139
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A promising strategy of surface-modified nanoparticles targeting CXCR4 for precision cancer therapy

, , , &
Received 24 Jan 2024, Accepted 11 Apr 2024, Published online: 29 Apr 2024

References

  • McClements DJ. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnol Adv. 2020;38:107287. doi: 10.1016/j.biotechadv.2018.08.004.
  • Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 2014;9(2):223–243. doi: 10.1016/j.nantod.2014.04.008.
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014. doi: 10.1038/natrevmats.2016.14.
  • Dai Q, Wilhelm S, Ding D, et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano. 2018;12(8):8423–8435. doi: 10.1021/acsnano.8b03900.
  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond). 2013;8(9):1509–1528. doi: 10.2217/nnm.13.118.
  • Hua S, de Matos MBC, Metselaar JM, et al. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790. doi: 10.3389/fphar.2018.00790.
  • Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci. 2018;19(1):195. doi: 10.3390/ijms19010195.
  • Thiruppathi R, Mishra S, Ganapathy M, et al. Nanoparticle functionalization and its potentials for molecular imaging. Adv Sci (Weinh). 2017;4:1600279. doi: 10.1002/advs.201600279.
  • Cláudia Paiva-Santos A, Gama M, Peixoto D, et al. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. Int J Pharm. 2022;618:121656. doi: 10.1016/j.ijpharm.2022.121656.
  • Mahoutforoush A, Solouk A, Hamishehkar H, et al. Novel decorated nanostructured lipid carrier for simultaneous active targeting of three anti-cancer agents. Life Sci. 2021;279:119576. doi: 10.1016/j.lfs.2021.119576.
  • Kashyap MK, Amaya-Chanaga CI, Kumar D, et al. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia. J Hematol Oncol. 2017;10(1):112. doi: 10.1186/s13045-017-0435-x.
  • Peng SB, Zhang X, Paul D, et al. Inhibition of CXCR4 by LY2624587, a fully humanized anti-CXCR4 antibody induces apoptosis of hematologic malignancies. PLoS One. 2016;11(3):e0150585. doi: 10.1371/journal.pone.0150585.
  • Zhou W, Guo S, Liu M, et al. Targeting CXCL12/CXCR4 axis in tumor immunotherapy. Curr Med Chem. 2019;26(17):3026–3041. doi: 10.2174/0929867324666170830111531.
  • Meng W, Xue S, Chen Y. The role of CXCL12 in tumor microenvironment. Gene. 2018;641:105–110. doi: 10.1016/j.gene.2017.10.015.
  • Zhou Y, Cao HB, Li WJ, et al. The CXCL12 (SDF-1)/CXCR4 chemokine axis: oncogenic properties, molecular targeting, and synthetic and natural product CXCR4 inhibitors for cancer therapy. Chin J Nat Med. 2018;16(11):801–810. doi: 10.1016/S1875-5364(18)30122-5.
  • Cojoc M, Peitzsch C, Trautmann F, et al. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther. 2013;6:1347–1361. doi: 10.2147/OTT.S36109.
  • Walenkamp AME, Lapa C, Herrmann K, et al. CXCR4 ligands: the next big hit? J Nucl Med. 2017;58(Suppl 2):77S–82S. doi: 10.2967/jnumed.116.186874.
  • Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540–550. doi: 10.1038/nrc1388.
  • Augustine R, Hasan A, Primavera R, et al. Cellular uptake and retention of nanoparticles: insights on particle properties and interaction with cellular components. Mater Today Commun. 2020;25:101692. doi: 10.1016/j.mtcomm.2020.101692.
  • Marchese A, Benovic JL. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem. 2001;276(49):45509–45512. doi: 10.1074/jbc.C100527200.
  • Döring Y, Pawig L, Weber C, et al. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol. 2014;5:212. doi: 10.3389/fphys.2014.00212.
  • Petit I, Jin D, Rafii S. The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol. 2007;28(7):299–307. doi: 10.1016/j.it.2007.05.007.
  • Corcione A, Ottonello L, Tortolina G, et al. Stromal cell-derived factor-1 as a chemoattractant for follicular center lymphoma B cells. J Natl Cancer Inst. 2000;92(8):628–635. doi: 10.1093/jnci/92.8.628.
