27
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent progress in biomimetic nanomedicines based on versatile targeting strategy for atherosclerosis therapy

, , , , , & show all
Received 30 Jan 2024, Accepted 18 Apr 2024, Published online: 03 May 2024

References

  • Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999; Jan 14340(2):115–126. doi:10.1056/NEJM199901143400207.
  • Libby P. The changing landscape of atherosclerosis. Nature. 2021; Apr592(7855):524–533. doi:10.1038/s41586-021-03392-8.
  • Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers. 2019; Aug 165(1):56–74. doi:10.1038/s41572-019-0106-z.
  • Doran AC. Inflammation resolution: implications for atherosclerosis. Circ Res. 2022; Jan 7130(1):130–148. doi:10.1161/CIRCRESAHA.121.319822.
  • Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science. 2013; Jan 11339(6116):166–172. doi:10.1126/science.1230720.
  • Colgan SP, Curtis VF, Campbell EL. The inflammatory tissue microenvironment in IBD. Inflamm Bowel Dis. 2013; Sep19(10):2238–2244. doi:10.1097/MIB.0b013e31828dcaaf.
  • Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell. 2017; Mar 1331(3):311–325. doi:10.1016/j.ccell.2017.02.008.
  • Sawada N, Obama T, Mizuno M, et al. Transfer and Enzyme-Mediated metabolism of oxidized phosphatidylcholine and lysophosphatidylcholine between low- and high-density lipoproteins. Antioxidants (Basel). 2020; Oct 269(11):1045–1058. doi:10.3390/antiox9111045.
  • Chitu V, Stanley ER. Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol. 2006; Feb18(1):39–48. doi:10.1016/j.coi.2005.11.006.
  • Libby P, Bornfeldt KE, Tall AR. Atherosclerosis: successes, surprises, and future challenges. Circ Res. 2016; Feb 19118(4):531–534. doi:10.1161/CIRCRESAHA.116.308334.
  • Abdel-Maksoud MS, El-Gamal MI, Benhalilou DR, et al. Mechanistic/mammalian target of rapamycin: recent pathological aspects and inhibitors. Med Res Rev. 2019; Mar39(2):631–664. doi:10.1002/med.21535.
  • Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005; Apr 21352(16):1685–1695. doi:10.1056/NEJMra043430.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015; Sep33(9):941–951. doi:10.1038/nbt.3330.
  • Chan CKW, Zhang L, Cheng CK, et al. Recent advances in managing atherosclerosis via nanomedicine. Small. 2018; Jan14(4):1702793. doi:10.1002/smll.201702793.
  • Chen Z, Wang Z, Gu Z. Bioinspired and biomimetic nanomedicines. Acc Chem Res. 2019; May 2152(5):1255–1264. doi:10.1021/acs.accounts.9b00079.
  • Li M, Tang X, Liu X, et al. Targeted miR-21 loaded liposomes for acute myocardial infarction. J Mater Chem B. 2020; Dec 78(45):10384–10391. doi:10.1039/d0tb01821j.
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016; May1(5):751–760. doi:10.1038/natrevmats.2016.14.
  • Thanuja MY, Anupama C, Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far. Adv Drug Deliv Rev 2018 Jul;132:57–80. doi:10.1016/j.addr.2018.06.012.
  • Narain A, Asawa S, Chhabria V, et al. Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine (Lond). 2017; Nov12(21):2677–2692. doi:10.2217/nnm-2017-0225.
  • Chen M, Chen M, He J. Cancer cell membrane cloaking nanoparticles for targeted co-delivery of doxorubicin and PD-L1 siRNA. Artif Cells Nanomed Biotechnol. 2019; Dec47(1):1635–1641. doi:10.1080/21691401.2019.1608219.
  • Kroll AV, Fang RH, Zhang L. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem. 2017; Jan 1828(1):23–32. doi:10.1021/acs.bioconjchem.6b00569.
  • He Z, Zhang Y, Feng N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. Mater Sci Eng C Mater Biol Appl. 2020; Jan106:110298. doi:10.1016/j.msec.2019.110298.
  • Gao W, Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery. J Drug Target. 2015;23(7-8):619–626. doi:10.3109/1061186X.2015.1052074.
  • Li R, He Y, Zhang S, et al. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B. 2018; Jan8(1):14–22. doi:10.1016/j.apsb.2017.11.009.
  • Partlow KC, Lanza GM, Wickline SA. Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery. Biomaterials. 2008; Aug29(23):3367–3375. doi:10.1016/j.biomaterials.2008.04.030.
  • Pierigè F, Serafini S, Rossi L, et al. Cell-based drug delivery. Adv Drug Deliv Rev. 2008; Jan 1460(2):286–295. doi:10.1016/j.addr.2007.08.029.
