164
Views
0
CrossRef citations to date
0
Altmetric
Review Article

pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery

, , , &
Received 07 Oct 2023, Accepted 23 Apr 2024, Published online: 09 May 2024

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30. doi: 10.3322/caac.21332.
  • Zaimy MA, Saffarzadeh N, Mohammadi A, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017;24(6):233–243. doi: 10.1038/cgt.2017.16.
  • Sambrani R, Abdolalizadeh J, Kohan L, et al. Recent advances in the application of probiotic yeasts, particularly saccharomyces, as an adjuvant therapy in the management of cancer with focus on colorectal cancer. Mol Biol Rep. 2021;48(1):951–960. doi: 10.1007/s11033-020-06110-1.
  • Alshememry AK, El-Tokhy SS, Unsworth LD. Using properties of tumor microenvironments for controlling local, on-demand delivery from biopolymer-based nanocarriers. Curr Pharm Des. 2017;23(35):5358–5391. doi: 10.2174/1381612823666170522100545.
  • Kopeckova K, Eckschlager T, Sirc J, et al. Nanodrugs used in cancer therapy. Biomed Pap. 2019;163(2):122–131. doi: 10.5507/bp.2019.010.
  • Pantshwa JM, Kondiah PPD, Choonara YE, et al. Nanodrug delivery systems for the treatment of ovarian cancer. Cancers. 2020;12(1):213. doi: 10.3390/cancers12010213.
  • Ho BN, Pfeffer CM, Singh ATK. Update on nanotechnology-based drug delivery systems in cancer treatment. Anticancer Res. 2017;37(11):5975–5981. doi: 10.21873/anticanres.12044.
  • Hoshyar N, Gray S, Han H, et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6):673–692. doi: 10.2217/nnm.16.5.
  • Mukherjee A, Waters AK, Kalyan P, et al. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomedicine. 2019;14:1937–1952. doi: 10.2147/IJN.S198353.
  • Salatin S, Barar J, Barzegar-Jalali M, et al. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch Pharm Res. 2016;39(9):1181–1192. doi: 10.1007/s12272-016-0782-0.
  • Yang YQ, Zhao B, Li ZD, et al. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(epsilon-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery. Acta Biomater. 2013;9(8):7679–7690. doi: 10.1016/j.actbio.2013.05.006.
  • Surnar B, Jayakannan M. Structural engineering of biodegradable PCL block copolymer nanoassemblies for enzyme-controlled drug delivery in cancer cells. ACS Biomater Sci Eng. 2016;2(11):1926–1941. doi: 10.1021/acsbiomaterials.6b00310.
  • Wang F, Li C, Cheng J, et al. Recent advances on inorganic nanoparticle-based cancer therapeutic agents. Int J Environ Res Public Health. 2016;13(12):1182.
  • Amreddy N, Babu A, Muralidharan R, et al. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res. 2018;137:115–170.
  • Li J, Zhao J, Tan T, et al. Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: a comprehensive review. Int J Nanomedicine. 2020;15:2563–2582. doi: 10.2147/IJN.S243223.
  • Khodaei T, Inamdar S, Suresh AP, et al. Drug delivery for metabolism targeted cancer immunotherapy. Adv Drug Deliv Rev. 2022;184:114242. doi: 10.1016/j.addr.2022.114242.
  • Xu C, Wang Y, Yu H, et al. Multifunctional theranostic nanoparticles derived from fruit-extracted anthocyanins with dynamic disassembly and elimination abilities. ACS Nano. 2018;12(8):8255–8265. doi: 10.1021/acsnano.8b03525.
  • Kang H, Rho S, Stiles WR, et al. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv Healthc Mater. 2020;9(1):e1901223. doi: 10.1002/adhm.201901223.
  • Li D, Zhang R, Liu G, et al. Redox-responsive self-assembled nanoparticles for cancer therapy. Adv Healthc Mater. 2020;9(20):e2000605. doi: 10.1002/adhm.202000605.
  • Hakeem A, Zahid F, Zhan G, et al. Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release. Int J Nanomedicine. 2018;13:1029–1040. doi: 10.2147/IJN.S146955.
  • Han SS, Li ZY, Zhu JY, et al. Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery. Small. 2015;11(21):2543–2554. doi: 10.1002/smll.201402865.
  • Zhao D, Li B, Han J, et al. PH responsive polypeptide based polymeric micelles for anticancer drug delivery. J Biomed Mater Res A. 2015;103(9):3045–3053. doi: 10.1002/jbm.a.35434.
  • Pan J, Cui Z. Self-assembled nanoparticles: exciting platforms for vaccination. Biotechnol J. 2020;15(12):e2000087. doi: 10.1002/biot.202000087.
  • Zheng K, Liu X, Liu H, et al. Novel pH-triggered doxorubicin-releasing nanoparticles self-assembled by functionalized beta-cyclodextrin and amphiphilic phthalocyanine for anticancer therapy. ACS Appl Mater Interfaces. 2021;13(9):10674–10688. doi: 10.1021/acsami.0c19027.
  • Varma LT, Singh N, Gorain B, et al. Recent advances in self-assembled nanoparticles for drug delivery. Curr Drug Deliv. 2020;17(4):279–291. doi: 10.2174/1567201817666200210122340.
  • Dutta D, Ke W, Xi L, et al. Block copolymer prodrugs: synthesis, self-assembly, and applications for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(1):e1585.
  • Li G, Sun B, Li Y, et al. Small-molecule prodrug nanoassemblies: an emerging nanoplatform for anticancer drug delivery. Small. 2021;17(52):e2101460. doi: 10.1002/smll.202101460.
  • Jangid AK, Pooja D, Jain P, et al. Self-assembled and pH-responsive polymeric nanomicelles impart effective delivery of paclitaxel to cancer cells. RSC Adv. 2021;11(23):13928–13939. doi: 10.1039/d1ra01574e.
  • Kundu M, Majumder R, Das CK, et al. Natural products based nanoformulations for cancer treatment: current evolution in Indian research. Biomed Mater. 2021;16(4):044101. doi: 10.1088/1748-605X/abe8f2.
  • Wang Y, Sun S, Zhang Z, et al. Nanomaterials for cancer precision medicine. Adv Mater. 2018;30(17):e1705660.
  • Wang D, Jiang W. Preparation of chitosan-based nanoparticles for enzyme immobilization. Int J Biol Macromol. 2019;126:1125–1132. doi: 10.1016/j.ijbiomac.2018.12.243.
  • Duong VA, Nguyen TT, Maeng HJ. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules. 2020;25(20):4781. doi: 10.3390/molecules25204781.
  • Zoqlam R, Morris CJ, Akbar M, et al. Evaluation of the benefits of microfluidic-assisted preparation of polymeric nanoparticles for DNA delivery. Mater Sci Eng C Mater Biol Appl. 2021;127:112243. doi: 10.1016/j.msec.2021.112243.
  • Fallacara AL, Mancini A, Zamperini C, et al. Pyrazolo[3,4-d]pyrimidines-loaded human serum albumin (HSA) nanoparticles: preparation, characterization and cytotoxicity evaluation against neuroblastoma cell line. Bioorg Med Chem Lett. 2017;27(14):3196–3200. doi: 10.1016/j.bmcl.2017.05.015.
  • Ekiz MS, Cinar G, Khalily MA, et al. Self-assembled peptide nanostructures for functional materials. Nanotechnology. 2016;27(40):402002. doi: 10.1088/0957-4484/27/40/402002.
  • Mendes AC, Baran ET, Reis RL, et al. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(6):582–612. doi: 10.1002/wnan.1238.
  • Larson N, Greish K, Bauer H, et al. Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin. Int J Pharm. 2011;420(1):111–117. doi: 10.1016/j.ijpharm.2011.08.011.
  • Shi J, Xiao Z, Kamaly N, et al. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res. 2011;44(10):1123–1134. doi: 10.1021/ar200054n.
  • Zhou Y, Li Q, Wu Y, et al. Molecularly stimuli-responsive self-assembled peptide nanoparticles for targeted imaging and therapy. ACS Nano. 2023;17(9):8004–8025. doi: 10.1021/acsnano.3c01452.
  • Qiao L, Yang H, Gao S, et al. Research progress on self-assembled nanodrug delivery systems. J Mater Chem B. 2022;10(12):1908–1922. doi: 10.1039/d1tb02470a.
  • Zhang S, Pelligra CI, Feng X, et al. Directed assembly of hybrid nanomaterials and nanocomposites. Adv Mater. 2018;30(18):e1705794. doi: 10.1002/adma.201705794.
  • Yadav S, Sharma AK, Kumar P. Nanoscale self-assembly for therapeutic delivery. Front Bioeng Biotechnol. 2020;8:127. doi: 10.3389/fbioe.2020.00127.
  • Zhang Y, Jiang Q, Liu X, et al. A study of hydrophobically modified pullulan nanoparticles with different hydrophobic densities on the effect of anti-colon cancer cell efficiency. J Biomed Nanotechnol. 2021;17(10):1972–1983. doi: 10.1166/jbn.2021.3173.