  • Zhou Y, Larsen PH, Hao C, et al. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem. 2002;277(51):49481–49487. doi: 10.1074/jbc.M206222200.
  • Phillips RJ, Burdick MD, Lutz M, et al. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med. 2003;167(12):1676–1686. doi: 10.1164/rccm.200301-071OC.
  • Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16(11):2927–2931. doi: 10.1158/1078-0432.CCR-09-2329.
  • Bajetto A, Bonavia R, Barbero S, et al. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol. 2001;22(3):147–184. doi: 10.1006/frne.2001.0214.
  • Shi Y, Riese DJ, 2nd, Shen J. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front Pharmacol. 2020;11:574667. doi: 10.3389/fphar.2020.574667.
  • Hinton CV, Avraham S, Avraham HK. Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain. Clin Exp Metastasis. 2010;27(2):97–105. doi: 10.1007/s10585-008-9210-2.
  • Zhao D, Li XP, Gao M, et al. Stromal cell-derived factor 1alpha stimulates human endometrial carcinoma cell growth through the activation of both extracellular signal-regulated kinase 1/2 and akt. Gynecol Oncol. 2006;103(3):932–937. doi: 10.1016/j.ygyno.2006.05.045.
  • Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase Cascades. Adv Cancer Res. 1998;74:49–139.
  • Liebmann C, Böhmer FD. Signal transduction pathways of G protein-coupled receptors and their cross-talk with receptor tyrosine kinases: lessons from bradykinin signaling. Curr Med Chem. 2000;7(9):911–943. doi: 10.2174/0929867003374589.
  • Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett. 2020;217:91–115. doi: 10.1016/j.imlet.2019.11.007.
  • Mosley CA, Wilson LJ, Wiseman JM, et al. Recent patents regarding the discovery of small molecule CXCR4 antagonists. Expert Opin Ther Pat. 2009;19(1):23–38. doi: 10.1517/13543770802553483.
  • Tamamura H, Omagari A, Oishi S, et al. Pharmacophore identification of a specific CXCR4 inhibitor, T140, leads to development of effective anti-HIV agents with very high selectivity indexes. Bioorg Med Chem Lett. 2000;10(23):2633–2637. doi: 10.1016/s0960-894x(00)00535-7.
  • Huang LSM, Snyder EY, Schooley RT. Strategies and progress in CXCR4-targeted anti-human immunodeficiency virus (HIV) therapeutic development. Clin Infect Dis. 2021;73(5):919–924. doi: 10.1093/cid/ciab160.
  • Kobayashi K, Oishi S, Hayashi R, et al. Structure-activity relationship study of a CXC chemokine receptor type 4 antagonist, FC131, using a series of alkene dipeptide isosteres. J Med Chem. 2012;55(6):2746–2757. doi: 10.1021/jm2016914.
  • Ueda S, Oishi S, Wang ZX, et al. Structure-activity relationships of cyclic peptide-based chemokine receptor CXCR4 antagonists: disclosing the importance of side-chain and backbone functionalities. J Med Chem. 2007;50(2):192–198. doi: 10.1021/jm0607350.
  • Kaiser LM, Harms M, Sauter D, et al. Targeting of CXCR4 by the naturally occurring CXCR4 antagonist EPI-X4 in Waldenstrom’s macroglobulinemia. Cancers (Basel). 2021;13(4):826. doi: 10.3390/cancers13040826.
  • Bobkov V, Arimont M, Zarca A, et al. Antibodies targeting chemokine receptors CXCR4 and ACKR3. Mol Pharmacol. 2019;96(6):753–764. doi: 10.1124/mol.119.116954.
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. doi: 10.3389/fimmu.2014.00520.
  • Godar M, de Haard H, Blanchetot C, et al. Therapeutic bispecific antibody formats: a patent applications review (1994-2017). Expert Opin Ther Pat. 2018;28(3):251–276. doi: 10.1080/13543776.2018.1428307.
  • Treon SP, Meid K, Hunter ZR, et al. Phase 1 study of ibrutinib and the CXCR4 antagonist ulocuplumab in CXCR4-mutated Waldenstrom macroglobulinemia. Blood. 2021;138(17):1535–1539. doi: 10.1182/blood.2021012953.