  • Ihler GM, Glew RH, Schnure FW. Enzyme loading of erythrocytes. Proc Natl Acad Sci U S A. 1973; Sep70(9):2663–2666. doi:10.1073/pnas.70.9.2663.
  • Hu CM, Fang RH, Zhang L. Erythrocyte-inspired delivery systems. Adv Healthc Mater. 2012; Sep1(5):537–547. doi:10.1002/adhm.201200138.
  • Antonelli A, Sfara C, Weber O, et al. Characterization of ferucarbotran-loaded RBCs as long circulating magnetic contrast agents. Nanomedicine (Lond). 2016; Nov11(21):2781–2795. doi:10.2217/nnm-2016-0216.
  • Piao JG, Wang L, Gao F, et al. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano. 2014; Oct 288(10):10414–10425. doi:10.1021/nn503779d.
  • Hu CM, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011; Jul 5108(27):10980–10985. doi:10.1073/pnas.1106634108.
  • Li C, Yang XQ, An J, et al. Red blood cell membrane-enveloped O(2) self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics. 2020;10(2):867–879. doi:10.7150/thno.37930.
  • Wang Y, Zhang K, Qin X, et al. Biomimetic nanotherapies: red blood cell based core-shell structured nanocomplexes for atherosclerosis management. Adv Sci (Weinh). 2019; Jun 196(12):1900172. doi:10.1002/advs.201900172.
  • Maglio G, Nese G, Nuzzo M, et al. Synthesis and characterization of star-shaped diblock poly(ε-caprolactone)/poly(ethylene oxide) copolymers. Macromol Rapid Commun. 2004;25(12):1139–1144. doi:10.1002/marc.200400113.
  • Zhang X, Zhong Z, Zhuo R. Amphiphilic linear-hyperbranched block copolymers bearing one poly(ethylene glycol) chain and several linear poly(ε-caprolactone) chains. J Control Release. 2011; Nov 30152 Suppl 1:e118-119–e119. doi:10.1016/j.jconrel.2011.08.162.
  • Liang X, Li H, Zhang A, et al. Red blood cell biomimetic nanoparticle with anti-inflammatory, anti-oxidative and hypolipidemia effect ameliorated atherosclerosis therapy. Nanomedicine. 2022; Apr41:102519. doi:10.1016/j.nano.2022.102519.
  • Hong Y, Lam JW, Tang BZ. Aggregation-induced emission. Chem Soc Rev. 2011; Nov40(11):5361–5388. doi:10.1039/c1cs15113d.
  • Gong J, Han J, Liu Q, et al. An ideal platform of light-emitting materials from phenothiazine: facile preparation, tunable red/NIR fluorescence, bent geometry-promoted AIE behaviour and selective lipid-droplet (LD) tracking ability. J Mater Chem C. 2019; Apr7(14):4185–4190. doi:10.1039/C9TC00143C.
  • Jiang M, Gu X, Lam JWY, et al. Two-photon AIE bio-probe with large stokes shift for specific imaging of lipid droplets. Chem Sci. 2017; Aug 18(8):5440–5446. doi:10.1039/c7sc01400g.
  • Situ B, Gao M, He X, et al. A two-photon AIEgen for simultaneous dual-color imaging of atherosclerotic plaques. Mater Horiz. 2019; Mar6(3):546–553. doi:10.1039/C8MH01293H.
  • Ma B, Xu H, Wang Y, et al. Biomimetic-coated nanoplatform with lipid-specific imaging and ROS responsiveness for atherosclerosis-targeted theranostics. ACS Appl Mater Interfaces. 2021; Aug 413(30):35410–35421. doi:10.1021/acsami.1c08552.
  • Zarrin A, Foroozesh M, Hamidi M. Carrier erythrocytes: recent advances, present status, current trends and future horizons. Expert Opin Drug Deliv. 2014; Mar11(3):433–447. doi:10.1517/17425247.2014.880422.
  • Bourgeaux V, Lanao JM, Bax BE, et al. Drug-loaded erythrocytes: on the road toward marketing approval. Drug Des Devel Ther. 2016;10:665–676. doi:10.2147/DDDT.S96470.
  • Xia Q, Zhang Y, Li Z, et al. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B. 2019; Jul9(4):675–689. doi:10.1016/j.apsb.2019.01.011.
  • Chambers E, Mitragotri S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release. 2004; Nov 5100(1):111–119. doi:10.1016/j.jconrel.2004.08.005.
  • Langer HF, Gawaz M. Platelet-vessel wall interactions in atherosclerotic disease. Thromb Haemost. 2008; Mar99(3):480–486. doi:10.1160/TH07-11-0685.
  • Massberg S, Brand K, Grüner S, et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med. 2002; Oct 7196(7):887–896. doi:10.1084/jem.20012044.
