49
Views
0
CrossRef citations to date
0
Altmetric
Review Article

An extensive review on lung cancer therapeutics using machine learning techniques: state-of-the-art and perspectives

ORCID Icon & ORCID Icon
Received 10 Feb 2024, Accepted 18 Apr 2024, Published online: 06 May 2024

References

  • Ahmad S, Raza K. Identification of 5-nitroindazole as a multitargeted inhibitor for CDK and transferase kinase in lung cancer: a multisampling algorithm-based structural study. Mol Divers. 2023:1–14. doi: 10.1007/s11030-023-10648-0.
  • Ahmad S, Singh V, Gautam HK, et al. Multisampling-based docking reveals imidazolidinyl urea as a multitargeted inhibitor for lung cancer: an optimisation followed multi-simulation and in-vitro study. J Biomol Struct Dyn. 2023;42(5):2494–2511. doi: 10.1080/07391102.2023.2209673.
  • Qureshi R, Basit SA, Shamsi JA, et al. Machine learning based personalized drug response prediction for lung cancer patients. Sci Rep. 2022;12(1):18935. doi: 10.1038/s41598-022-23649-0.
  • Sharma R. Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050. Int J Clin Oncol. 2022;27(4):665–675. doi: 10.1007/s10147-021-02108-2.
  • Blandin Knight S, Crosbie PA, Balata H, et al. Progress and prospects of early detection in lung cancer. Open Biol. 2017;7(9):170070. doi: 10.1098/rsob.170070.
  • Nasser IM, Abu-Naser SS. Lung cancer detection using artificial neural network. Int J Eng Inform Syst (IJEAIS). 2019;3(3):17–23.
  • Vargas AJ, Harris CC. Biomarker development in the precision medicine era: lung cancer as a case study. Nat Rev Cancer. 2016;16(8):525–537. doi: 10.1038/nrc.2016.56.
  • Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res. 2006;23(7):1417–1450. doi: 10.1007/s11095-006-0284-8.
  • Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V. Advances in computational methods to predict the biological activity of compounds. Expert Opin Drug Discov. 2010;5(7):633–654. doi: 10.1517/17460441.2010.492827.
  • Zhang S, Bamakan SMH, Qu Q, et al. Learning for personalized medicine: a comprehensive review from a deep learning perspective. IEEE Rev Biomed Eng. 2019;12:194–208. doi: 10.1109/RBME.2018.2864254.
  • Hassan M, Awan FM, Naz A, et al. Innovations in genomics and big data analytics for personalized medicine and health care: a review. Int J Mol Sci. 2022;23(9):4645. doi: 10.3390/ijms23094645.
  • Canese K, Weis S. PubMed: the bibliographic database. The NCBI Handbook. 2013;2(1).
  • Boyle F, Sherman D. Scopus™: the product and its development. Ser Libr. 2006;49(3):147–153. doi: 10.1300/J123v49n03_12.
  • Huang S-H, Chu C-Y, Hsu Y-C, et al. How platinum-induced nephrotoxicity occurs? Machine learning prediction in non-small cell lung cancer patients. Comput Methods Programs Biomed. 2022;221:106839. doi: 10.1016/j.cmpb.2022.106839.
  • Borisov N, Tkachev V, Suntsova M, et al. A method of gene expression data transfer from cell lines to cancer patients for machine-learning prediction of drug efficiency. Cell Cycle. 2018;17(4):486–491. doi: 10.1080/15384101.2017.1417706.
  • Gao Y, Lyu Q, Luo P, et al. Applications of machine learning to predict cisplatin resistance in lung cancer. IJGM. 2021;ume 14:5911–5925. doi: 10.2147/IJGM.S329644.
  • Huo L, Tang Y. Multi-Objective deep reinforcement learning for personalized dose optimization based on multi-Indicator experience replay. Appl Sci. 2022;13(1):325. doi: 10.3390/app13010325.
  • Zhi H-Y, Zhao L, Lee C-C, et al. A novel graph neural network methodology to investigate dihydroorotate dehydrogenase inhibitors in small cell lung cancer. Biomolecules. 2021;11(3):477. doi: 10.3390/biom11030477.
  • Budak C, Mençik V, Gider V. Determining similarities of COVID-19–lung cancer drugs and affinity binding mode analysis by graph neural network-based GEFA method. J Biomol Struct Dyn. 2023;41(2):659–671. doi: 10.1080/07391102.2021.2010601.
  • Srisongkram T, Weerapreeyakul N. Drug repurposing against KRAS mutant G12C: a machine learning, molecular docking, and molecular dynamics study. Int J Mol Sci. 2022;24(1):669. doi: 10.3390/ijms24010669.