  • Sha L, Wang D, Mao Y, et al. Hydrophobic interaction mediated coating of pluronics on mesoporous silica nanoparticle with stimuli responsiveness for cancer therapy. Nanotechnology. 2018;29(34):345101. doi: 10.1088/1361-6528/aac6b1.
  • Jang JD, Bae M, Do C, et al. Self-Assembly of 2D gold nanoparticle superlattice in a polymer vesicle layer driven by hydrophobic interaction. J Phys Chem Lett. 2021;12(28):6736–6743. doi: 10.1021/acs.jpclett.1c01684.
  • Derrien TL, Zhang M, Dorion PO, et al. Assembly dynamics of plasmonic DNA-capped gold nanoparticle monolayers. Langmuir. 2018;34(49):14711–14720. doi: 10.1021/acs.langmuir.8b00484.
  • Meng D, Zhang L, Wang Q, et al. Self-assembly of phycoerythrin with oligochitosan by electrostatic interaction for stabilization of phycoerythrin. J Agric Food Chem. 2021;69(43):12818–12827. doi: 10.1021/acs.jafc.1c05205.
  • Sahoo JK, VandenBerg MA, Ruiz Bello EE, et al. Electrostatic-driven self-sorting and nanostructure speciation in self-assembling tetrapeptides. Nanoscale. 2019;11(35):16534–16543. doi: 10.1039/c9nr03440d.
  • Nagy PI. Competing intramolecular vs. intermolecular hydrogen bonds in solution. Int J Mol Sci. 2014;15(11):19562–19633. doi: 10.3390/ijms151119562.
  • Chen Y, Wang J, Rao Z, et al. Study on the stability and oral bioavailability of curcumin loaded (−)-epigallocatechin-3-gallate/poly(N-vinylpyrrolidone) nanoparticles based on hydrogen bonding-driven self-assembly. Food Chem. 2022;378:132091. doi: 10.1016/j.foodchem.2022.132091.
  • Le Z, Chen Y, Han H, et al. Hydrogen-bonded tannic acid-based anticancer nanoparticle for enhancement of oral chemotherapy. ACS Appl Mater Interfaces. 2018;10(49):42186–42197. doi: 10.1021/acsami.8b18979.
  • Chen S, Sun C, Wang Y, et al. Quercetagetin-loaded composite nanoparticles based on zein and hyaluronic acid: formation, characterization, and physicochemical stability. J Agric Food Chem. 2018;66(28):7441–7450. doi: 10.1021/acs.jafc.8b01046.
  • Wang T, Meng Q, Lin L, et al. Self-assembled dehydropeptide nanocarrier as a delivery system for antitumor drug temozolomide. Bioorg Chem. 2022;124:105842. doi: 10.1016/j.bioorg.2022.105842.
  • Bishop KJ, Wilmer CE, Soh S, et al. Nanoscale forces and their uses in self-assembly. Small. 2009;5(14):1600–1630. doi: 10.1002/smll.200900358.
  • Jiang Y, Chen Y, Tian D, et al. Fabrication and characterization of lignin-xylan hybrid nanospheres as pesticide carriers with enzyme-mediated release property. Soft Matter. 2020;16(39):9083–9093. doi: 10.1039/d0sm01402h.
  • Kang W, Ji Y, Cheng Y. Van der Waals force-driven indomethacin-ss-paclitaxel nanodrugs for reversing multidrug resistance and enhancing NSCLC therapy. Int J Pharm. 2021;603:120691. doi: 10.1016/j.ijpharm.2021.120691.
  • Li Y, Yang L. Driving forces for drug loading in drug carriers. J Microencapsul. 2015;32(3):255–272. doi: 10.3109/02652048.2015.1010459.
  • Behl G, Kumar P, Sikka M, et al. PEG-coumarin nanoaggregates as pi-pi stacking derived small molecule lipophile containing self-assemblies for anti-tumour drug delivery. J Biomater Sci Polym Ed. 2018;29(4):360–375. doi: 10.1080/09205063.2017.1421346.
  • Wu L, Shi Y, Ni Z, et al. Preparation of a self-assembled rhein-doxorubicin nanogel targeting mitochondria and investigation on its antihepatoma activity. Mol Pharm. 2022;19(1):35–50. doi: 10.1021/acs.molpharmaceut.1c00565.
  • Bujosa S, Castellanos E, Frontera A, et al. Self-assembly of amphiphilic aryl-squaramides in water driven by dipolar pi-pi interactions. Org Biomol Chem. 2020;18(5):888–894. doi: 10.1039/c9ob02085c.
  • Yuan Y, Huang J, He S, et al. One-step self-assembly of curcumin-loaded zein/sophorolipid nanoparticles: physicochemical stability, redispersibility, solubility and bioaccessibility. Food Funct. 2021;12(13):5719–5730. doi: 10.1039/d1fo00942g.
  • Li M, Liu Y, Liu Y, et al. pH-driven self-assembly of alcohol-free curcumin-loaded zein-propylene glycol alginate complex nanoparticles. Int J Biol Macromol. 2022;213:1057–1067. doi: 10.1016/j.ijbiomac.2022.06.046.
  • Bhullar S, Goyal N, Gupta S. In-vitro pH-responsive release of imatinib from iron-supplement coated anatase TiO(2) nanoparticles. Sci Rep. 2022;12(1):4600. doi: 10.1038/s41598-022-08090-7.
  • Wang R, Xu X, Li D, et al. Smart pH-responsive polyhydralazine/bortezomib nanoparticles for remodeling tumor microenvironment and enhancing chemotherapy. Biomaterials. 2022;288:121737. doi: 10.1016/j.biomaterials.2022.121737.
  • Liao J, Zheng H, Fei Z, et al. Tumor-targeting and pH-responsive nanoparticles from hyaluronic acid for the enhanced delivery of doxorubicin. Int J Biol Macromol. 2018;113:737–747. doi: 10.1016/j.ijbiomac.2018.03.004.
  • Liu J, Huang Y, Kumar A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693–710. doi: 10.1016/j.biotechadv.2013.11.009.
  • Deirram N, Zhang C, Kermaniyan SS, et al. pH-responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun. 2019;40(10):e1800917. doi: 10.1002/marc.201800917.
  • Wu W, Luo L, Wang Y, et al. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics. 2018;8(11):3038–3058. doi: 10.7150/thno.23459.
  • Dalela M, Shrivastav TG, Kharbanda S, et al. pH-sensitive biocompatible nanoparticles of paclitaxel-conjugated poly(styrene-co-maleic acid) for anticancer drug delivery in solid tumors of syngeneic mice. ACS Appl Mater Interfaces. 2015;7(48):26530–26548. doi: 10.1021/acsami.5b07764.
  • Hao Y, Zheng C, Wang L, et al. Covalent self-assembled nanoparticles with pH-dependent enhanced tumor retention and drug release for improving tumor therapeutic efficiency. J Mater Chem B. 2017;5(11):2133–2144. doi: 10.1039/c6tb02833k.
  • Sauraj, Kumar SU, Kumar V, et al. pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr Polym. 2018;188:252–259. doi: 10.1016/j.carbpol.2018.02.006.
  • Saha B, Choudhury N, Seal S, et al. Aromatic nitrogen mustard-based autofluorescent amphiphilic brush copolymer as pH-responsive drug delivery vehicle. Biomacromolecules. 2019;20(1):546–557. doi: 10.1021/acs.biomac.8b01468.
  • She W, Li N, Luo K, et al. Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials. 2013;34(9):2252–2264. doi: 10.1016/j.biomaterials.2012.12.017.
  • Liu N, Han J, Zhang X, et al. pH-responsive zwitterionic polypeptide as a platform for anti-tumor drug delivery. Colloids Surf B Biointerfaces. 2016;145:401–409. doi: 10.1016/j.colsurfb.2016.05.027.
  • Wei X, Luo Q, Sun L, et al. Enzyme- and pH-sensitive branched polymer-doxorubicin conjugate-based nanoscale drug delivery system for cancer therapy. ACS Appl Mater Interfaces. 2016;8(18):11765–11778. doi: 10.1021/acsami.6b02006.
  • Pillarisetti S, Maya S, Sathianarayanan S, et al. Tunable pH and redox-responsive drug release from curcumin conjugated gamma-polyglutamic acid nanoparticles in cancer microenvironment. Colloids Surf B Biointerfaces. 2017;159:809–819. doi: 10.1016/j.colsurfb.2017.08.057.
  • Yuan X, Peng S, Lin W, et al. Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery. J Colloid Interface Sci. 2019;555:82–93. doi: 10.1016/j.jcis.2019.07.061.
  • Liu P, Wu Q, Li Y, et al. DOX-conjugated keratin nanoparticles for pH-sensitive drug delivery. Colloids Surf B Biointerfaces. 2019;181:1012–1018. doi: 10.1016/j.colsurfb.2019.06.057.
  • Bian Y, Guo D. Targeted therapy for hepatocellular carcinoma: co-delivery of sorafenib and curcumin using lactosylated pH-responsive nanoparticles. Drug Des Devel Ther. 2020;14:647–659. doi: 10.2147/DDDT.S238955.