  • Peng D, Cao B, Zhou YJ, et al. The chemical diversity and structure-based evolution of non-peptide CXCR4 antagonists with diverse therapeutic potential. Eur J Med Chem. 2018;149:148–169. doi: 10.1016/j.ejmech.2018.02.043.
  • De Clercq E. The bicyclam AMD3100 story. Nat Rev Drug Discov. 2003;2(7):581–587. doi: 10.1038/nrd1134.
  • Princen K, Schols D. HIV chemokine receptor inhibitors as novel anti-HIV drugs. Cytokine Growth Factor Rev. 2005;16(6):659–677. doi: 10.1016/j.cytogfr.2005.05.009.
  • DiPersio JF, Uy GL, Yasothan U, et al. Plerixafor. Nat Rev Drug Discov. 2009;8(2):105–106. doi: 10.1038/nrd2819.
  • Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med. 2005;201(8):1307–1318. doi: 10.1084/jem.20041385.
  • Rosenkilde MM, Gerlach LO, Jakobsen JS, et al. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor. J Biol Chem. 2004;279(4):3033–3041. doi: 10.1074/jbc.M309546200.
  • Gerlach LO, Skerlj RT, Bridger GJ, et al. Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J Biol Chem. 2001;276(17):14153–14160. doi: 10.1074/jbc.M010429200.
  • Wang J, Tannous BA, Poznansky MC, et al. CXCR4 antagonist AMD3100 (plerixafor): from an impurity to a therapeutic agent. Pharmacol Res. 2020;159:105010. doi: 10.1016/j.phrs.2020.105010.
  • Chaudary N, Pintilie M, Jelveh S, et al. Plerixafor improves primary tumor response and reduces metastases in cervical cancer treated with radio-chemotherapy. Clin Cancer Res. 2017;23(5):1242–1249. doi: 10.1158/1078-0432.CCR-16-1730.
  • Debnath B, Xu S, Grande F, et al. Small molecule inhibitors of CXCR4. Theranostics. 2013;3(1):47–75. doi: 10.7150/thno.5376.
  • Fricker SP, Anastassov V, Cox J, et al. Characterization of the molecular pharmacology of AMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem Pharmacol. 2006;72(5):588–596. doi: 10.1016/j.bcp.2006.05.010.
  • Bodart V, Anastassov V, Darkes MC, et al. Pharmacology of AMD3465: a small molecule antagonist of the chemokine receptor CXCR4. Biochem Pharmacol. 2009;78(8):993–1000. doi: 10.1016/j.bcp.2009.06.010.
  • Bridger GJ, Skerlj RT, Hernandez-Abad PE, et al. Synthesis and structure-activity relationships of azamacrocyclic C-X-C chemokine receptor 4 antagonists: analogues containing a single azamacrocyclic ring are potent inhibitors of T-cell tropic (X4) HIV-1 replication. J Med Chem. 2010;53(3):1250–1260. doi: 10.1021/jm901530b.
  • Stone ND, Dunaway SB, Flexner C, et al. Multiple-dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects. Antimicrob Agents Chemother. 2007;51(7):2351–2358. doi: 10.1128/AAC.00013-07.
  • Mosi RM, Anastassova V, Cox J, et al. The molecular pharmacology of AMD11070: an orally bioavailable CXCR4 HIV entry inhibitor. Biochem Pharmacol. 2012;83(4):472–479. doi: 10.1016/j.bcp.2011.11.020.
  • Skerlj RT, Bridger GJ, Kaller A, et al. Discovery of novel small molecule orally bioavailable C-X-C chemokine receptor 4 antagonists that are potent inhibitors of T-tropic (X4) HIV-1 replication. J Med Chem. 2010;53(8):3376–3388. doi: 10.1021/jm100073m.
  • Truax VM, Zhao H, Katzman BM, et al. Discovery of tetrahydroisoquinoline-based CXCR4 antagonists. ACS Med Chem Lett. 2013;4(11):1025–1030. doi: 10.1021/ml400183q.
  • Hosoba S, Waller EK. New molecule for mobilizing marrow stem cells. Blood. 2014;123(3):310–311. doi: 10.1182/blood-2013-12-538249.