  • Yadav MK, Ahmad S, Raza K, et al. Predictive modeling and therapeutic repurposing of natural compounds against the receptor-binding domain of SARS-CoV-2. J Biomol Struct Dyn. 2023;41(5):1527–1539. doi: 10.1080/07391102.2021.2021993.
  • Nakarin F, Boonpalit K, Kinchagawat J, et al. Assisting multitargeted ligand affinity prediction of receptor tyrosine kinases associated nonsmall cell lung cancer treatment with multitasking principal neighborhood aggregation. Molecules. 2022;27(4):1226. doi: 10.3390/molecules27041226.
  • Maiti P, Sharma P, Nand M, et al. Integrated machine learning and chemoinformatics-based screening of mycotic compounds against kinesin spindle ProteinEg5 for lung cancer therapy. Molecules. 2022;27(5):1639. doi: 10.3390/molecules27051639.
  • Ramesh P, Karuppasamy R, Veerappapillai S. Machine learning driven drug repurposing strategy for identification of potential RET inhibitors against non-small cell lung cancer. Med Oncol. 2022;40(1):56. doi: 10.1007/s12032-022-01924-4.
  • Huang C-H, Chang PM-H, Hsu C-W, Huang C-YF, Ng K-L, editors. Drug repositioning for non-small cell lung cancer by using machine learning algorithms and topological graph theory. In: BMC bioinformatics. bioMed Central; 2016. doi: 10.1186/s12859-015-0845-0.
  • Robichaux JP, Le X, Vijayan RSK, et al. Structure-based classification predicts drug response in EGFR-mutant NSCLC. Nature. 2021;597(7878):732–737. doi: 10.1038/s41586-021-03898-1.
  • Kurilov R, Haibe-Kains B, Brors B. Assessment of modelling strategies for drug response prediction in cell lines and xenografts. Sci Rep. 2020;10(1):2849. doi: 10.1038/s41598-020-59656-2.
  • Choudhary R, Walhekar V, Muthal A, et al. Machine learning facilitated structural activity relationship approach for the discovery of novel inhibitors targeting EGFR. J Biomol Struct Dyn. 2023;41(22):12445–12463. doi: 10.1080/07391102.2023.2175263.
  • Zheng A, Yang H, Pan X, et al. Identification of multi-class drugs based on near infrared spectroscopy and bidirectional generative adversarial networks. Sensors. 2021;21(4):1088. doi: 10.3390/s21041088.
  • Qian Y, Ni W, Xianyu X, et al. DoubleSG-DTA: deep learning for drug discovery: case study on the non-Small cell lung cancer with EGFR T 790 M mutation. Pharmaceutics. 2023;15(2):675. doi: 10.3390/pharmaceutics15020675.
  • Li B, Dai C, Wang L, et al. A novel drug repurposing approach for non-small cell lung cancer using deep learning. PLoS One. 2020;15(6):e0233112. doi: 10.1371/journal.pone.0233112.
  • Aliper A, Plis S, Artemov A, et al. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016;13(7):2524–2530. doi: 10.1021/acs.molpharmaceut.6b00248.
  • Zhang Q, Yang LT, Chen Z, et al. A survey on deep learning for big data. Inf Fusion. 2018;42:146–157. doi: 10.1016/j.inffus.2017.10.006.
  • Kong J, Lee H, Kim D, et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun. 2020;11(1):5485. doi: 10.1038/s41467-020-19313-8.
  • Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 2010;50(5):742–754. doi: 10.1021/ci100050t.
  • Rifaioğlu AS. Deep learning for prediction of drug-target interaction space and protein functions. Middle East Technical University; 2020. Available from: https://etd.lib.metu.edu.tr/upload/12625490/index.pdf
  • Si Y, Du J, Li Z, et al. Deep representation learning of patient data from Electronic Health Records (EHR): a systematic review. J Biomed Inform. 2021;115:103671.
  • Fallahi Rahmat Abadi A, Mohammadzadeh J. Leveraging deep learning techniques on collaborative filtering recommender systems. J Appl Res Ind Eng. 1999;10(4):615–636. doi: 10.22105/jarie.2021.275620.1264
  • Wang Y, Li Z, Barati Farimani A. Graph neural networks for molecules. In: Qu C, Liu H, editors. Machine Learning in Molecular Sciences. Challenges and Advances in Computational Chemistry and Physics. Vol. 36. Springer, Cham; 2023. doi: 10.1007/978-3-031-37196-7_2
  • Prykhodko O, Johansson SV, Kotsias P-C, et al. A de novo molecular generation method using latent vector based generative adversarial network. J Cheminform. 2019;11(1):74. doi: 10.1186/s13321-019-0397-9.
  • Saldívar-González FI, Medina-Franco JL. Approaches for enhancing the analysis of chemical space for drug discovery. Expert Opin Drug Discov. 2022;17(7):789–798. doi: 10.1080/17460441.2022.2084608.