  • Zhao J, Yan C, Chen Z, et al. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. J Colloid Interface Sci. 2019;540:66–77. doi: 10.1016/j.jcis.2019.01.021.
  • Luo F, Fan Z, Yin W, et al. pH-responsive stearic acid-O-carboxymethyl chitosan assemblies as carriers delivering small molecular drug for chemotherapy. Mater Sci Eng C Mater Biol Appl. 2019;105:110107. doi: 10.1016/j.msec.2019.110107.
  • Xie J, Fan Z, Li Y, et al. Design of pH-sensitive methotrexate prodrug-targeted curcumin nanoparticles for efficient dual-drug delivery and combination cancer therapy. Int J Nanomedicine. 2018;13:1381–1398. doi: 10.2147/IJN.S152312.
  • Rahimi S, Khoee S, Ghandi M. Preparation and characterization of rod-like chitosan-quinoline nanoparticles as pH-responsive nanocarriers for quercetin delivery. Int J Biol Macromol. 2019;128:279–289. doi: 10.1016/j.ijbiomac.2019.01.137.
  • Wang L, Liu L, Dong B, et al. Multi-stimuli-responsive biohybrid nanoparticles with cross-linked albumin coronae self-assembled by a polymer-protein biodynamer. Acta Biomater. 2017;54:259–270. doi: 10.1016/j.actbio.2017.03.009.
  • Leong J, Chin W, Ke X, et al. Disease-directed design of biodegradable polymers: reactive oxygen species and pH-responsive micellar nanoparticles for anticancer drug delivery. Nanomedicine. 2018;14(8):2666–2677. doi: 10.1016/j.nano.2018.06.015.
  • Mu J, Zhong H, Zou H, et al. Acid-sensitive PEGylated paclitaxel prodrug nanoparticles for cancer therapy: effect of PEG length on antitumor efficacy. J Control Release. 2020;326:265–275. doi: 10.1016/j.jconrel.2020.07.022.
  • Gao C, Tang F, Gong G, et al. pH-responsive prodrug nanoparticles based on a sodium alginate derivative for selective co-release of doxorubicin and curcumin into tumor cells. Nanoscale. 2017;9(34):12533–12542. doi: 10.1039/c7nr03611f.
  • Kim HK, Van den Bossche J, Hyun SH, et al. Acid-triggered release via dePEGylation of fusogenic liposomes mediated by heterobifunctional phenyl-substituted vinyl ethers with tunable pH-sensitivity. Bioconjug Chem. 2012;23(10):2071–2077. doi: 10.1021/bc300266y.
  • Wells CM, Harris M, Choi L, et al. Stimuli-responsive drug release from smart polymers. J Funct Biomater. 2019;10(3):34. doi: 10.3390/jfb10030034.
  • Ulrich S. Growing prospects of dynamic covalent chemistry in delivery applications. Acc Chem Res. 2019;52(2):510–519. doi: 10.1021/acs.accounts.8b00591.
  • Drożdż W, Bouillon C, Kotras C, et al. Generation of multicomponent molecular cages using simultaneous dynamic covalent reactions. Chemistry. 2017;23(71):18010–18018. doi: 10.1002/chem.201703868.
  • Siddique S, Chow JCL. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials. 2020;10(9):1700. doi: 10.3390/nano10091700.
  • Du H, Liu M, Yang X, et al. The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov Today. 2015;20(8):1004–1011. doi: 10.1016/j.drudis.2015.03.002.
  • Gorchakov AA, Kulemzin SV, Kochneva GV, et al. Challenges and prospects of chimeric antigen receptor T-cell therapy for metastatic prostate cancer. Eur Urol. 2020;77(3):299–308. doi: 10.1016/j.eururo.2019.08.014.
  • Sun T, Zhang YS, Pang B, et al. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320–12364. doi: 10.1002/anie.201403036.
  • Ang CY, Tan SY, Teh C, et al. Redox and pH dual responsive polymer based nanoparticles for in vivo drug delivery. Small. 2017;13(7):10. doi: 10.1002/smll.201602379.
  • Dube T, Mandal S, Panda JJ. Nanoparticles generated from a tryptophan derivative: physical characterization and anti-cancer drug delivery. Amino Acids. 2017;49(5):975–993. doi: 10.1007/s00726-017-2403-8.
  • Yan J, Su T, Cheng F, et al. Multifunctional nanoparticles self-assembled from polyethylenimine-based graft polymers as efficient anticancer drug delivery. Colloids Surf B Biointerfaces. 2017;155:118–127. doi: 10.1016/j.colsurfb.2017.02.030.
  • Liu KF, Liu YX, Dai L, et al. A novel self-assembled pH-sensitive targeted nanoparticle platform based on antibody-4arm-polyethylene glycol-pterostilbene conjugates for co-delivery of anticancer drugs. J Mater Chem B. 2018;6(4):656–665. doi: 10.1039/c7tb02485a.
  • Yang H, Shen W, Liu W, et al. PEGylated poly(alpha-lipoic acid) loaded with doxorubicin as a pH and reduction dual responsive nanomedicine for breast cancer therapy. Biomacromolecules. 2018;19(11):4492–4503. doi: 10.1021/acs.biomac.8b01394.
  • Li Y, Hou H, Zhang P, et al. Co-delivery of doxorubicin and paclitaxel by reduction/pH dual responsive nanocarriers for osteosarcoma therapy. Drug Deliv. 2020;27(1):1044–1053. doi: 10.1080/10717544.2020.1785049.
  • Zhang J, Song H, Ji S, et al. NO prodrug-conjugated, self-assembled, pH-responsive and galactose receptor targeted nanoparticles for co-delivery of nitric oxide and doxorubicin. Nanoscale. 2018;10(9):4179–4188. doi: 10.1039/c7nr08176f.
  • Li H, Wei R, Yan GH, et al. Smart self-assembled nanosystem based on water-soluble pillararene and rare-earth-doped upconversion nanoparticles for pH-responsive drug delivery. ACS Appl Mater Interfaces. 2018;10(5):4910–4920. doi: 10.1021/acsami.7b14193.
  • Zhong T, Yao X, Zhang S, et al. A self-assembling nanomedicine of conjugated linoleic acid-paclitaxel conjugate (CLA-PTX) with higher drug loading and carrier-free characteristic. Sci Rep. 2016;6(1):36614. doi: 10.1038/srep36614.
  • Zhang Y, Cui Z, Mei H, et al. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer. Carbohydr Polym. 2019;219:143–154. doi: 10.1016/j.carbpol.2019.04.041.
  • Sun H, Nai J, Deng B, et al. Angelica sinensis polysaccharide-based nanoparticles for liver-targeted delivery of oridonin. Molecules. 2024;29(3):731. doi: 10.3390/molecules29030731.
  • Chen Y, Su M, Li Y, et al. Enzymatic PEG-poly(amine-co-disulfide ester) nanoparticles as pH- and redox-responsive drug nanocarriers for efficient antitumor treatment. ACS Appl Mater Interfaces. 2017;9(36):30519–30535. doi: 10.1021/acsami.7b10148.
  • Liu N, Li B, Gong C, et al. A pH- and thermo-responsive poly(amino acid)-based drug delivery system. Colloids Surf B Biointerfaces. 2015;136:562–569. doi: 10.1016/j.colsurfb.2015.09.057.
  • Wu M, Cao Z, Zhao Y, et al. Novel self-assembled pH-responsive biomimetic nanocarriers for drug delivery. Mater Sci Eng C Mater Biol Appl. 2016;64:346–353. doi: 10.1016/j.msec.2016.03.099.
  • Ye Z, Zhang Q, Wang S, et al. Tumour-targeted drug delivery with mannose-functionalized nanoparticles self-assembled from amphiphilic beta-cyclodextrins. Chemistry. 2016;22(43):15216–15221. doi: 10.1002/chem.201603294.
  • He YJ, Xing L, Cui PF, et al. Transferrin-inspired vehicles based on pH-responsive coordination bond to combat multidrug-resistant breast cancer. Biomaterials. 2017;113:266–278. doi: 10.1016/j.biomaterials.2016.11.001.
  • Raja MA, Arif M, Feng C, et al. Synthesis and evaluation of pH-sensitive, self-assembled chitosan-based nanoparticles as efficient doxorubicin carriers. J Biomater Appl. 2017;31(8):1182–1195. doi: 10.1177/0885328216681184.
  • Liu KF, Liu YX, Li CX, et al. Self-assembled pH and redox dual responsive carboxymethylcellulose-based polymeric nanoparticles for efficient anticancer drug codelivery. ACS Biomater Sci Eng. 2018;4(12):4200–4207. doi: 10.1021/acsbiomaterials.8b00920.
  • Cheng C, Meng Y, Zhang Z, et al. pH responsible and fluorescent Cy5.5-PEG-g-A-HA/CDDP complex nanoparticles: synthesis, characterization, and application for targeted drug delivery. J Mater Sci Mater Med. 2019;30(6):58. doi: 10.1007/s10856-019-6260-8.
  • Chen PC, Lai JJ, Huang CJ. Bio-inspired amphoteric polymer for triggered-release drug delivery on breast cancer cells based on metal coordination. ACS Appl Mater Interfaces. 2021;13(22):25663–25673. doi: 10.1021/acsami.1c03191.