  • Pfenniger A, Chanson M, Kwak BR. Connexins in atherosclerosis. Biochim Biophys Acta. 2013; Jan1828(1):157–166. doi:10.1016/j.bbamem.2012.05.011.
  • Reinhart WH. Platelets in vascular disease. Clin Hemorheol Microcirc. 2013;53(1-2):71–79. doi:10.3233/CH-2012-1577.
  • Grover SP, Bergmeier W, Mackman N. Platelet signaling pathways and new inhibitors. Arterioscler Thromb Vasc Biol. 2018; Apr38(4):e28–e35. doi:10.1161/ATVBAHA.118.310224.
  • von Hundelshausen P, Schmitt MM. Platelets and their chemokines in atherosclerosis-clinical applications. Front Physiol. 2014;5:294. doi:10.3389/fphys.2014.00294.
  • Jackson SP. Arterial thrombosis–insidious, unpredictable and deadly. Nat Med. 2011; Nov 717(11):1423–1436. doi:10.1038/nm.2515.
  • Wei X, Ying M, Dehaini D, et al. Nanoparticle functionalization with platelet membrane enables multifactored biological targeting and detection of atherosclerosis. ACS Nano. 2018; Jan 2312(1):109–116. doi:10.1021/acsnano.7b07720.
  • Song Y, Huang Z, Liu X, et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE(-/-)) mice. Nanomedicine. 2019; Jan15(1):13–24. doi:10.1016/j.nano.2018.08.002.
  • Yin M, Lin J, Yang M, et al. Platelet membrane-cloaked selenium/ginsenoside Rb1 nanosystem as biomimetic reactor for atherosclerosis therapy. Colloids Surf B Biointerfaces. 2022; Jun214:112464. doi:10.1016/j.colsurfb.2022.112464.
  • Schumacher T, Benndorf RA. ABC transport proteins in cardiovascular disease-a brief summary. Molecules. 2017; Apr 622(4):589. doi:10.3390/molecules22040589.
  • Kim M, Sahu A, Kim GB, et al. Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis. J Control Release. 2018; Jan 10269:337–346. doi:10.1016/j.jconrel.2017.11.033.
  • Zhang W, Lv Z, Zhang Y, et al. Targeted diagnosis, therapeutic monitoring, and assessment of atherosclerosis based on mesoporous silica nanoparticles coated with cRGD-platelets. Oxid Med Cell Longev. 2022;2022:6006601–6006619. doi:10.1155/2022/6006601.
  • Garcia-Cardeña G, Comander J, Anderson KR, et al. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci U S A. 2001; Apr 1098(8):4478–4485. doi:10.1073/pnas.071052598.
  • Zhou J, Wang KC, Wu W, et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A. 2011; Jun 21108(25):10355–10360. doi:10.1073/pnas.1107052108.
  • Kona S, Dong JF, Liu Y, et al. Biodegradable nanoparticles mimicking platelet binding as a targeted and controlled drug delivery system. Int J Pharm. 2012; Feb 28423(2):516–524. doi:10.1016/j.ijpharm.2011.11.043.
  • Chen J, López JA. Interactions of platelets with subendothelium and endothelium. Microcirculation. 2005; Apr-May12(3):235–246. doi:10.1080/10739680590925484.
  • Yang H, Song Y, Chen J, et al. Platelet membrane-coated nanoparticles target sclerotic aortic valves in ApoE(-/-) mice by multiple binding mechanisms under pathological shear stress. Int J Nanomed. 2020;15:901–912. doi:10.2147/IJN.S224024.
  • Bahmani B, Gong H, Luk BT, et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat Commun. 2021; Mar 3112(1):1999. doi:10.1038/s41467-021-22311-z.
  • Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018; Sep233(9):6425–6440. doi:10.1002/jcp.26429.
  • Cao H, Dan Z, He X, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano. 2016; Aug 2310(8):7738–7748. doi:10.1021/acsnano.6b03148.
  • Khatoon N, Zhang Z, Zhou C, et al. Macrophage membrane coated nanoparticles: a biomimetic approach for enhanced and targeted delivery. Biomater Sci. 2022; Mar 210(5):1193–1208. doi:10.1039/d1bm01664d.
  • Tang TT, Lv LL, Wang B, et al. Employing macrophage-derived microvesicle for kidney-targeted delivery of dexamethasone: an efficient therapeutic strategy against renal inflammation and fibrosis. Theranostics. 2019;9(16):4740–4755. doi:10.7150/thno.33520.
  • Wang Y, Zhang K, Li T, et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics. 2021;11(1):164–180. doi:10.7150/thno.47841.
  • Gallo G, Pierelli G, Forte M, et al. Role of oxidative stress in the process of vascular remodeling following coronary revascularization. Int J Cardiol. 2018; Oct 1268:27–33. doi:10.1016/j.ijcard.2018.05.046.
  • Luo Y, Duan H, Qian Y, et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 2017; Mar27(3):352–372. doi:10.1038/cr.2017.8.