  • Das D, Maeda K, Hayashi Y, et al. Insights into the mechanism of inhibition of CXCR4: identification of piperidinylethanamine analogs as anti-HIV-1 inhibitors. Antimicrob Agents Chemother. 2015;59(4):1895–1904. doi: 10.1128/AAC.04654-14.
  • Fujii N, Oishi S, Hiramatsu K, et al. Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. Angew Chem Int Ed Engl. 2003;42(28):3251–3253. doi: 10.1002/anie.200351024.
  • Vitale RM, Gatti M, Carbone M, et al. Minimalist hybrid ligand/receptor-based pharmacophore model for CXCR4 applied to a small-library of marine natural products led to the identification of phidianidine a as a new CXCR4 ligand exhibiting antagonist activity. ACS Chem Biol. 2013;8(12):2762–2770. doi: 10.1021/cb400521b.
  • Grande F, Barone I, Aiello F, et al. Identification of novel 2-(1H-indol-1-yl)-benzohydrazides CXCR4 ligands impairing breast cancer growth and motility. Future Med Chem. 2016;8(2):93–106. doi: 10.4155/fmc.15.176.
  • Soudy R, Byeon N, Raghuwanshi Y, et al. Engineered peptides for applications in cancer-targeted drug delivery and tumor detection. Mini Rev Med Chem. 2017;17:1696–1712.
  • Araste F, Abnous K, Hashemi M, et al. Peptide-based targeted therapeutics: focus on cancer treatment. J Control Release. 2018;292:141–162. doi: 10.1016/j.jconrel.2018.11.004.
  • Khandare JJ, Minko T. Antibodies and peptides in cancer therapy. Crit Rev Ther Drug Carrier Syst. 2006;23(5):401–435. doi: 10.1615/critrevtherdrugcarriersyst.v23.i5.20.
  • Hashemzadeh N, Dolatkhah M, Adibkia K, et al. Recent advances in breast cancer immunotherapy: the promising impact of nanomedicines. Life Sci. 2021;271:119110. doi: 10.1016/j.lfs.2021.119110.
  • Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–2387. doi: 10.1007/s11095-016-1958-5.
  • Wang J, Min J, Eghtesadi SA, et al. Quantitative study of the interaction of multivalent ligand-modified nanoparticles with breast cancer cells with tunable receptor density. ACS Nano. 2020;14(1):372–383. doi: 10.1021/acsnano.9b05689.
  • Hartshorn CM, Bradbury MS, Lanza GM, et al. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano. 2018;12(1):24–43. doi: 10.1021/acsnano.7b05108.
  • Alkilany AM, Zhu L, Weller H, et al. Ligand density on nanoparticles: a parameter with critical impact on nanomedicine. Adv Drug Deliv Rev. 2019;143:22–36. doi: 10.1016/j.addr.2019.05.010.
  • Hlavacek WS, Posner RG, Perelson AS. Steric effects on multivalent ligand-receptor binding: exclusion of ligand sites by bound cell surface receptors. Biophys J. 1999;76(6):3031–3043. doi: 10.1016/S0006-3495(99)77456-4.
  • Hafeez MN, Celia C, Petrikaite V. Challenges towards targeted drug delivery in cancer nanomedicines. Processes. 2021;9(9):1527. doi: 10.3390/pr9091527.
  • Liu Y, Zhou J, Li Q, et al. Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma. Adv Drug Deliv Rev. 2021;172:80–103. doi: 10.1016/j.addr.2021.02.019.
  • Aljabali AA, Obeid MA, Bashatwah RM, et al. Nanomaterials and their impact on the immune system. Int J Mol Sci. 2023;24(3):2008. doi: 10.3390/ijms24032008.
  • Kamali Shahri SM, Sharifi S, Mahmoudi M. Interdependency of influential parameters in therapeutic nanomedicine. Expert Opin Drug Deliv. 2021;18(10):1379–1394. doi: 10.1080/17425247.2021.1921732.
  • Đorđević S, Gonzalez MM, Conejos-Sánchez I, et al. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res. 2022;12(3):500–525. doi: 10.1007/s13346-021-01024-2.
  • Abd Ellah NH, Abouelmagd SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv. 2017;14(2):201–214. doi: 10.1080/17425247.2016.1213238.