  • Chibh S, Katoch V, Kour A, et al. Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core-shell like microstructures for pH switchable on-demand anti-cancer drug delivery. Biomater Sci. 2021;9(3):942–959. doi: 10.1039/d0bm01386b.
  • Qiu Y, Zhu J, Wang J, et al. Self-assembled phytosterol-fructose-chitosan nanoparticles as a carrier of anticancer drug. J Nanosci Nanotechnol. 2013;13(8):5935–5941. doi: 10.1166/jnn.2013.7537.
  • Xu C, Song RJ, Lu P, et al. pH-triggered charge-reversal and redox-sensitive drug-release polymer micelles codeliver doxorubicin and triptolide for prostate tumor therapy. Int J Nanomedicine. 2018;13:7229–7249. doi: 10.2147/IJN.S182197.
  • de Oliveira Pedro R, Goycoolea FM, Pereira S, et al. Synergistic effect of quercetin and pH-responsive DEAE-chitosan carriers as drug delivery system for breast cancer treatment. Int J Biol Macromol. 2018;106:579–586. doi: 10.1016/j.ijbiomac.2017.08.056.
  • He M, Potuck A, Kohn JC, et al. Self-assembled cationic biodegradable nanoparticles from pH-responsive amino-acid-based poly(ester urea urethane)s and their application as a drug delivery vehicle. Biomacromolecules. 2016;17(2):523–537. doi: 10.1021/acs.biomac.5b01449.
  • de Oliveira Pedro R, Hoffmann S, Pereira S, et al. Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells. Eur J Pharm Biopharm. 2018;131:203–210. doi: 10.1016/j.ejpb.2018.08.009.
  • Zhao X, Wei Z, Zhao Z, et al. Design and development of graphene oxide nanoparticle/chitosan hybrids showing pH-sensitive surface charge-reversible ability for efficient intracellular doxorubicin delivery. ACS Appl Mater Interfaces. 2018;10(7):6608–6617. doi: 10.1021/acsami.7b16910.
  • Jin M, Jin G, Kang L, et al. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. Int J Nanomedicine. 2018;13:2405–2426. doi: 10.2147/IJN.S161426.
  • Du C, Liang Y, Ma Q, et al. Intracellular tracking of drug release from pH-sensitive polymeric nanoparticles via FRET for synergistic chemo-photodynamic therapy. J Nanobiotechnology. 2019;17(1):113. doi: 10.1186/s12951-019-0547-2.
  • Qiao ZY, Zhang D, Hou CY, et al. A pH-responsive natural cyclopeptide RA-V drug formulation for improved breast cancer therapy. J Mater Chem B. 2015;3(22):4514–4523. doi: 10.1039/c5tb00445d.
  • Men W, Zhu P, Dong S, et al. Fabrication of dual pH/redox-responsive lipid-polymer hybrid nanoparticles for anticancer drug delivery and controlled release. Int J Nanomedicine. 2019;14:8001–8011. doi: 10.2147/IJN.S226798.
  • Bai Y, Liu CP, Chen D, et al. beta-Cyclodextrin-modified hyaluronic acid-based supramolecular self-assemblies for pH- and esterase- dual-responsive drug delivery. Carbohydr Polym. 2020;246:116654. doi: 10.1016/j.carbpol.2020.116654.
  • Singh PK, Chibh S, Dube T, et al. Arginine-alpha, beta-dehydrophenylalanine dipeptide nanoparticles for pH-responsive drug delivery. Pharm Res. 2018;35(2):35. doi: 10.1007/s11095-017-2299-8.
  • Pandit G, Roy K, Agarwal U, et al. Self-assembly mechanism of a peptide-based drug delivery vehicle. ACS Omega. 2018;3(3):3143–3155. doi: 10.1021/acsomega.7b01871.
  • Xu Y, Zi Y, Lei J, et al. pH-responsive nanoparticles based on cholesterol/imidazole modified oxidized-starch for targeted anticancer drug delivery. Carbohydr Polym. 2020;233:115858. doi: 10.1016/j.carbpol.2020.115858.
  • Zhang Y, Fang F, Li L, et al. Self-assembled organic nanomaterials for drug delivery, bioimaging, and cancer therapy. ACS Biomater Sci Eng. 2020;6(9):4816–4833. doi: 10.1021/acsbiomaterials.0c00883.
  • Sun R, Fang L, Lv X, et al. In vitro and in vivo evaluation of self-assembled chitosan nanoparticles selectively overcoming hepatocellular carcinoma via asialoglycoprotein receptor. Drug Deliv. 2021;28(1):2071–2084. doi: 10.1080/10717544.2021.1983077.
  • Vivek R, Nipun Babu V, Thangam R, et al. pH-responsive drug delivery of chitosan nanoparticles as tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf B Biointerfaces. 2013;111:117–123. doi: 10.1016/j.colsurfb.2013.05.018.
  • Luo F, Fan Z, Yin W, et al. pH-responsive stearic acid-O-carboxymethyl chitosan assemblies as carriers delivering small molecular drug for chemotherapy. Mater Sci Eng C. 2019;105:110107. doi: 10.1016/j.msec.2019.110107.
  • Lu B, Xiao F, Wang Z, et al. Redox-sensitive hyaluronic acid polymer prodrug nanoparticles for enhancing intracellular drug self-delivery and targeted cancer therapy. ACS Biomater Sci Eng. 2020;6(7):4106–4115. doi: 10.1021/acsbiomaterials.0c00762.
  • Zheng D, Zhao J, Li Y, et al. Self-assembled pH-sensitive nanoparticles based on Ganoderma lucidum polysaccharide-methotrexate conjugates for the co-delivery of anti-tumor drugs. ACS Biomater Sci Eng. 2021;7(8):3764–3773. doi: 10.1021/acsbiomaterials.1c00663.
  • Pan K, Chen H, Baek SJ, et al. Self-assembled curcumin-soluble soybean polysaccharide nanoparticles: physicochemical properties and in vitro anti-proliferation activity against cancer cells. Food Chem. 2018;246:82–89. doi: 10.1016/j.foodchem.2017.11.002.
  • Xiong YX, Li N, Han MM, et al. Rhodiola rosea polysaccharides-based nanoparticles loaded with DOX boosts chemo-immunotherapy for triple-negative breast cancer by re-educating tumor-associated macrophages. Int J Biol Macromol. 2023;239:124110. doi: 10.1016/j.ijbiomac.2023.124110.
  • Gao Z, Zhang Z, Guo J, et al. Polypeptide nanoparticles with pH-sheddable PEGylation for improved drug delivery. Langmuir. 2020;36(45):13656–13662. doi: 10.1021/acs.langmuir.0c02532.
  • Yoon S, Kim Y, Youn YS, et al. Transferrin-conjugated pH-responsive gamma-cyclodextrin nanoparticles for antitumoral topotecan delivery. Pharmaceutics. 2020;12(11):1109. doi: 10.3390/pharmaceutics12111109.
  • Zhi X, Liu P, Li Y, et al. One-step fabricated keratin nanoparticles as pH and redox-responsive drug nanocarriers. J Biomater Sci Polym Ed. 2018;29(15):1920–1934. doi: 10.1080/09205063.2018.1519987.
  • Han X, Wang L, Du J, et al. Keratin-dopamine conjugate nanoparticles as pH/GSH dual responsive drug carriers. J Biomater Sci Polym Ed. 2020;31(18):2318–2330. doi: 10.1080/09205063.2020.1803182.
  • Du J, Wang L, Han X, et al. Keratin-tannic acid complex nanoparticles as pH/GSH dual responsive drug carriers for doxorubicin. J Biomater Sci Polym Ed. 2021;32(9):1125–1139. doi: 10.1080/09205063.2021.1906074.
  • Saleh T, Soudi T, Shojaosadati SA. Redox responsive curcumin-loaded human serum albumin nanoparticles: preparation, characterization and in vitro evaluation. Int J Biol Macromol. 2018;114:759–766. doi: 10.1016/j.ijbiomac.2018.03.085.
  • Abolhassani H, Shojaosadati SA. A comparative and systematic approach to desolvation and self-assembly methods for synthesis of piperine-loaded human serum albumin nanoparticles. Colloids Surf B Biointerfaces. 2019;184:110534. doi: 10.1016/j.colsurfb.2019.110534.
  • Kumari P, Paul M, Bobde Y, et al. Albumin-based lipoprotein nanoparticles for improved delivery and anticancer activity of curcumin for cancer treatment. Nanomedicine. 2020;15(29):2851–2869. doi: 10.2217/nnm-2020-0232.
  • Abolhassani H, Safavi MS, Handali S, et al. Synergistic effect of self-assembled curcumin and piperine co-loaded human serum albumin nanoparticles on suppressing cancer cells. Drug Dev Ind Pharm. 2020;46(10):1647–1655. doi: 10.1080/03639045.2020.1820032.
  • Zhang B, Wan S, Peng X, et al. Human serum albumin-based doxorubicin prodrug nanoparticles with tumor pH-responsive aggregation-enhanced retention and reduced cardiotoxicity. J Mater Chem B. 2020;8(17):3939–3948. doi: 10.1039/d0tb00327a.