  • Gao C, Huang Q, Liu C, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun. 2020; May 2611(1):2622. doi:10.1038/s41467-020-16439-7.
  • Wu G, Wei W, Zhang J, et al. A self-driven bioinspired nanovehicle by leukocyte membrane-hitchhiking for early detection and treatment of atherosclerosis. Biomaterials. 2020; Aug250:119963. doi:10.1016/j.biomaterials.2020.119963.
  • Bowden RA, Ding ZM, Donnachie EM, et al. Role of alpha4 integrin and VCAM-1 in CD18-independent neutrophil migration across mouse cardiac endothelium. Circ Res. 2002; Mar 2290(5):562–569. doi:10.1161/01.res.0000013835.53611.97.
  • Veillette A, Chen J. SIRPα-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol. 2018; Mar39(3):173–184. doi:10.1016/j.it.2017.12.005.
  • Li Y, Che J, Chang L, et al. CD47- and integrin α4/β1-Comodified-Macrophage-membrane-coated nanoparticles enable delivery of colchicine to atherosclerotic plaque. Adv Healthc Mater. 2022; Feb11(4):e2101788. doi:10.1002/adhm.202101788.
  • Zhang Q, Dehaini D, Zhang Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol. 2018; Dec13(12):1182–1190. doi:10.1038/s41565-018-0254-4.
  • Jiang ZZ, Geng XR, Su LL, et al. Neutrophil membrane camouflaged nanoprobes for NIR-II fluorescence imaging of inflamed, high-risk atherosclerotic plaques in mouse and rabbit models. Mater Today Chem. 2022; Dec26:101062. doi:10.1016/j.mtchem.2022.101062.
  • Li W, Liu C, Wang S, et al. Neutrophil membrane biomimetic delivery system (Ptdser-NM-Lipo/fer-1) designed for targeting atherosclerosis therapy. IET Nanobiotechnol. 2023; Jun17(4):387–395. doi:10.1049/nbt2.12137.
  • Liu Y, He M, Yuan Y, et al. Neutrophil-membrane-coated biomineralized metal-organic framework nanoparticles for atherosclerosis treatment by targeting gene silencing. ACS Nano. 2023; Apr 2517(8):7721–7732. doi:10.1021/acsnano.3c00288.
  • Karami Z, Mehrzad J, Akrami M, et al. Anti-inflammation-based treatment of atherosclerosis using gliclazide-loaded biomimetic nanoghosts. Sci Rep. 2023; Aug 2413(1):13880. doi:10.1038/s41598-023-41136-y.
  • Randolph GJ. The fate of monocytes in atherosclerosis. J Thromb Haemost. 2009; Jul7 Suppl 1(Suppl 1):28–30. doi:10.1111/j.1538-7836.2009.03423.x.
  • Shen JW, Li C, Yang MY, et al. Biomimetic nanoparticles: u 937 cell membranes based core-shell nanosystems for targeted atherosclerosis therapy. Int J Pharm. 2022; Jan 5611:121297. doi:10.1016/j.ijpharm.2021.121297.
  • Zhao Y, Li A, Jiang L, et al. Hybrid membrane-coated biomimetic nanoparticles (HM@BNPs): a multifunctional nanomaterial for biomedical applications. Biomacromolecules. 2021; Aug 922(8):3149–3167. doi:10.1021/acs.biomac.1c00440.
  • Dehaini D, Wei X, Fang RH, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater. 2017; Apr29(16):1606209. doi:10.1002/adma.201606209.
  • Nording H, Baron L, Langer HF. Platelets as therapeutic targets to prevent atherosclerosis. Atherosclerosis. 2020; Aug307:97–108. doi:10.1016/j.atherosclerosis.2020.05.018.
  • Huang R, Zhang L, Li X, et al. Anti-CXCR2 antibody-coated nanoparticles with an erythrocyte-platelet hybrid membrane layer for atherosclerosis therapy. J Control Release. 2023; Apr356:610–622. doi:10.1016/j.jconrel.2023.02.036.
  • Bäck M, Yurdagul A, Jr., Tabas I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019; Jul16(7):389–406. doi:10.1038/s41569-019-0169-2.
  • Liu B, Wang W, Fan J, et al. RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials. 2019; Oct217:119301. doi:10.1016/j.biomaterials.2019.119301.
  • Zhou H, You P, Liu H, et al. Artemisinin and procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux. J Control Release. 2022; Jan341:828–843. doi:10.1016/j.jconrel.2021.12.021.
  • Jiang Y, Krishnan N, Zhou J, et al. Engineered cell-membrane-coated nanoparticles directly present tumor antigens to promote anticancer immunity. Adv Mater. 2020; Jul32(30):e2001808. doi:10.1002/adma.202001808.
