217
Views
1
CrossRef citations to date
0
Altmetric
Review

Cytokines in terms of QSAR. Review, evaluation and comparative studies

&
Pages 883-962 | Received 23 Jan 2013, Accepted 15 Apr 2013, Published online: 07 Oct 2013

References

  • J. Tavernier, R. Devos, S. Cornelis, T. Tuypens, J. Van der Heyden, W. Fiers and G. Plaetinck, A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF, Cell 66, (1991), 1175–1184.
  • C. Sanderson, Interleukin-5, Eosinophils and Disease, Blood 79, (1992), 3101–3109.
  • J.A. Denburg, J.E. Silver and J.S. Abrams, Interleukin-5 is a human basophilopoietin: Induction of istamine content and basophilic differentiation of HL-60 cells and of peripheral blood basophil-eosinophil progenitors, Blood 77, (1991), 1462–1468.
  • Y. Yamagushi, T. Suda, S. Onta, K. Tominaga, Y. Miura and T. Kasahara, Analysis of the survival of mature human eosinophils: Interleukin-5 prevents apoptosis in mature human eosinophils, Blood 78, (1991), 2542–2547.
  • G.M. Walsh, A. Hartnell, A.J. Wardlaw, K. Kurihara, C.J. Sanderson and A.B. Kay, IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leukocyte integrin (CD 11/18)-dependent manner, Immunology 71, (1990), 258–265.
  • T. Fujisawa, R. Abu-Ghazaleh, H. Kita, C.J. Sanderson and G.J. Gleich, Regulatory effect of cytokines on eosinophil degranulation, J. Immunol. 144, (1990), 642–646.
  • E.J. Clutterbuck, E.M. Hirst and C.J. Sanderson, Human interleukin 5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: Comparison and interaction with IL-1, IL-3, IL-6 and GMCSF, Blood 73, (1989), 1504–1512.
  • J. Corren, Anti-interleukin 5 antibody therapy in asthma and allergies, Curr. Opin. Allergy Clin. Immunology 11, (2011), 565–570.
  • R.P. Schleimer and B.S. Bochner, The effect of glucocorticoids on human eosinophils, J. Allergy Clin. Immunol. 94, (1994), 1202–1213.
  • H.M. Yang, H.R. Shin, S.H. Cho, G.Y. Song, I.J. Lee, M.K. Kim, S.H. Lee, J.C. Ryu, Y. Kim and S.H. Yung, The role of the hydrophobic group on ring A of chalcones in the inhibition of interleukin-5, Arch. Pharm. Res. 29, (2006), 969–976.
  • (a) H.M. Yang, H.R. Shin, S.H. Cho, S.C. Bang, G.Y. Song, J.H. Ju, M.K. Kim, S.H. Lee, J.C. Ryu, Y. Kim, and S.H. Jung, Structural requirement of chalcones for the inhibitory activity of interleukin-5, Bioorg. Med. Chem. 15 (2007), pp. 104–111; (b) 15th Hellenic Symposium on Medicinal Chemistry, QSAR of Interleukin inhibitors: a tool for anti-inflammatory drug design, 25–27 May 2012, Book of abstracts pp.130, poster 73.
  • R. Devos, Y. Guisez, G. Plaetnick, S. Cornelis, J. Tavernier, J. Van der Heyden, L.H. Forey and J.E. Scheffler, Covalent modification of the interleukin-5 receptor by isothiazolones leads to inhibition of the binding of interleukin-5, Eur. J. Biochem. 225, (1994), 635–640.
  • S.H. Jung, S.H. Cho, T.H. Dang, J.H. Lee, J.H. Ju, M.K. Kim, S.H. Lee, J.C. Ryu and Y. Kim, Structural requirements of isoflavonones for the inhibitory activity of interleukin-5, Eur. J. Med. Chem. 38, (2003), 537–545.
  • B. Min, S.R. Oh, H.K. Lee, K. Takatsu, I.M. Chang, K.R. Min and Y. Kim, Sophoricoside analogs as the IL-5 inhibitors from Sophora japonica, Planta Med. 65, (1999), 408–412.
  • P. Thanigaimalai, K.C. Lee, V.K. Sharma, J.H. Yun, Y. Kim and S.H. Jung, Design and synthesis of novel hydroxyalkylaminomethylchromones for their IL-5 inhibitory activity, Bioorg. Med. Chem. 18, (2010), 4625–4629.