  • Kumbham S, Paul M, Itoo A, et al. Oleanolic acid-conjugated human serum albumin nanoparticles encapsulating doxorubicin as synergistic combination chemotherapy in oropharyngeal carcinoma and melanoma. Int J Pharm. 2022;614:121479. doi: 10.1016/j.ijpharm.2022.121479.
  • Zhou P, Wu S, Hegazy M, et al. Engineered borate ester conjugated protein-polymer nanoconjugates for pH-responsive drug delivery. Mater Sci Eng C Mater Biol Appl. 2019;104:109914. doi: 10.1016/j.msec.2019.109914.
  • Wang D, Chen W, Li H, et al. Folate-receptor mediated pH/reduction-responsive biomimetic nanoparticles for dually activated multi-stage anticancer drug delivery. Int J Pharm. 2020;585:119456. doi: 10.1016/j.ijpharm.2020.119456.
  • Hao L, Zhou Q, Piao Y, et al. Albumin-binding prodrugs via reversible iminoboronate forming nanoparticles for cancer drug delivery. J Control Release. 2021;330:362–371. doi: 10.1016/j.jconrel.2020.12.035.
  • Liu Y, Qiao Z, Gao J, et al. Hydroxyapatite-bovine serum albumin-paclitaxel nanoparticles for locoregional treatment of osteosarcoma. Adv Healthc Mater. 2021;10(2):e2000573. doi: 10.1002/adhm.202000573.
  • Jafari A, Yan L, Mohamed MA, et al. Well-defined diblock poly(ethylene glycol)-b-poly(epsilon-caprolactone)-based polymer-drug conjugate micelles for pH-responsive delivery of doxorubicin. Materials. 2020;13(7):1510. doi: 10.3390/ma13071510.
  • Xiong D, Zhang X, Peng S, et al. Smart pH-sensitive micelles based on redox degradable polymers as DOX/GNPs carriers for controlled drug release and CT imaging. Colloids Surf B Biointerfaces. 2018;163:29–40.
  • Li F, Liang Y, Wang M, et al. Multifunctional nanoplatforms as cascade-responsive drug-delivery carriers for effective synergistic chemo-photodynamic cancer treatment. J Nanobiotechnology. 2021;19(1):140. doi: 10.1186/s12951-021-00876-7.
  • Luo Y, Yin X, Yin X, et al. Dual pH/redox-responsive mixed polymeric micelles for anticancer drug delivery and controlled release. Pharmaceutics. 2019;11(4):176. doi: 10.3390/pharmaceutics11040176.
  • Su Z, Xu Y, Wang Y, et al. A pH and reduction dual-sensitive polymeric nanomicelle for tumor microenvironment triggered cellular uptake and controlled intracellular drug release. Biomater Sci. 2019;7(9):3821–3831. doi: 10.1039/c9bm00825j.
  • Kaushik P, Priyadarshini E, Rawat K, et al. pH responsive doxorubucin loaded zein nanoparticle crosslinked pectin hydrogel as effective site-specific anticancer substrates. Int J Biol Macromol. 2020;152:1027–1037. doi: 10.1016/j.ijbiomac.2019.10.190.
  • Sahu P, Kashaw SK, Kushwah V, et al. pH responsive biodegradable nanogels for sustained release of bleomycin. Bioorg Med Chem. 2017;25(17):4595–4613. doi: 10.1016/j.bmc.2017.06.038.
  • Wang QS, Gao LN, Zhu XN, et al. Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma. Theranostics. 2019;9(21):6239–6255. doi: 10.7150/thno.35972.
  • Luckanagul JA, Pitakchatwong C, Ratnatilaka Na Bhuket P, et al. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydr Polym. 2018;181:1119–1127. doi: 10.1016/j.carbpol.2017.11.027.
  • Lei C, Liu XR, Chen QB, et al. Hyaluronic acid and albumin based nanoparticles for drug delivery. J Control Release. 2021;331:416–433. doi: 10.1016/j.jconrel.2021.01.033.
  • Niu W, Xiao Q, Wang X, et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett. 2021;21(3):1484–1492. doi: 10.1021/acs.nanolett.0c04753.
  • Gu P, Liu Z, Sun Y, et al. Angelica sinensis polysaccharide encapsulated into PLGA nanoparticles as a vaccine delivery and adjuvant system for ovalbumin to promote immune responses. Int J Pharm. 2019;554:72–80. doi: 10.1016/j.ijpharm.2018.11.008.
  • Tang H, Zhao W, Yu J, et al. Recent development of pH-responsive polymers for cancer nanomedicine. Molecules. 2018;24(1):4. doi: 10.3390/molecules24010004.
  • Liu X, Yang Y, Urban MW. Stimuli-responsive polymeric nanoparticles. Macromol Rapid Commun. 2017;38(13):10. doi: 10.1002/marc.201700030.
  • Marques C, Maurizi L, Borchard G, et al. Characterization challenges of self-assembled polymer-SPIONs nanoparticles: benefits of orthogonal methods. Int J Mol Sci. 2022;23(24):16124. doi: 10.3390/ijms232416124.
  • Paul P, Kolesinska B, Sujka W. Chitosan and its derivatives – biomaterials with diverse biological activity for manifold applications. Mini Rev Med Chem. 2019;19(9):737–750. doi: 10.2174/1389557519666190112142735.
  • Synowiecki J, Al-Khateeb NA. Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr. 2003;43(2):145–171. doi: 10.1080/10408690390826473.
  • Matalqah SM, Aiedeh K, Mhaidat NM, et al. Chitosan nanoparticles as a novel drug delivery system: a review article. Curr Drug Targets. 2020;21(15):1613–1624. doi: 10.2174/1389450121666200711172536.
  • Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015;13(3):1133–1174. doi: 10.3390/md13031133.
  • Matica MA, Aachmann FL, Tøndervik A, et al. Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. Int J Mol Sci. 2019;20(23):5889. doi: 10.3390/ijms20235889.
  • Tian B, Hua S, Liu J. Multi-functional chitosan-based nanoparticles for drug delivery: recent advanced insight into cancer therapy. Carbohydr Polym. 2023;315:120972. doi: 10.1016/j.carbpol.2023.120972.
  • Borges O, Cordeiro-da-Silva A, Tavares J, et al. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur J Pharm Biopharm. 2008;69(2):405–416. doi: 10.1016/j.ejpb.2008.01.019.
  • Bravo-Osuna I, Schmitz T, Bernkop-Schnürch A, et al. Elaboration and characterization of thiolated chitosan-coated acrylic nanoparticles. Int J Pharm. 2006;316(1–2):170–175. doi: 10.1016/j.ijpharm.2006.02.037.
  • Chen FP, Ou SY, Tang CH. Core-shell soy protein-soy polysaccharide complex (nano)particles as carriers for improved stability and sustained release of curcumin. J Agric Food Chem. 2016;64(24):5053–5059. doi: 10.1021/acs.jafc.6b01176.
  • Wang J, Wang L, Yu H, et al. Recent progress on synthesis, property and application of modified chitosan: an overview. Int J Biol Macromol. 2016;88:333–344. doi: 10.1016/j.ijbiomac.2016.04.002.
  • Vasvani S, Kulkarni P, Rawtani D. Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol. 2020;151:1012–1029. doi: 10.1016/j.ijbiomac.2019.11.066.
  • Huang G, Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv. 2018;25(1):766–772. doi: 10.1080/10717544.2018.1450910.
  • Cai J, Fu J, Li R, et al. A potential carrier for anti-tumor targeted delivery-hyaluronic acid nanoparticles. Carbohydr Polym. 2019;208:356–364. doi: 10.1016/j.carbpol.2018.12.074.
  • Hou X, Zhong D, Chen H, et al. Recent advances in hyaluronic acid-based nanomedicines: preparation and application in cancer therapy. Carbohydr Polym. 2022;292:119662. doi: 10.1016/j.carbpol.2022.119662.
  • Xin Li J, Jiao Zhang M, Feng Shi J, et al. pH-sensitive nano-polyelectrolyte complexes with arthritic macrophage-targeting delivery of triptolide. Int J Pharm. 2023;632:122572. doi: 10.1016/j.ijpharm.2022.122572.
  • Kang Z, Lee ST. Carbon dots: advances in nanocarbon applications. Nanoscale. 2019;11(41):19214–19224. doi: 10.1039/c9nr05647e.
  • Tian XT, Yin XB. Carbon dots, unconventional preparation strategies, and applications beyond photoluminescence. Small. 2019;15(48):e1901803. doi: 10.1002/smll.201901803.
  • Chowdhuri AR, Singh T, Ghosh SK, et al. Carbon dots embedded magnetic nanoparticles @chitosan @metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Appl Mater Interfaces. 2016;8(26):16573–16583. doi: 10.1021/acsami.6b03988.
  • Liu Z, Chen X, Zhang X, et al. Carbon-quantum-dots-loaded mesoporous silica nanocarriers with pH-switchable zwitterionic surface and enzyme-responsive pore-cap for targeted imaging and drug delivery to tumor. Adv Healthc Mater. 2016;5(12):1401–1407. doi: 10.1002/adhm.201600002.