  • Chen Q, Huang G, Wu W, et al. A hybrid eukaryotic-prokaryotic nanoplatform with photothermal modality for enhanced antitumor vaccination. Adv Mater. 2020; Apr32(16):e1908185. doi:10.1002/adma.201908185.
  • Yang W, Guo W, Chang J, et al. Protein/peptide-templated biomimetic synthesis of inorganic nanoparticles for biomedical applications. J Mater Chem B. 2017; Jan 215(3):401–417. doi:10.1039/c6tb02308h.
  • Subramanian C, Kuai R, Zhu Q, et al. Synthetic high-density lipoprotein nanoparticles: a novel therapeutic strategy for adrenocortical carcinomas. Surgery. 2016; Jan159(1):284–294. doi:10.1016/j.surg.2015.08.023.
  • Kuai R, Li D, Chen YE, et al. High-density lipoproteins: nature’s multifunctional nanoparticles. ACS Nano. 2016; Mar 2210(3):3015–3041. doi:10.1021/acsnano.5b07522.
  • Simonsen JB. Evaluation of reconstituted high-density lipoprotein (rHDL) as a drug delivery platform - a detailed survey of rHDL particles ranging from biophysical properties to clinical implications. Nanomed: Nanotechnol Biol Med. 2016; Oct12(7):2161–2179. doi:10.1016/j.nano.2016.05.009.
  • Mutharasan RK, Foit L, Thaxton CS. High-density lipoproteins for therapeutic delivery systems. J Mater Chem B. 2016; Jan 144(2):188–197. doi:10.1039/C5TB01332A.
  • Boden WE. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from framingham to the veterans affairs high–density lipoprotein intervention trial. Am J Cardiol. 2000; Dec 2186(12):19–22. doi:10.1016/S0002-9149(00)01464-8.
  • Fazio S, Pamir N. HDL particle size and functional heterogeneity. Circ Res. 2016; Sep 2119(6):704–707. doi:10.1161/CIRCRESAHA.116.309506.
  • Feig JE, Rong JX, Shamir R, et al. HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc Natl Acad Sci USA. 2011; Apr 26108(17):7166–7171. doi:10.1073/pnas.1016086108.
  • Rothblat GH, Phillips MC. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr Opin Lipidol. 2010; Jun21(3):229–238. doi:10.1097/MOL.0b013e328338472d.
  • Kanwar RK, Chaudhary R, Tsuzuki T, et al. Emerging engineered magnetic nanoparticulate probes for targeted MRI of atherosclerotic plaque macrophages. Nanomedicine (London, England). 2012; May7(5):735–749.). doi:10.2217/nnm.12.46.
  • Sanchez-Gaytan BL, Fay F, Lobatto ME, et al. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjugate Chem. 2015; Mar 1826(3):443–451. doi:10.1021/bc500517k.
  • Badimon JJ, Fuster V, Badimon L. Role of high density lipoproteins in the regression of atherosclerosis. Circulation. 1992; Dec86(6 Suppl)Suppl)::Iii86–94.
  • Sirtori CR, Fumagalli R. LDL-cholesterol lowering or HDL-cholesterol raising for cardiovascular prevention. A lesson from cholesterol turnover studies and others. Atherosclerosis. 2006; May186(1):1–11. doi:10.1016/j.atherosclerosis.2005.10.024.
  • Mo ZC, Ren K, Liu X, et al. A high-density lipoprotein-mediated drug delivery system. Adv Drug Delivery Rev. 2016; Nov 15106(Pt)A)::132–147. doi:10.1016/j.addr.2016.04.030.
  • Duivenvoorden R, Tang J, Cormode DP, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun. 2014;5(1):3065. doi:10.1038/ncomms4065.
  • Liu L, He H, Zhang M, et al. Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions. Biomaterials. 2014; Sep35(27):8002–8014. doi:10.1016/j.biomaterials.2014.05.081.
  • Cao YN, Xu L, Han YC, et al. Recombinant high-density lipoproteins and their use in cardiovascular diseases. Drug Discov Today. 2017; Jan22(1):180–185. doi:10.1016/j.drudis.2016.08.010.
  • Zhang M, He J, Jiang C, et al. Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy. IJN. 2017;ume 12:533–558. doi:10.2147/IJN.S124252.
  • Wang K, Yu C, Liu Y, et al. Enhanced antiatherosclerotic efficacy of statin-loaded reconstituted high-density lipoprotein via ganglioside GM1 modification. ACS Biomater Sci Eng. 2018; Mar 124(3):952–962. doi:10.1021/acsbiomaterials.7b00871.
  • Inokuchi JI, Inamori KI, Kabayama K, et al. Biology of GM3 ganglioside. Prog Mol Biol Transl Sci. 2018;156:151–195.