  • Zheng N, Liu W, Li B, et al. Co-delivery of sorafenib and metapristone encapsulated by CXCR4-targeted PLGA-PEG nanoparticles overcomes hepatocellular carcinoma resistance to sorafenib. J Exp Clin Cancer Res. 2019;38(1):232. doi: 10.1186/s13046-019-1216-x.
  • Pisani A, Donno R, Gennari A, et al. CXCL12-PLGA/pluronic nanoparticle internalization abrogates CXCR4-mediated cell migration. Nanomaterials (Basel). 2020;10(11):2304. doi: 10.3390/nano10112304.
  • Jazayeri MH, Amani H, Pourfatollah AA, et al. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Bio-Sens Res. 2016;9:17–22. doi: 10.1016/j.sbsr.2016.04.002.
  • Yoncheva K, Merino M, Shenol A, et al. Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model. Int J Pharm. 2019;556:1–8. doi: 10.1016/j.ijpharm.2018.11.070.
  • Gao DY, Lin Ts T, Sung YC, et al. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer. Biomaterials. 2015;67:194–203. doi: 10.1016/j.biomaterials.2015.07.035.
  • Kumar S, Aaron J, Sokolov K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc. 2008;3(2):314–320. doi: 10.1038/nprot.2008.1.
  • Guo P, You JO, Yang J, et al. Inhibiting metastatic breast cancer cell migration via the synergy of targeted, pH-triggered siRNA delivery and chemokine axis blockade. Mol Pharm. 2014;11(3):755–765. doi: 10.1021/mp4004699.
  • Auguste DT, Furman K, Wong A, et al. Triggered release of siRNA from poly(ethylene glycol)-protected, pH-dependent liposomes. J Control Release. 2008;130(3):266–274. doi: 10.1016/j.jconrel.2008.06.004.
  • Bai H, Wang T, Kong F, et al. CXCR4 and CD44 dual-targeted Prussian blue nanosystem with daunorubicin loaded for acute myeloid leukemia therapy. Chem Eng J. 2021;405:126891. doi: 10.1016/j.cej.2020.126891.
  • Aghanejad A, Jalilian AR, Fazaeli Y, et al. Radiosynthesis and biodistribution studies of [62Zn/62Cu]–plerixafor complex as a novel in vivo PET generator for chemokine receptor imaging. J Radioanal Nucl Chem. 2014;299(3):1635–1644. doi: 10.1007/s10967-013-2822-2.
  • Aghanejad A, Jalilian AR, Fazaeli Y, et al. Synthesis and evaluation of [(67)Ga]-AMD3100: a novel imaging agent for targeting the chemokine receptor CXCR4. Sci Pharm. 2014;82(1):29–42. doi: 10.3797/scipharm.1305-18.
  • Yu J, Zhou X, Shen L. CXCR4-targeted radiopharmaceuticals for the imaging and therapy of malignant tumors. Molecules. 2023;28(12):4707. doi: 10.3390/molecules28124707.
  • Zhao Y, Detering L, Sultan D, et al. Gold nanoclusters doped with (64)Cu for CXCR4 positron emission tomography imaging of breast cancer and metastasis. ACS Nano. 2016;10(6):5959–5970. doi: 10.1021/acsnano.6b01326.
  • Shen D, Zhu L, Liu Y, et al. Efficacy evaluation and mechanism study on inhibition of breast cancer cell growth by multimodal targeted nanobubbles carrying AMD070 and ICG. Nanotechnology. 2020;31(24):245102. doi: 10.1088/1361-6528/ab7e73.
  • Yardley DA. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int J Breast Cancer. 2013;2013:137414–137415. doi: 10.1155/2013/137414.
  • Nair PR. Delivering combination chemotherapies and targeting oncogenic pathways via polymeric drug delivery systems. Polymers (Basel). 2019;11(4):630. doi: 10.3390/polym11040630.
  • Overchuk M, Weersink RA, Wilson BC, et al. Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano. 2023;17(9):7979–8003. doi: 10.1021/acsnano.3c00891.
  • Kadkhoda J, Tarighatnia A, Nader ND, et al. Targeting mitochondria in cancer therapy: insight into photodynamic and photothermal therapies. Life Sci. 2022;307:120898. doi: 10.1016/j.lfs.2022.120898.