  • Chen SY, Song ZM, Feng RL. Recent development of copolymeric nano-drug delivery system for paclitaxel. Anticancer Agents Med Chem. 2020;20(18):2169–2189. doi: 10.2174/1871520620666200719001038.
  • Li J, Li M, Tian L, et al. Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy. Int J Pharm. 2020;578:119122. doi: 10.1016/j.ijpharm.2020.119122.
  • Li J, Wang Y, Xu C, et al. Rapid pH-responsive self-disintegrating nanoassemblies balance tumor accumulation and penetration for enhanced anti-breast cancer therapy. Acta Biomater. 2021;134:546–558. doi: 10.1016/j.actbio.2021.04.022.
  • Deng Y, Shavandi A, Okoro OV, et al. Alginate modification via click chemistry for biomedical applications. Carbohydr Polym. 2021;270:118360. doi: 10.1016/j.carbpol.2021.118360.
  • He L, Shang Z, Liu H, et al. Alginate-based platforms for cancer-targeted drug delivery. Biomed Res Int. 2020;2020:1487259–1487217. doi: 10.1155/2020/1487259.
  • Severino P, da Silva CF, Andrade LN, et al. Alginate nanoparticles for drug delivery and targeting. Curr Pharm Des. 2019;25(11):1312–1334. doi: 10.2174/1381612825666190425163424.
  • Yoncheva K, Merino M, Shenol A, et al. Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model. Int J Pharm. 2019;556:1–8. doi: 10.1016/j.ijpharm.2018.11.070.
  • Dong Y, He Y, Fan D, et al. Preparation of pH-sensitive chitosan-deoxycholic acid-sodium alginate nanoparticles loaded with ginsenoside Rb(1) and its controlled release mechanism. Int J Biol Macromol. 2023;234:123736. doi: 10.1016/j.ijbiomac.2023.123736.
  • Gong H, Li W, Sun J, et al. A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int J Biol Macromol. 2022;211:711–728. doi: 10.1016/j.ijbiomac.2022.05.087.
  • Liu Y, Wu J, Huang L, et al. Synergistic effects of antitumor efficacy via mixed nano-size micelles of multifunctional Bletilla striata polysaccharide-based copolymer and D-alpha-tocopheryl polyethylene glycol succinate. Int J Biol Macromol. 2020;154:499–510. doi: 10.1016/j.ijbiomac.2020.03.136.
  • Peng P, Yang K, Tong G, et al. Polysaccharide nanoparticles for targeted cancer therapies. Curr Drug Metab. 2018;19(9):781–792. doi: 10.2174/1389200219666180511153403.
  • Nai J, Zhang C, Shao H, et al. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide. Int J Biol Macromol. 2021;183:2337–2353. doi: 10.1016/j.ijbiomac.2021.05.213.
  • D’Souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting – strategies and applications. J Control Release. 2015;203:126–139. doi: 10.1016/j.jconrel.2015.02.022.
  • Huang A, Yang XR, Chung WY, et al. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther. 2020;5(1):146. doi: 10.1038/s41392-020-00264-x.
  • Ahmad MF. Ganoderma lucidum: persuasive biologically active constituents and their health endorsement. Biomed Pharmacother. 2018;107:507–519. doi: 10.1016/j.biopha.2018.08.036.
  • Luo H, Tan D, Peng B, et al. The pharmacological rationales and molecular mechanisms of Ganoderma lucidum polysaccharides for the therapeutic applications of multiple diseases. Am J Chin Med. 2022;50(1):53–90. doi: 10.1142/S0192415X22500033.
  • Zheng D, Zhao J, Tao Y, et al. pH and glutathione dual responsive nanoparticles based on Ganoderma lucidum polysaccharide for potential programmable release of three drugs. Chem Eng J. 2020;389:124418.
  • Salarbashi D, Tafaghodi M, Bazzaz BSF, et al. Characterization of soluble soybean (SSPS) polysaccharide and development of eco-friendly SSPS/TiO2 nanoparticle bionanocomposites. Int J Biol Macromol. 2018;112:852–861. doi: 10.1016/j.ijbiomac.2018.01.182.
  • Lin D, Long X, Xiao L, et al. Study on the functional properties and structural characteristics of soybean soluble polysaccharides by mixed bacteria fermentation and microwave treatment. Int J Biol Macromol. 2020;157:561–568. doi: 10.1016/j.ijbiomac.2020.04.133.
  • Xu K, Yao P. Stable oil-in-water emulsions prepared from soy protein-dextran conjugates. Langmuir. 2009;25(17):9714–9720. doi: 10.1021/la900960g.
  • Chen FP, Ou SY, Chen Z, et al. Soy soluble polysaccharide as a nanocarrier for curcumin. J Agric Food Chem. 2017;65(8):1707–1714. doi: 10.1021/acs.jafc.6b05087.
  • Martínez-López AL, Pangua C, Reboredo C, et al. Protein-based nanoparticles for drug delivery purposes. Int J Pharm. 2020;581:119289. doi: 10.1016/j.ijpharm.2020.119289.
  • Kopac T. Protein corona, understanding the nanoparticle-protein interactions and future perspectives: a critical review. Int J Biol Macromol. 2021;169:290–301. doi: 10.1016/j.ijbiomac.2020.12.108.
  • Wang Y, Zheng K, Xuan G, et al. Novel pH-sensitive zinc phthalocyanine assembled with albumin for tumor targeting and treatment. Int J Nanomedicine. 2018;13:7681–7695. doi: 10.2147/IJN.S181199.
  • Wang L, Du J, Han X, et al. Self-crosslinked keratin nanoparticles for pH and GSH dual responsive drug carriers. J Biomater Sci Polym Ed. 2020;31(15):1994–2006. doi: 10.1080/09205063.2020.1788371.
  • Ruan S, Qin L, Xiao W, et al. Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood–brain barrier transcytosis and programmed glioma targeting delivery. Adv Funct Mater. 2018;28(30):1802227.
  • Setyawati MI, Tay CY, Docter D, et al. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem Soc Rev. 2015;44(22):8174–8199. doi: 10.1039/c5cs00499c.
  • Li H, Jia Y, Peng H, et al. Recent developments in dopamine-based materials for cancer diagnosis and therapy. Adv Colloid Interface Sci. 2018;252:1–20. doi: 10.1016/j.cis.2018.01.001.
  • Kunde SS, Wairkar S. Targeted delivery of albumin nanoparticles for breast cancer: a review. Colloids Surf B Biointerfaces. 2022;213:112422. doi: 10.1016/j.colsurfb.2022.112422.
  • Solanki R, Rostamabadi H, Patel S, et al. Anticancer nano-delivery systems based on bovine serum albumin nanoparticles: a critical review. Int J Biol Macromol. 2021;193(Pt A):528–540. doi: 10.1016/j.ijbiomac.2021.10.040.
  • Hu W, Ying M, Zhang S, et al. Poly(amino acid)-based carrier for drug delivery systems. J Biomed Nanotechnol. 2018;14(8):1359–1374. doi: 10.1166/jbn.2018.2590.
  • Gupta SS, Mishra V, Mukherjee MD, et al. Amino acid derived biopolymers: recent advances and biomedical applications. Int J Biol Macromol. 2021;188:542–567. doi: 10.1016/j.ijbiomac.2021.08.036.
  • Gupta PK, Gahtori R, Govarthanan K, et al. Recent trends in biodegradable polyester nanomaterials for cancer therapy. Mater Sci Eng C. 2021;127:112198. doi: 10.1016/j.msec.2021.112198.
  • Turek A, Stoklosa K, Borecka A, et al. Designing biodegradable wafers based on poly(L-lactide-co-glycolide) and poly(glycolide-co-epsilon-caprolactone) for the prolonged and local release of idarubicin for the therapy of glioblastoma multiforme. Pharm Res. 2020;37(5):90. doi: 10.1007/s11095-020-02810-2.
  • Domańska IM, Oledzka E, Sobczak M. Sterilization process of polyester based anticancer-drug delivery systems. Int J Pharm. 2020;587:119663. doi: 10.1016/j.ijpharm.2020.119663.
  • Qian Y, Zhang J, Xu R, et al. Nanoparticles based on polymers modified with pH-sensitive molecular switch and low molecular weight heparin carrying celastrol and ferrocene for breast cancer treatment. Int J Biol Macromol. 2021;183:2215–2226. doi: 10.1016/j.ijbiomac.2021.05.204.
  • Li X, Li L, Huang Y, et al. Synergistic therapy of chemotherapeutic drugs and MTH1 inhibitors using a pH-sensitive polymeric delivery system for oral squamous cell carcinoma. Biomater Sci. 2017;5(10):2068–2078. doi: 10.1039/c7bm00395a.
  • Wu Y, Li J, Zhong X, et al. A pH-sensitive supramolecular nanosystem with chlorin e6 and triptolide co-delivery for chemo-photodynamic combination therapy. Asian J Pharm Sci. 2022;17(2):206–218. doi: 10.1016/j.ajps.2021.12.003.