  • Zheng C, Terreni M, Sollogoub M, et al. Ganglioside GM3 and its role in cancer. Curr Med Chem. 2019;26(16):2933–2947. doi:10.2174/0929867325666180129100619.
  • Kanoh H, Nitta T, Go S, et al. Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity. EMBO J. 2020; Jun 1739(12):e101732. doi:10.15252/embj.2019101732.
  • Rong T, Wei B, Ao M, et al. Enhanced anti-atherosclerotic efficacy of pH-responsively releasable ganglioside GM3 delivered by reconstituted high-density lipoprotein. Int J Mol Sci. 2021; Dec 2022(24):13624. doi:10.3390/ijms222413624.
  • Wei B, Li Y, Ao M, et al. Ganglioside GM3-functionalized reconstituted high-density lipoprotein (GM3-rHDL) as a novel nanocarrier enhances antiatherosclerotic efficacy of statins in ApoE(-/-) C57BL/6 mice. Pharmaceutics. 2022; Nov 2014(11):2534. doi:10.3390/pharmaceutics14112534.
  • Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008; Dec 18132(3):171–183. doi:10.1016/j.jconrel.2008.05.010.
  • Yewale C, Baradia D, Vhora I, et al. Proteins: emerging carrier for delivery of cancer therapeutics. Expert Opin Drug Deliv. 2013; Oct10(10):1429–1448. doi:10.1517/17425247.2013.805200.
  • Gawde KA, Kesharwani P, Sau S, et al. Synthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogue. J Colloid Interface Sci. 2017; Jun 15496:290–299. doi:10.1016/j.jcis.2017.01.092.
  • Kesharwani P, Jain A, Jain A, et al. Cationic bovine serum albumin (CBA) conjugated poly lactic-co-glycolic acid (PLGA) nanoparticles for extended delivery of methotrexate into brain tumors. RSC Adv. 2016;6(92):89040–89050. doi:10.1039/C6RA17290C.
  • Aljabali AAA, Bakshi HA, Hakkim FL, et al. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in Colon cancer via downregulation of nuclear p65 and HIF-1α. Cancers (Basel). 2020; Jan 112(12):113. doi:10.3390/cancers12123587.
  • Arques S. Human serum albumin in cardiovascular diseases. Eur J Intern Med. 2018; Jun52:8–12. doi:10.1016/j.ejim.2018.04.014.
  • Arques S. Serum albumin and cardiovascular disease: does low serum albumin contribute to the emergence and worsening of some cardiovascular diseases? Eur J Intern Med. 2020; Oct80:122–123. doi:10.1016/j.ejim.2020.07.019.
  • Xiao S, Mao L, Xiao J, et al. Selenium nanoparticles inhibit the formation of atherosclerosis in apolipoprotein E deficient mice by alleviating hyperlipidemia and oxidative stress. Eur J Pharmacol. 2021; Jul 5902:174120. doi:10.1016/j.ejphar.2021.174120.
  • Qi J, Huang C, He F, et al. Heat-treated emulsions with cross-linking bovine serum albumin interfacial films and different dextran surfaces: effect of paclitaxel delivery. J Pharm Sci. 2013; Apr102(4):1307–1317. doi:10.1002/jps.23468.
  • Rajasekaran B, Singh A, Benjakul S. Combined effect of chitosan and bovine serum albumin/whey protein isolate on the characteristics and stability of shrimp oil-in-water emulsion. J Food Sci. 2022; Jul87(7):2879–2893. doi:10.1111/1750-3841.16226.
  • Dickinson E. Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Surf B Biointerfaces. 2001; Mar20(3):197–210. doi:10.1016/s0927-7765(00)00204-6.
  • Bamberger D, Hobernik D, Konhäuser M, et al. Surface modification of polysaccharide-based nanoparticles with PEG and dextran and the effects on immune cell binding and stimulatory characteristics. Mol Pharm. 2017; Dec 414(12):4403–4416. doi:10.1021/acs.molpharmaceut.7b00507.
  • Kim MH, Kim B, Lim EK, et al. Magnetic nanoclusters engineered by polymer-controlled self-assembly for the accurate diagnosis of atherosclerotic plaques via magnetic resonance imaging. Macromol Biosci. 2014; Jul14(7):943–952. doi:10.1002/mabi.201400029.
  • Huang J, Xu S, Liu L, et al. Targeted treatment of atherosclerosis with protein-polysaccharide nanoemulsion co-loaded with photosensitiser and upconversion nanoparticles. J Drug Target. 2023; Dec31(10):1111–1127. doi:10.1080/1061186X.2023.2284093.
  • Chen Y, Wang J, Xu J, et al. Fabrication of a polysaccharide-protein/protein complex stabilized oral nanoemulsion to facilitate the therapeutic effects of 1,8-cineole on atherosclerosis. ACS Nano. 2023; May 2317(10):9090–9109. doi:10.1021/acsnano.2c12230.