  • C. Joo, E. Venkateswararao, K.C. Lee, V.K. Sharma, M.S. Kyung, Y. Kim and S.H. Jung, Novel interleukin-5 inhibitors based on hydroxyethylaminomethyl-4H-chromen-4-one scaffold, Bioorg. Med. Chem. 20, (2012), 5757–5762.
  • P. Thanigaimalai, T.A. Le Hoang, K.C. Lee, V.K. Sharma, S.C. Bang, J.H. Yun, E. Roh, Y. Kim and S.H. Jung, Synthesis and evaluation of novel chromone analogs for their inhibitory activity against interleukin-5, Eur. J. Med. Chem. 45, (2010), 2531–2536.
  • P. Thanigaimalai, H.M. Yang, V.K. Sharma, Y. Kim and S.H. Jung, The scope of thallium nitrate oxidative cyclization of chalcones and evaluation of isoflavone and aurone analogs for their inhibitory activity against interleukin-5, Bioorg. Med. Chem. 18, (2010), 4441–4445.
  • J. Corren, Inhibition of Interleukin-5 for the treatment of eosinophilic diseases, Discov. Med. 13, (2012), 305–312.
  • T. Hirano, Interleukin 6 and its receptor: Ten years later, Int. Rev. Immunol. 16, (1998), 249–284.
  • S.C.R. Dominic, Seminars in Arthritis and Rheumatism, Vol. 38, Elsevier, Amsterdam, 2009, pp. 382-386.
  • B. Handraskar, D.H. Mitchell, J.T. Colston and G.L. Freeman, Regulation of CCAAT/Enhancer binding protein, interleukin-6, interleukin-6 receptor, and gp130 expression during myocardial ischemia/reperfusion, Circulation 99, (1999), 427–433.
  • N. Rösler, I. Wichart and K.A. Jellinger, Intra vita lumbar and post mortem ventricular cerebrospinal fluid immunoreactive interleukin-6 in Alzheimer’s disease patients, Acta. Neurol. Scand. 103, (2001), 126–130.
  • M.M. Jahromi, B.A. Millward and A.G. Demaine, A polymorphism in the promoter region of the gene for interleukin-6 is associated with susceptibility to type 1 diabetes mellitus, J. Interferon Cytokine Res. 20, (2000), 885–888.
  • B.P. Bandgar, S.A. Patil, J.V. Totre, B.L. Korbad, R.N. Gacche, B.S. Hote, S.S. Jalde and H.V. Chavan, Synthesis and biological evaluation of nitrogen-containing benzophenone analogues as TNF-alpha and IL-6 inhibitors with antioxidant activity, Bioorg. Med. Chem. Lett. 20, (2010), 2292–2296.
  • B.P. Bandgar, S.A. Patil, B.L. Korbad, S.H. Nile and C.N. Khobragade, Synthesis and biological evaluation of beta-chloro vinyl chalcones as inhibitors of TNF-alpha and IL-6 with antimicrobial activity, Eur. J. Med. Chem. 45, (2010), 2629–2633.
  • B.P. Bandgar and S.S. Gawande, Synthesis and biological screening of a combinatorial library of β-chlorovinyl chalcones as anticancer, anti-inflammatory and antimicrobial agents, Bioorg. Med. Chem. Lett. 18, (2010), 2060–2065.
  • K. Upadhyay, A. Bavishi, S. Thakrar, A. Radadiya, H. Vala, S. Parekh, D. Bhavsar, M. Savant, M. Parmar, P. Adlakha and A. Shah, Synthesis and biological evaluation of 4-styrylcoumarin derivatives as inhibitors of TNF-a and IL-6 with anti-tubercular activity, Bioorg. Med. Chem. Lett. 21, (2011), 2547–2549.
  • R.H. Tale, A.H. Rodge, G.D. Hatnapure and A.P. Keche, The novel 3,4-dihydropyrimidin-2(1H)-one urea derivatives of N-aryl urea: synthesis, anti-inflammatory, antibacterial and antifungal activity evaluation, Bioorg. Med. Chem. Lett. 21, (2011), 4648–4651.
  • B.P. Bandgar, S.S. Gawande, R.G. Bodale, J.V. Totre and C.N. Khobragade, Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents, Bioorg. Med. Chem. Lett. 18, (2010), 1364–1370.