  • Park SC, Heo H, Jang MK. Polyethylenimine grafted-chitosan based gambogic acid copolymers for targeting cancer cells overexpressing transferrin receptors. Carbohydr Polym. 2022;277:118755. doi: 10.1016/j.carbpol.2021.118755.
  • Bondioli L, Ruozi B, Belletti D, et al. Sialic acid as a potential approach for the protection and targeting of nanocarriers. Expert Opin Drug Deliv. 2011;8(7):921–937. doi: 10.1517/17425247.2011.577061.
  • Wu D, Yang J, Xing Z, et al. Phenylboronic acid-functionalized polyamidoamine-mediated bcl-2 siRNA delivery for inhibiting the cell proliferation. Colloids Surf B Biointerfaces. 2016;146:318–325. doi: 10.1016/j.colsurfb.2016.06.034.
  • Li Y, Xiao W, Xiao K, et al. Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. Angew Chem Int Ed Engl. 2012;51(12):2864–2869. doi: 10.1002/anie.201107144.
  • Yang B, Jia H, Wang X, et al. Self-assembled vehicle construction via boronic acid coupling and host-guest interaction for serum-tolerant DNA transport and pH-responsive drug delivery. Adv Healthc Mater. 2014;3(4):596–608. doi: 10.1002/adhm.201300162.
  • Wang C, Wang J, Chen X, et al. Phenylboronic acid-cross-linked nanoparticles with improved stability as dual acid-responsive drug carriers. Macromol Biosci. 2017;17(3):10.
  • Wang J, Liu LG, Jiao WQ, et al. Phenylboronic acid-conjugated chitosan nanoparticles for high loading and efficient delivery of curcumin. Carbohydr Polym. 2021;256:117497. doi: 10.1016/j.carbpol.2020.117497.
  • Li T, Lu XM, Zhang MR, et al. Peptide-based nanomaterials: self-assembly, properties and applications. Bioact Mater. 2022;11:268–282. doi: 10.1016/j.bioactmat.2021.09.029.
  • Jiang X, Fan X, Xu W, et al. Self-assembled peptide nanoparticles responsive to multiple tumor microenvironment triggers provide highly efficient targeted delivery and release of antitumor drug. J Control Release. 2019;316:196–207. doi: 10.1016/j.jconrel.2019.10.031.
  • Gong Z, Liu X, Zhou B, et al. Tumor acidic microenvironment-induced drug release of RGD peptide nanoparticles for cellular uptake and cancer therapy. Colloids Surf B Biointerfaces. 2021;202:111673. doi: 10.1016/j.colsurfb.2021.111673.
  • Jia W, Liu R, Wang Y, et al. Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer. Acta Pharm Sin B. 2022;12(8):3354–3366. doi: 10.1016/j.apsb.2022.03.010.
  • Metformin mediated PD-L1 downregulation in combination with photodynamic-immunotherapy for treatment of breast cancer. Adv Funct Mater. 2021;31:2007149.
  • Zhu K, Liu Y, Wang H, et al. Xanthate-modified silica as a novel multifunctional additive for properties improvement of natural rubber. Compos Sci Technol. 2021;203:108567. doi: 10.1016/j.compscitech.2020.108567.
  • Silvester E, Truccolo D, Hao FP. Kinetics and mechanism of the oxidation of ethyl xanthate and ethyl thiocarbonate by hydrogen peroxide. J Chem Soc. 2002;2:1562–1571.
  • Tanhaei B, Ayati A, Sillanpää M. Magnetic xanthate modified chitosan as an emerging adsorbent for cationic azo dyes removal: kinetic, thermodynamic and isothermal studies. Int J Biol Macromol. 2019;121:1126–1134. doi: 10.1016/j.ijbiomac.2018.10.137.
  • Foroutan A, Abbas Zadeh Haji Abadi M, Kianinia Y, et al. Critical importance of pH and collector type on the flotation of sphalerite and galena from a low-grade lead-zinc ore. Sci Rep. 2021;11(1):3103. doi: 10.1038/s41598-021-82759-3.
  • Shen Z, Ma N, Wang F, et al. pH- and H2O2-sensitive drug delivery system based on sodium xanthate: dual-responsive supramolecular vesicles from one functional group. Chin Chem Lett. 2022;33(10):4563–4566. doi: 10.1016/j.cclet.2022.01.069.
  • Biswas S. Polymeric micelles as drug-delivery systems in cancer: challenges and opportunities. Nanomedicine. 2021;16(18):1541–1544. doi: 10.2217/nnm-2021-0081.
  • Noel P, Von Hoff DD, Saluja AK, et al. Triptolide and its derivatives as cancer therapies. Trends Pharmacol Sci. 2019;40(5):327–341. doi: 10.1016/j.tips.2019.03.002.
  • Sai K, Li WY, Chen YS, et al. Triptolide synergistically enhances temozolomide-induced apoptosis and potentiates inhibition of NF-kappaB signaling in glioma initiating cells. Am J Chin Med. 2014;42(2):485–503. doi: 10.1142/S0192415X14500323.
  • Dong X, Brahma RK, Fang C, et al. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci. 2022;13(15):4239–4269. doi: 10.1039/d2sc01003h.
  • Chawla SP, Goel S, Chow W, et al. A phase 1b dose escalation trial of NC-6300 (nanoparticle epirubicin) in patients with advanced solid tumors or advanced, metastatic, or unresectable soft-tissue sarcoma. Clin Cancer Res. 2020;26(16):4225–4232. doi: 10.1158/1078-0432.CCR-20-0591.
  • Mukai H, Kogawa T, Matsubara N, et al. A first-in-human phase 1 study of epirubicin-conjugated polymer micelles (K-912/NC-6300) in patients with advanced or recurrent solid tumors. Invest New Drugs. 2017;35(3):307–314. doi: 10.1007/s10637-016-0422-z.
  • Nakanishi T, Fukushima S, Okamoto K, et al. Development of the polymer micelle carrier system for doxorubicin. J Control Release. 2001;74(1–3):295–302. doi: 10.1016/s0168-3659(01)00341-8.
  • Matsumura Y, Hamaguchi T, Ura T, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer. 2004;91(10):1775–1781. doi: 10.1038/sj.bjc.6602204.
  • Atrafi F, Dumez H, Mathijssen RHJ, et al. A phase I dose-escalation and pharmacokinetic study of a micellar nanoparticle with entrapped docetaxel (CPC634) in patients with advanced solid tumours. J Control Release. 2020;325:191–197. doi: 10.1016/j.jconrel.2020.06.020.
  • Boere I, Vergote I, Hanssen R, et al. CINOVA: a phase II study of CPC634 (nanoparticulate docetaxel) in patients with platinum resistant recurrent ovarian cancer. Int J Gynecol Cancer. 2023;33(8):1247–1252. doi: 10.1136/ijgc-2023-004308.
  • Piha-Paul SA, Thein KZ, De Souza P, et al. First-in-human, phase I/IIa study of CRLX301, a nanoparticle drug conjugate containing docetaxel, in patients with advanced or metastatic solid malignancies. Invest New Drugs. 2021;39(4):1047–1056. doi: 10.1007/s10637-021-01081-x.
  • Voss MH, Hussain A, Vogelzang N, et al. A randomized phase II trial of CRLX101 in combination with bevacizumab versus standard of care in patients with advanced renal cell carcinoma. Ann Oncol. 2017;28(11):2754–2760. doi: 10.1093/annonc/mdx493.
  • Gayam SR, Venkatesan P, Sung YM, et al. An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo. Nanoscale. 2016;8(24):12307–12317. doi: 10.1039/c6nr03525f.
  • Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–1534. doi: 10.1002/adma.201104763.
  • Xie M, Shi H, Li Z, et al. A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids Surf B Biointerfaces. 2013;110:138–147. doi: 10.1016/j.colsurfb.2013.04.009.
  • Li J, Du X, Zheng N, et al. Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity. Colloids Surf B Biointerfaces. 2016;141:374–381. doi: 10.1016/j.colsurfb.2016.02.009.
  • Yang C, Shi Z, Feng C, et al. An adjustable pH-responsive drug delivery system based on self-assembly polypeptide-modified mesoporous silica. Macromol Biosci. 2020;20(6):e2000034.
  • Chen C, Sun W, Wang X, et al. Rational design of curcumin loaded multifunctional mesoporous silica nanoparticles to enhance the cytotoxicity for targeted and controlled drug release. Mater Sci Eng C Mater Biol Appl. 2018;85:88–96. doi: 10.1016/j.msec.2017.12.007.
  • Manatunga DC, Godakanda VU, Silva RM, et al. Recent developments in the use of organic–inorganic nanohybrids for drug delivery. WIREs Nanomed Nanobiotechnol. 2019;12(3):e1605. doi: 10.1002/wnan.1605.
  • Wu H, Zhu L, Torchilin VP. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials. 2013;34(4):1213–1222. doi: 10.1016/j.biomaterials.2012.08.072.
  • Yang H, Chen Y, Chen Z, et al. Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomater Sci. 2017;5(5):1001–1013. doi: 10.1039/c7bm00043j.
  • Sanchez-Ballester NM, Bataille B, Soulairol I. Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: structure-function relationship. Carbohydr Polym. 2021;270:118399. doi: 10.1016/j.carbpol.2021.118399.