  • Zhang Q, Jeppesen DK, Higginbotham JN, et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat Cell Biol. 2021; Dec23(12):1240–1254. doi:10.1038/s41556-021-00805-8.
  • Liu Q, Piao H, Wang Y, et al. Circulating exosomes in cardiovascular disease: novel carriers of biological information. Biomed Pharmacother. 2021; Mar135:111148. doi:10.1016/j.biopha.2020.111148.
  • Pluchino S, Smith JA. Explicating exosomes: reclassifying the rising stars of intercellular communication. Cell. 2019; Apr 4177(2):225–227. doi:10.1016/j.cell.2019.03.020.
  • Huang C, Neupane YR, Lim XC, et al. Extracellular vesicles in cardiovascular disease. Adv Clin Chem. 2021;103:47–95.
  • Ye C, Zheng F, Wu N, et al. Extracellular vesicles in vascular remodeling. Acta Pharmacol Sin. 2022; Sep43(9):2191–2201. doi:10.1038/s41401-021-00846-7.
  • Gao H, Yu Z, Li Y, et al. MiR-100-5p in human umbilical cord mesenchymal stem cell-derived exosomes mediates eosinophilic inflammation to alleviate atherosclerosis via the FZD5/wnt/β-catenin pathway. Acta Biochim Biophys Sin (Shanghai). 2021; Aug 3153(9):1166–1176. doi:10.1093/abbs/gmab093.
  • Heo J, Kang H. Exosome-based treatment for atherosclerosis. Int J Mol Sci. 2022; Jan 1723(2):1002. doi:10.3390/ijms23021002.
  • Xing X, Li Z, Yang X, et al. Adipose-derived mesenchymal stem cells-derived exosome-mediated microRNA-342-5p protects endothelial cells against atherosclerosis. Aging (Albany NY). 2020; Feb 2412(4):3880–3898. doi:10.18632/aging.102857.
  • Chen S, Zhou H, Zhang B, et al. Exosomal miR-512-3p derived from mesenchymal stem cells inhibits oxidized low-density lipoprotein-induced vascular endothelial cells dysfunction via regulating Keap1. J Biochem Mol Toxicol. 2021; Jun35(6):1–11. doi:10.1002/jbt.22767.
  • Li J, Xue H, Li T, et al. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE(-/-) mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun. 2019; Mar 19510(4):565–572. doi:10.1016/j.bbrc.2019.02.005.
  • Yang W, Yin R, Zhu X, et al. Mesenchymal stem-cell-derived exosomal miR-145 inhibits atherosclerosis by targeting JAM-A. Mol Ther Nucleic Acids. 2021; Mar 523:119–131. doi:10.1016/j.omtn.2020.10.037.
  • Ma J, Chen L, Zhu X, et al. Mesenchymal stem cell-derived exosomal miR-21a-5p promotes M2 macrophage polarization and reduces macrophage infiltration to attenuate atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 2021; Aug 3153(9):1227–1236. doi:10.1093/abbs/gmab102.
  • Yu C, Tang W, Lu R, et al. Human adipose-derived mesenchymal stem cells promote lymphocyte apoptosis and alleviate atherosclerosis via miR-125b-1-3p/BCL11B signal axis. Ann Palliat Med. 2021; Feb10(2):2123–2133. doi:10.21037/apm-21-49.
  • Bouchareychas L, Duong P, Covarrubias S, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo. Cell Rep. 2020; Jul 1432(2):107881. doi:10.1016/j.celrep.2020.107881.
  • Wu G, Zhang J, Zhao Q, et al. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment. Angew Chem Int Ed Engl. 2020; Mar 259(10):4068–4074. doi:10.1002/anie.201913700.
  • Yao Y, Sun W, Sun Q, et al. Platelet-derived exosomal microRNA-25-3p inhibits coronary vascular endothelial cell inflammation through adam10 via the NF-κB signaling pathway in ApoE(-/-) mice. Front Immunol. 2019;10:2205. doi:10.3389/fimmu.2019.02205.
  • Bu T, Li Z, Hou Y, et al. Exosome-mediated delivery of inflammation-responsive Il-10 mRNA for controlled atherosclerosis treatment. Theranostics. 2021;11(20):9988–10000. doi:10.7150/thno.64229.
  • Lin B, Xie W, Zeng C, et al. Transfer of exosomal microRNA-203-3p from dendritic cells to bone marrow-derived macrophages reduces development of atherosclerosis by downregulating ctss in mice. Aging (Albany NY). 2021; Jun 213(11):15638–15658. doi:10.18632/aging.103842.
  • Shi C, Ulke-Lemée A, Deng J, et al. Characterization of heat shock protein 27 in extracellular vesicles: a potential anti-inflammatory therapy. FASEB J. 2019; Feb33(2):1617–1630. doi:10.1096/fj.201800987R.