  • C. Chaulet, C. Croix, D. Alagille, S. Normad, A. Delwail, L. Favot, J.C. Lecron and M.C. Viaud-Massuard, Design, synthesis and biological evaluation of new thalidomide analogues as TNF-α and IL-6 production inhibitors, Bioorg. Med. Chem. Lett. 21, (2011), 1019–1022.
  • S.B. Bharate, T.R. Mahajan, Y.R. Gole, M. Nambiar, T.T. Matan, A. Kulkarni-Almeida, S. Balachandran, H. Junjappa, A. Balakrishnan and R.A. Vishwakarma, Synthesis and evaluation of pyrazolo[3,4-b]pyridines and its structural analogues as TNF-α and IL-6 inhibitors, Bioorg. Med. Chem. Lett. 16, (2008), 7167–7176.
  • J.R. Tagat, S.W. McCombie, B.E. Barton, J. Jackson and J. Shortall, Synthetic inhibitors of interleukin-6 II: 3,5-diaryl pyridines and meta-terphenyls, Bioorg. Med. Chem. Lett. 5, (1995), 2143–2146.
  • B.P. Bandgar, S.A. Patil, B.L. Korbad, S.C. Biradar, S.N. Nile and C.N. Khobragade, Synthesis and biological evaluation of novel series of 2,2-bisaminomethylated aurone analogues as anti-inflammatory and antimicrobial agents, Eur. J. Med. Chem. 45, (2010), 3223–3227.
  • B.P. Bandgar, S.S. Gawande, R.G. Bodale, N.M. Gawande and C.N. Khobragade, Synthesis and biological evaluation of novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents, Bioorg. Med. Chem. 17, (2009), 8168–8173.
  • J.R. Tagat, D.V. Nazareno, S.W. McCombie, B.E. Barton, J. Shortall and J. Jackson, Synthetic inhibitors of interleukin-6 I: 2,3,7,8-tetrahydro-4-aryl-1H-cyclopent[e]imidazo[1,2-a]-pyridin-5(6H)-one and related compounds, Bioorg. Med. Chem. Lett. 5, (1995), 2139–2142.
  • T. Tanaka, M. Narazaki and T. Kishimoto, Anti-interleukin-6 receptor antibody, tocilizumab, for the treatment of autoimmune diseases, FEBS Letters 585, (2011), 3699–3709.
  • P.M. Murphy, M. Baggiolini, I.F. Charo, C.A. Hébert, R. Horuk, K. Matsushima, L.H. Miller, J.J. Oppenheim and C.A. Power, International Union of Pharmacology. XXII Nomenclature for chemokine receptors, Pharmacol. Rev. 52, (2000), 145–176.
  • B. Moser, M. Wolf, A. Walz and P. Loetsher, Chemokines: Multiple levels of leukocyte migration control, Trends Immunol. 25, (2004), 75–84.
  • D.E. Hu, Y. Hori and T.P. Fan, Interleukin-8 stimulates angiogenesis in rats, Inflammation 17, (1993), 135–143.
  • A.E. Koch, P.J. Polverini, S.L. Kunkel, L.A. Harlow, L.A. DiPietro, V.M. Elner, S.G. Elner and R.M. Strieter, Inteleukin-8 as a macrophage-derived mediator of angiogenesis, Science 258, (1992), 1798–1801.
  • R.M. Strieter, S.L. Kunkel, V.M. Elner, C.L. Martonyi, A.E. Koch, P.J. Polverini and S.G. Elner, Interleukin-8. A corneal factor that induces neovascularization, Am. J. Pathol. 141, (1992), 1279–1284.
  • A.E. Koch, M.V. Violin, J.M. Woods, S.L. Kunkel, M.A. Connors, L.A. Harlow, D.C. Woodruff, M.D. Burdick and R.M. Strieter, Regulation of angiogenesis by C-X-C chemokines interleukin-8 and epithelial neutrophil activating peptide-78 in the rheumatoid joint, Arthritis Rheum. 44, (2001), 31–40.
  • M.L. Guistizieri, F. Mascia, A. Frezzolini, O. DePità, L.M. Chinni, A. Giannetti, G. Girolomoni and S. Pastore, Keratinocytes from patients with atopic dermatitis and psoriasis show a distinct chemokine production profile in response to T-cell derived cytokines, J. Allergy Clin. Immunol. 107, (2001), 871–877.