  • Estelrich J, Busquets MA. Iron oxide nanoparticles in photothermal therapy. Molecules. 2018;23(7):1567. doi: 10.3390/molecules23071567.
  • Malabanan JWT, Alcantara KP, Jantaratana P, et al. Enhancing physicochemical properties and biocompatibility of hollow porous iron oxide nanoparticles through polymer-based surface modifications. ACS Appl Bio Mater. 2023;6(12):5426–5441. doi: 10.1021/acsabm.3c00657.
  • Huang H, Yuan G, Xu Y, et al. Photoacoustic and magnetic resonance imaging-based gene and photothermal therapy using mesoporous nanoagents. Bioact Mater. 2022;9:157–167. doi: 10.1016/j.bioactmat.2021.07.025.
  • Li H, Wang K, Yang X, et al. Dual-function nanostructured lipid carriers to deliver IR780 for breast cancer treatment: anti-metastatic and photothermal anti-tumor therapy. Acta Biomater. 2017;53:399–413. doi: 10.1016/j.actbio.2017.01.070.
  • Falgàs A, Pallarès V, Unzueta U, et al. A CXCR4-targeted nanocarrier achieves highly selective tumor uptake in diffuse large B-cell lymphoma mouse models. Haematologica. 2020;105(3):741–753. doi: 10.3324/haematol.2018.211490.
  • Xue J, Li R, Gao D, et al. CXCL12/CXCR4 axis-targeted dual-functional nano-drug delivery system against ovarian cancer. Int J Nanomed. 2020;15:5701–5718. doi: 10.2147/IJN.S257527.
  • Serna N, Cano-Garrido O, Sánchez-García L, et al. Engineering protein venoms as self-assembling CXCR4-targeted cytotoxic nanoparticles. Part Syst Charact. 2020;37(6):2000040. doi: 10.1002/ppsc.202000040.
  • Sala R, Sánchez-García L, Serna N, et al. Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4(+) colorectal cancer. Acta Biomater. 2019;99:426–432. doi: 10.1016/j.actbio.2019.09.002.
  • Chittasupho C, Anuchapreeda S, Sarisuta N. CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. Eur J Pharm Biopharm. 2017;119:310–321. doi: 10.1016/j.ejpb.2017.07.003.
  • Chen Y, Liu YC, Sung YC, et al. Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors. Sci Rep. 2017;7(1):44123. doi: 10.1038/srep44123.
  • Misra AC, Luker KE, Durmaz H, et al. CXCR4-targeted nanocarriers for triple negative breast cancers. Biomacromolecules. 2015;16(8):2412–2417. doi: 10.1021/acs.biomac.5b00653.
  • Wang RT, Zhi XY, Yao SY, et al. LFC131 peptide-conjugated polymeric nanoparticles for the effective delivery of docetaxel in CXCR4 overexpressed lung cancer cells. Colloids Surf B Biointerf. 2015;133:43–50. doi: 10.1016/j.colsurfb.2015.05.030.
  • Chittasupho C, Lirdprapamongkol K, Kewsuwan P, et al. Targeted delivery of doxorubicin to A549 lung cancer cells by CXCR4 antagonist conjugated PLGA nanoparticles. Eur J Pharm Biopharm. 2014;88(2):529–538. doi: 10.1016/j.ejpb.2014.06.020.
  • de la Torre C, Casanova I, Acosta G, et al. Gated mesoporous silica nanoparticles using a double-role circular peptide for the controlled and target-preferential release of doxorubicin in CXCR4-expresing lymphoma cells. Adv Funct Mater. 2015;25(5):687–695. doi: 10.1002/adfm.201403822.
  • Taha MS, Padmakumar S, Singh A, et al. Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation. Drug Deliv Transl Res. 2020;10(3):766–790. doi: 10.1007/s13346-020-00744-1.
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653–664. doi: 10.1038/nrclinonc.2010.139.
  • Sindhwani S, Chan WCW. Nanotechnology for modern medicine: next step towards clinical translation. J Intern Med. 2021;290(3):486–498. doi: 10.1111/joim.13254.
  • Shreffler JW, Pullan JE, Dailey KM, et al. Overcoming hurdles in nanoparticle clinical translation: the influence of experimental design and surface modification. Int J Mol Sci. 2019;20:6056. doi: 10.3390/ijms20236056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.