You W, et al. PRDM1/BLIMP1 induces cancer immune evasion by modulating the USP22-SPI1-PD-L1 axis in hepatocellular carcinoma cells. Nat Commun. 2022;13(1):7677. doi:10.1038/s41467-022-35469-x.
  • Hagaman DE, Damasco JA, Perez JVD, et al. Recent advances in nanomedicine for the diagnosis and treatment of prostate cancer bone metastasis. Molecules. 2021;26(2):384. doi:10.3390/molecules26020384.
  • Yin S, Jin W, Qiu Y, et al. Solamargine induces hepatocellular carcinoma cell apoptosis and autophagy via inhibiting LIF/miR-192-5p/CYR61/Akt signaling pathways and eliciting immunostimulatory tumor microenvironment. J Hematol Oncol. 2022;15(1):32. doi:10.1186/s13045-022-01248-w.
  • Yang Y, Sun M, Yao W, et al. Compound kushen injection relieves tumor-associated macrophage-mediated immunosuppression through TNFR1 and sensitizes hepatocellular carcinoma to sorafenib. J Immunother Cancer. 2020;8(1):e000317. doi:10.1136/jitc-2019-000317.
  • Yi S, Jin X, Liu B, et al. Portulaca oleracea extract reduces gut microbiota imbalance and inhibits colorectal cancer progression via inactivation of the Wnt/beta-catenin signaling pathway. Phytomedicine. 2022;105:154279. doi:10.1016/j.phymed.2022.154279.
  • Alipour S, Pishkar L, Chaleshi V. Cytotoxic effect of Portulaca oleracea extract on the regulation of CDK1 and P53 gene expression in pancreatic cancer cell line. Nutr Cancer. 2022;74(5):1792–1801. doi:10.1080/01635581.2021.1960386.
  • Guo C, Hou X, Liu Y, et al. Novel Chinese Angelica polysaccharide biomimetic nanomedicine to curcumin delivery for hepatocellular carcinoma treatment and immunomodulatory effect. Phytomedicine. 2021;80:153356. doi:10.1016/j.phymed.2020.153356.
  • Yu Z, Guo J, Hu M, et al. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano. 2020;14(4):4816–4828. doi:10.1021/acsnano.0c00708.
  • Siminzar P, Tohidkia MR, Eppard E, et al. Recent trends in diagnostic biomarkers of tumor microenvironment. Mol Imaging Biol. 2023;25(3):464–482. doi:10.1007/s11307-022-01795-1.
  • Dapito DH, Mencin A, Gwak GY, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21(4):504–516. doi:10.1016/j.ccr.2012.02.007.
  • Ke MY, Xu T, Fang Y, et al. Liver fibrosis promotes immune escape in hepatocellular carcinoma via GOLM1-mediated PD-L1 upregulation. Cancer Lett. 2021;513:14–25. doi:10.1016/j.canlet.2021.05.007.
  • Su T, Huang M, Liao J, et al. Insufficient radiofrequency ablation promotes hepatocellular carcinoma metastasis through N6-methyladenosine mRNA methylation-dependent mechanism. Hepatology. 2021;74(3):1339–1356. doi:10.1002/hep.31766.
  • Lv T, Xiong X, Yan W, et al. Targeting of GSDMD sensitizes HCC to anti-PD-1 by activating cGAS pathway and downregulating PD-L1 expression. J Immunother Cancer. 2022;10(6):e004763. doi:10.1136/jitc-2022-004763.
  • Zhou Y, Wang S, Wu W, et al. Sustained activation of EGFR-ERK1/2 signaling limits the response to tigecycline-induced mitochondrial respiratory deficiency in liver cancer. EBioMedicine. 2023;87:104397. doi:10.1016/j.ebiom.2022.104397.
  • Jin H, Shi Y, Lv Y, et al. EGFR activation limits the response of liver cancer to lenvatinib. Nature. 2021;595(7869):730–734. doi:10.1038/s41586-021-03741-7.
  • Zheng Q, Martin RC, Shi X, et al. Lack of FGF21 promotes NASH-HCC transition via hepatocyte-TLR4-IL-17A signaling. Theranostics. 2020;10(22):9923–9936. doi:10.7150/thno.45988.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.