  • N. Hirani, F. Antonicelli, R.M. Strieter, M.S. Wiesener, P.J. Ratcliffe, C. Haslett and S.C. Donnelly, The regulation of interleukin-8 by hypoxia in human macrophages—a potential role in the pathogenesis of the acute respiratory distress syndrome (ARDS), Mol. Med. 7, (2001), 685–697.
  • W.I. De Boer, J.K. Sont, A. Van Schadewijk, J. Stolk, J.H. Van Krieken and P.S. Hiemstra, Monocyte chemoattractant protein, interleukin 8 and chronic airways inflammation in COPD, J. Pathol. 190, (2000), 619–626.
  • J.J. Li, Small molecule interleukin-8 modulators, Expert Opin. Ther. Pat. 2001, United Kingdom, Vol. 11, No.12, pp. 1905–1910.
  • W.E. Holmes, J. Lee, W.J. Kwang, G.C. Rice and W.I. Wood, Structure and functional expression of human interleukin-8 receptor, Science 253, (1991), 1278–1280.
  • P.M. Murphy and H.L. Tiffany, Cloning of complementary DNA encoding a functional human interleukin-8 receptor, Science 253, (1991), 1280–1283.
  • T. Yoshimura, K. Matsushima, J.J. Opppenheim and E.J. Leonard, Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: Partial characterization and separation from interleukin 1(IL 1), J. Immunol. 139, (1987), 788–793.
  • C.G. Larsen, A.O. Anderson, E. Appella, J.J. Oppenheim and K. Matsushima, The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes, Science 243, (1989), 1464–1466.
  • R.A. Warringa, L. Koenderman, P.T. Kok, J. Kreukniet and P.L. Bruinjzeel, Modulation and induction of eosinophil chemotaxis by granulocyte-macrophage colony-stimulating factor and interleukin-3, Blood 77, (1991), 2694–2700.
  • M.V. White, T. Yoshimura, W. Hook, M.A. Kaliner and E.J. Leonard, Neutrophil attractant/activation protein-1 (NAP-1) causes human basophil histamine release, Immunol. Lett. 22, (1989), 151–154.
  • A. Walz, B. Dewald, V. Von Tscharner and M. Baggiolini, Effects of the neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III and platelet factor 4 on human neutrophils, J. Exp. Med. 170, (1989), 1745–1750.
  • P. Peveri, A. Walz, B. Dewald and M. Baggiolini, A novel neutrophil-activating factor produced by human mononuclear phagocytes, J. Exp. Med. 167, (1988), 1547–1559.
  • E.J. Leonard, T. Yoshimura, S. Tanaka and M. Raffeld, Neutrophil recruitment by intradermally injected neutrophil attractant/activation protein-1, J. Invest. Dermatol. 96, (1991), 690–694.
  • J.J. Li, K.G. Carson, B.K. Trivedi, W.S. Yue, Q. Ye, R.A. Glynn, S.R. Miller, D.T. Connor, B.D. Roth, J.R. Luly, J.E. Low, D.J. Heilig, W. Yang, S. Qin and S. Hunt, Synthesis and structure-activity relationship of 2-amino-3-heteroaryl-quinoxalines as non-peptide, small-molecule antagonists for interleukin-8 receptor, Bioorg. Med. Chem. 11, (2003), 3777–3790.
  • K.K. Ho, D.S. Auld, A.C. Bohnstedt, P. Conti, W. Dokter, S. Erickson, D. Feng, J. Inglese, C. Kingsbury, S.G. Kultgen, R.Q. Liu, C.M. Masterson, M. Ohlmeyer, Y. Rong, M. Rooseboom, A. Roughton, P. Samana, M.J. Smit, E. Son, J. Van der Louw, G. Vogel, M. Webb, J. Wijkmans, and M. You, Imidazolylpyrimidine based CXCR2 chemokine receptor antagonists, Bioorg. Med. Chem. Lett. 16 (2006), pp. 2724–2728;
  • Y. Wang, J. Busch-Petersen, F. Wang, L. Ma, W. Fu, J.K. Kerns, J. Jin, M.R. Palovich, J.K. Shen, M. Burman, J.J. Foley, D.B. Schmidt, G.E. Hunsberger, H.M. Sarau and K.L. Widdowson, 3-Arylamino-2H-1,2,4-benzothiadiazin-5-ol 1,1-dioxides as novel and selective CXCR2 antagonists, Bioorg. Med. Chem. Lett. 17, (2007), 3864–3867.