  • Mokaya M, Imrie F, van Hoorn WP, et al. Testing the limits of SMILES-based de novo molecular generation with curriculum and deep reinforcement learning. Nat Mach Intell. 2023;5(4):386–394.
  • Tan Y, Dai L, Huang W, et al. DRlinker: deep reinforcement learning for optimization in fragment linking design. J Chem Inf Model. 2022;62(23):5907–5917. doi: 10.1021/acs.jcim.2c00982.
  • Zheng S, Lei Z, Ai H, et al. Deep scaffold hopping with multimodal transformer neural networks. J Cheminform. 2021;13(1):87. doi: 10.1186/s13321-021-00565-5.
  • Lee S, Byun H, Cheon M, et al. Machine learning-based discovery of molecules, crystals, and composites: a perspective review. Korean J Chem Eng. 2021;38(10):1971–1982. doi: 10.1007/s11814-021-0869-2.
  • Tong X, Liu X, Tan X, et al. Generative models for De novo drug design. J Med Chem. 2021;64(19):14011–14027. doi: 10.1021/acs.jmedchem.1c00927.
  • Sridharan B, Goel M, Priyakumar UD. Modern machine learning for tackling inverse problems in chemistry: molecular design to realization. Chem Commun (Camb). 2022;58(35):5316–5331. doi: 10.1039/d1cc07035e.
  • Wang M, Wang Z, Sun H, et al. Deep learning approaches for de novo drug design: an overview. Curr Opin Struct Biol. 2022;72:135–144. doi: 10.1016/j.sbi.2021.10.001.
  • Shah AA, Ahmad S, Yadav MK, et al. Structure-based virtual screening, molecular docking, molecular dynamics simulation, and metabolic reactivity studies of quinazoline derivatives for their anti-EGFR activity against tumor angiogenesis. Curr Med Chem. 2024;31(5):595–619. doi: 10.2174/0929867330666230309143711.
  • Raschka S, Kaufman B. Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition. Methods. 2020;180:89–110. doi: 10.1016/j.ymeth.2020.06.016.
  • Gentile F, Yaacoub JC, Gleave J, et al. Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking. Nat Protoc. 2022;17(3):672–697. doi: 10.1038/s41596-021-00659-2.
  • Zhang J, Chen D, Xia Y, et al. Artificial intelligence enhanced molecular simulations. J Chem Theory Comput. 2023;19(14):4338–4350. doi: 10.1021/acs.jctc.3c00214.
  • Zhang J, Chen D, Xia Y, et al. Artificial intelligence enhanced molecular simulations. J ChemTheory Comput. 2023;19(14):4338–4350.
  • Wang Y, Ribeiro JML, Tiwary P. Machine learning approaches for analyzing and enhancing molecular dynamics simulations. Curr Opin Struct Biol. 2020;61:139–145. doi: 10.1016/j.sbi.2019.12.016.
  • Kimber TB, Chen Y, Volkamer A. Deep learning in virtual screening: recent applications and developments. Int J Mol Sci. 2021;22(9):4435. doi: 10.3390/ijms22094435.
  • Melville JL, Burke EK, Hirst JD. Machine learning in virtual screening. Comb Chem High Throughput Screen. 2009;12(4):332–343. doi: 10.2174/138620709788167980.
  • Hussain W, Rasool N, Khan YD. Insights into machine learning-based approaches for virtual screening in drug discovery: existing strategies and streamlining through FP-CADD. Curr Drug Discov Technol. 2021;18(4):463–472. doi: 10.2174/1570163817666200806165934.
  • Adeshina YO, Deeds EJ, Karanicolas J. Machine learning classification can reduce false positives in structure-based virtual screening. Proc Natl Acad Sci U S A. 2020;117(31):18477–18488. doi: 10.1073/pnas.2000585117.
  • Ain QU, Aleksandrova A, Roessler FD, et al. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip Rev Comput Mol Sci. 2015;5(6):405–424. doi: 10.1002/wcms.1225.
  • Hosny A, Parmar C, Coroller TP, et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med. 2018;15(11):e1002711. doi: 10.1371/journal.pmed.1002711.
  • Gertrudes JC, Maltarollo VG, Silva R, et al. Machine learning techniques and drug design. Curr Med Chem. 2012;19(25):4289–4297. doi: 10.2174/092986712802884259.
  • Qureshi R, Zou B, Alam T, et al. Computational methods for the analysis and prediction of egfr-mutated lung cancer drug resistance: recent advances in drug design, challenges and future prospects. IEEE/ACM Trans Comput Biol Bioinform. 2023;20(1):238–255. doi: 10.1109/TCBB.2022.3141697.
  • Ekins S, Puhl AC, Zorn KM, et al. Exploiting machine learning for end-to-end drug discovery and development. Nat Mater. 2019;18(5):435–441. doi: 10.1038/s41563-019-0338-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.