  • Li J, Tan M, Xiang Q, et al. Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thromb Res. 2017; Jun154:96–105. doi:10.1016/j.thromres.2017.04.016.
  • Słomka A, Urban SK, Lukacs-Kornek V, et al. Large extracellular vesicles: have we found the holy grail of inflammation? Front Immunol. 2018;9:2723. doi:10.3389/fimmu.2018.02723.
  • Zhang YG, Song Y, Guo XL, et al. Exosomes derived from oxLDL-stimulated macrophages induce neutrophil extracellular traps to drive atherosclerosis. Cell Cycle. 2019; Oct18(20):2674–2684. doi:10.1080/15384101.2019.1654797.
  • Rahman K, Vengrenyuk Y, Ramsey SA, et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J Clin Invest. 2017; Aug 1127(8):2904–2915. doi:10.1172/JCI75005.
  • Fujino M, Nishio Y, Ito H, et al. 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction. Int Immunopharmacol. 2016; Aug37:71–78. doi:10.1016/j.intimp.2015.11.034.
  • Wang C, Xu M, Fan Q, et al. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci. 2023; Jan18(1):100772. doi:10.1016/j.ajps.2022.100772.
  • Stanley S. Biological nanoparticles and their influence on organisms. Curr Opin Biotechnol. 2014; Aug28:69–74. doi:10.1016/j.copbio.2013.11.014.
  • Beh CY, Prajnamitra RP, Chen LL, et al. Advances in biomimetic nanoparticles for targeted cancer therapy and diagnosis. Molecules. 2021; Aug 2026(16):5052. doi:10.3390/molecules26165052.
  • Volpe S, Cameroni E, Moepps B, et al. CCR2 acts as scavenger for CCL2 during monocyte chemotaxis. PLoS One. 2012;7(5):e37208. doi:10.1371/journal.pone.0037208.
  • Chen B, Guan D, Cui ZJ, et al. Thioredoxin 1 downregulates MCP-1 secretion and expression in human endothelial cells by suppressing nuclear translocation of activator protein 1 and redox factor-1. Am J Physiol Cell Physiol. 2010; May298(5):C1170–1179. doi:10.1152/ajpcell.00223.2009.
  • Yin L, Peng C, Tang Y, et al. Biomimetic oral targeted delivery of bindarit for immunotherapy of atherosclerosis. Biomater Sci. 2020; Jul 78(13):3640–3648. doi:10.1039/d0bm00418a.
  • de Vries MR, Quax PH. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr Opin Lipidol. 2016; Oct27(5):499–506. doi:10.1097/MOL.0000000000000339.
  • Yang L, Zang G, Li J, et al. Cell-derived biomimetic nanoparticles as a novel drug delivery system for atherosclerosis: predecessors and perspectives. Regen Biomater. 2020; Aug7(4):349–358. doi:10.1093/rb/rbaa019.
  • Tang D, Wang Y, Wijaya A, et al. ROS-responsive biomimetic nanoparticles for potential application in targeted anti-atherosclerosis. Regen Biomater. 2021; Aug8(4):rbab033. doi:10.1093/rb/rbab033.
  • Chan YH, Ramji DP. Atherosclerosis: pathogenesis and key cellular processes, current and emerging therapies, key challenges, and future research directions. Methods Mol Biol (Clifton, NJ). 2022;2419:3–19.
  • Björkegren JLM, Lusis AJ. Atherosclerosis: recent developments. Cell. 2022; May 12185(10):1630–1645. doi:10.1016/j.cell.2022.04.004.
  • Martínez-López AL, Pangua C, Reboredo C, et al. Protein-based nanoparticles for drug delivery purposes. Int J Pharm. 2020; May 15581:119289. doi:10.1016/j.ijpharm.2020.119289.
  • Karimi M, Bahrami S, Ravari SB, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016; Nov13(11):1609–1623. doi:10.1080/17425247.2016.1193149.
  • Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov. 2022; May21(5):379–399. doi:10.1038/s41573-022-00410-w.
  • Lei F, Li P, Chen T, et al. Recent advances in curcumin-loaded biomimetic nanomedicines for targeted therapies. J Drug Deliv Sci Technol. 2023; Feb80:104200. doi:10.1016/j.jddst.2023.104200.
  • Li C, Zheng X, Hu M, et al. Recent progress in therapeutic strategies and biomimetic nanomedicines for rheumatoid arthritis treatment. Expert Opin Drug Deliv. 2022; Aug19(8):883–898. doi:10.1080/17425247.2022.2094364.
  • Jia M, Ren W, Liu Y, et al. Messenger nanozyme for reprogramming the microenvironment of rheumatoid arthritis. ACS Appl Mater Interfaces. 2023; Jan 1115(1):338–353. doi:10.1021/acsami.2c16458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.