  • Li Z, Guo J, Qi G, et al. pH-responsive drug delivery and imaging study of hybrid mesoporous silica nanoparticles. Molecules. 2022;27(19):6519. doi: 10.3390/molecules27196519.
  • Maleki Dizaj S, Sharifi S, Ahmadian E, et al. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin Drug Deliv. 2019;16(4):331–345. doi: 10.1080/17425247.2019.1587408.
  • Peng H, Li K, Wang T, et al. Preparation of hierarchical mesoporous CaCO3 by a facile binary solvent approach as anticancer drug carrier for etoposide. Nanoscale Res Lett. 2013;8(1):321. doi: 10.1186/1556-276X-8-321.
  • Liang P, Liu CJ, Zhuo RX, et al. Self-assembled inorganic/organic hybrid nanoparticles with multi-functionalized surfaces for active targeting drug delivery. J Mater Chem B. 2013;1(34):4243–4250. doi: 10.1039/c3tb20455c.
  • Xiong HM. ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater. 2013;25(37):5329–5335. doi: 10.1002/adma.201301732.
  • Zhang ZY, Xu YD, Ma YY, et al. Biodegradable ZnO@polymer core-shell nanocarriers: pH-triggered release of doxorubicin in vitro. Angew Chem Int Ed Engl. 2013;52(15):4127–4131. doi: 10.1002/anie.201300431.
  • Huang S, Laoukili J, Epping MT, et al. ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell. 2009;15(4):328–340. doi: 10.1016/j.ccr.2009.02.023.
  • Matthay KK, Reynolds CP, Seeger RC, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J Clin Oncol. 2009;27(7):1007–1013. doi: 10.1200/JCO.2007.13.8925.
  • Raza K, Singh B, Singla S, et al. Nanocolloidal carriers of isotretinoin: antimicrobial activity against Propionibacterium acnes and dermatokinetic modeling. Mol Pharm. 2013;10(5):1958–1963. doi: 10.1021/mp300722f.
  • Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47(1):139–151. doi: 10.1016/j.ejps.2012.05.010.
  • Zhao W, Wei JS, Zhang P, et al. Self-assembled ZnO nanoparticle capsules for carrying and delivering isotretinoin to cancer cells. ACS Appl Mater Interfaces. 2017;9(22):18474–18481. doi: 10.1021/acsami.7b02542.
  • Ye DX, Ma YY, Zhao W, et al. ZnO-based nanoplatforms for labeling and treatment of mouse tumors without detectable toxic side effects. ACS Nano. 2016;10(4):4294–4300. doi: 10.1021/acsnano.5b07846.
  • Takakura Y, Takagi A, Hashida M, et al. Disposition and tumor localization of mitomycin C-dextran conjugates in mice. Pharm Res. 1987;4(4):293–300. doi: 10.1023/a:1016489002393.
  • Zhang X, Yin J, Peng C, et al. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon. 2011;49:986–995.
  • Zhao X, Liu L, Li X, et al. Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin. Langmuir. 2014;30(34):10419–10429. doi: 10.1021/la502952f.
  • Zhao X, Yang L, Li X, et al. Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug. Bioconjug Chem. 2015;26(1):128–136. doi: 10.1021/bc5005137.
  • Kyu Shim M, Yang S, Sun IC, et al. Tumor-activated carrier-free prodrug nanoparticles for targeted cancer immunotherapy: preclinical evidence for safe and effective drug delivery. Adv Drug Deliv Rev. 2022;183:114177. doi: 10.1016/j.addr.2022.114177.
  • Fu S, Li G, Zang W, et al. Pure drug nano-assemblies: a facile carrier-free nanoplatform for efficient cancer therapy. Acta Pharm Sin B. 2022;12(1):92–106. doi: 10.1016/j.apsb.2021.08.012.
  • Huang P, Wang D, Su Y, et al. Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J Am Chem Soc. 2014;136(33):11748–11756. doi: 10.1021/ja505212y.
  • Fang Q, Xu X, Yang L, et al. Self-assembled 5-fluorouracil-cinnamaldehyde nanodrugs for greatly improved chemotherapy in vivo. J Biomater Appl. 2021;36(4):592–604. doi: 10.1177/0885328221989539.
  • Zou L, Liu X, Li J, et al. Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy. Theranostics. 2021;11(9):4171–4186. doi: 10.7150/thno.42260.
  • Zhou M, Wei W, Chen X, et al. pH and redox dual responsive carrier-free anticancer drug nanoparticles for targeted delivery and synergistic therapy. Nanomedicine. 2019;20:102008. doi: 10.1016/j.nano.2019.04.011.
  • Xiao Y, Liu J, Guo M, et al. Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance. Nanoscale. 2018;10(26):12639–12649. doi: 10.1039/c8nr02700e.
  • Fan Z, Wang Y, Xiang S, et al. Dual-self-recognizing, stimulus-responsive and carrier-free methotrexate-mannose conjugate nanoparticles with highly synergistic chemotherapeutic effects. J Mater Chem B. 2020;8(9):1922–1934. doi: 10.1039/d0tb00049c.
  • Li X, Yu N, Li J, et al. Novel “carrier-free” nanofiber codelivery systems with the synergistic antitumor effect of paclitaxel and tetrandrine through the enhancement of mitochondrial apoptosis. ACS Appl Mater Interfaces. 2020;12(9):10096–10106. doi: 10.1021/acsami.9b17363.
  • Wang J, Qiao W, Zhao H, et al. Paclitaxel and betulonic acid synergistically enhance antitumor efficacy by forming co-assembled nanoparticles. Biochem Pharmacol. 2020;182:114232. doi: 10.1016/j.bcp.2020.114232.
  • Yan G, Chen R, Xiong N, et al. pH-sensitive small molecule nanodrug self-assembled from amphiphilic vitamin B6-E analogue conjugate for targeted synergistic cancer therapy. Colloids Surf B Biointerfaces. 2020;191:111000. doi: 10.1016/j.colsurfb.2020.111000.
  • Gao J, Qiao Z, Liu S, et al. A small molecule nanodrug consisting of pH-sensitive ortho ester-dasatinib conjugate for cancer therapy. Eur J Pharm Biopharm. 2021;163:188–197. doi: 10.1016/j.ejpb.2021.04.008.
  • Lan JS, Qin YH, Liu L, et al. A carrier-free folate receptor-targeted ursolic acid/methotrexate nanodelivery system for synergetic anticancer therapy. Int J Nanomedicine. 2021;16:1775–1787. doi: 10.2147/IJN.S287806.
  • Mei H, Li J, Cai S, et al. Mitochondria-acting carrier-free nanoplatform self-assembled by alpha-tocopheryl succinate carrying cisplatin for combinational tumor therapy. Regen Biomater. 2021;8(4):rbab029.
  • Yang L, Xu J, Xie Z, et al. Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian J Pharm Sci. 2021;16(6):762–771. doi: 10.1016/j.ajps.2021.08.001.
  • Xin C, Zhang Y, Bao M, et al. Novel carrier-free, charge-reversal and DNA-affinity nanodrugs for synergistic cascade cancer chemo-chemodynamic therapy. J Colloid Interface Sci. 2022;606(Pt 2):1488–1508. doi: 10.1016/j.jcis.2021.08.121.
  • Hassan S, Prakash G, Ozturk A, et al. Evolution and clinical translation of drug delivery nanomaterials. Nano Today. 2017;15:91–106. doi: 10.1016/j.nantod.2017.06.008.
  • Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30(16):R921–r925. doi: 10.1016/j.cub.2020.06.081.
  • Peng S, Xiao F, Chen M, et al. Tumor-microenvironment-responsive nanomedicine for enhanced cancer immunotherapy. Adv Sci. 2022;9(1):e2103836. doi: 10.1002/advs.202103836.
  • Morarasu S, Morarasu BC, Ghiarasim R, et al. Targeted cancer therapy via pH-functionalized nanoparticles: a scoping review of methods and outcomes. Gels. 2022;8(4):232. doi: 10.3390/gels8040232.
  • Karaosmanoglu S, Zhou M, Shi B, et al. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release. 2021;329:805–832. doi: 10.1016/j.jconrel.2020.10.014.
  • Yang MY, Zhao RR, Fang YF, et al. Carrier-free nanodrug: a novel strategy of cancer diagnosis and synergistic therapy. Int J Pharm. 2019;570:118663. doi: 10.1016/j.ijpharm.2019.118663.
  • Li B, Shao H, Gao L, et al. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv. 2022;29(1):2130–2161. doi: 10.1080/10717544.2022.2094498.
  • Cui T, Zhang S, Sun H. Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol Rep. 2017;37(2):1253–1260. doi: 10.3892/or.2017.5345.
  • Martínez-Edo G, Fornaguera C, Borrós S, et al. Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles for the Co-delivery of DOX/CPT-PEG for targeting HepG2 cells. Pharmaceutics. 2020;12(11):1048. doi: 10.3390/pharmaceutics12111048.
  • Younis MA, Tawfeek HM, Abdellatif AAH, et al. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181:114083. doi: 10.1016/j.addr.2021.114083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.