  • G. Lai, J.R. Merritt, Z. He, D. Feng, J. Chao, M.F. Czarniecki, L.L. Rokosz, T.M. Stauffer, D. Rindgen and A.G. Taveras, Synthesis and structure-activity relationships of new disubstituted phenyl-containing 3,4-diamino-3-cyclobutene-1,2-diones as CXCR2 receptor antagonists, Bioorg. Med. Chem. Lett. 18, (2008), 1864–1868.
  • C. Aki, J. Chao, J.A. Ferreira, M.P. Dwyer, Y. Yu, J. Chao, R.J. Merritt, G. Lai, M. Wu, R.W. Hipkin, X. Fan, W. Gonsiorek, J. Fossetta, D. Rindgen, J. Fine, D. Lundell, A.G. Taveras and P. Biju, Diaminocyclobutenediones as potent and orally bioavailable CXCR2 receptor antagonists: SAR in the phenolic amide region, Bioorg. Med. Chem. Lett. 19, (2009), 4446–4449.
  • M.P. Dwyer, Y. Yu, J. Chao, C. Aki, J. Chao, P. Biju, V. Girijavallabhan, D. Rindgen, R. Bond, R. Mayer-Ezel, J. Jakway, R.W. Hipkin, J. Fossetta, W. Gonsiorek, H. Bian, X. Fan, C. Terminelli, J. Fine, D. Lundell, J.R. Merritt, L.L. Rokosz, B. Kaiser, G. Li, W. Wang, T. Stauffer, L. Ozgur, J. Baldwin and A.G. Taveras, Discovery of 2-hydroxy-N, N-dimethyl-3-{2-[[(R)-1-(5-methylfuran-2-yl)propyl]amino]-3,4-dioxocyclobut-1-enylamino}benzamide (SCH 527123): a potent, orally bioavailable CXCR2/CXCR1 receptor antagonist, J. Med. Chem. 49, (2006), 7603–7606.
  • J.R. Merritt, L.L. Rokosz, K.H. Jr Nelson, B. Kaiser, W. Wang, T.M. Stauffer, L.E. Ozgur, A. Schilling, G. Li, J.J. Baldwin, A.G. Taveras, M.P. Dwyer and J. Chao, Synthesis and structure-activity relationships of 3,4-diaminocyclobut-3-ene-1,2-dione CXCR2 antagonists, Bioorg. Med. Chem. Lett. 16, (2006), 4107–4110.
  • J. Chao, A.G. Taveras, J. Chao, C. Aki, M. Dwyer, Y. Yu, B. Purakkattle, D. Rindgen, J. Jakway, W. Hipkin, J. Fossetta, X. Fan, D. Lundell, J. Fine, M. Minnicozzi, J. Philips and J.R. Merritt, C(4)-alkyl substituted furanyl cyclobutenediones as potent, orally bioavailable CXCR2 and CXCR1 receptor antagonists, Bioorg. Med. Chem. Lett. 17, (2007), 3778–3783.
  • Y. Yu, M.P. Dwyer, J. Chao, C. Aki, J. Chao, B. Purakkattle, D. Rindgen, R. Bond, R. Mayer-Ezel, J. Jakway, H. Qiu, R.W. Hipkin, J. Fossetta, W. Gonsiorek, H. Bian, X. Fan, C. Terminelli, J. Fine, D. Lundell, J.R. Merritt, Z. He, G. Lai, M. Wu and A. Taveras, Synthesis and structure-activity relationships of heteroaryl substituted-3,4-diamino-3-cyclobut-3-ene-1,2-dione CXCR2/CXCR1 receptor antagonists, Bioorg. Med. Chem. Lett. 18, (2008), 1318–1322.
  • P. Biju, A.G. Taveras, M.P. Dwyer, Y. Yu, J. Chao, R.W. Hipkin, X. Fan, D. Rindgen, J. Fine and D. Lundell, Fluoroalkyl α side chain containing 3,4-diamino-cyclobutenediones as potent and orally bioavailable CXCR2-CXCR1 dual antagonists, Bioorg. Med. Chem. Lett. 19, (2009), 1431–1433.
  • S. Liu, Y. Liu, H. Wang, Y. Ding, H. Wu, J. Dong, A. Wong, S.H. Chen, G. Li, M. Chan, N. Sawyer, F.G. Gervais, M. Henault, S. Kargman, L.L. Bedard, Y. Han, R. Friesen, R.B. Lobell and D.M. Stout, Design, synthesis and evaluation of novel 3-amino-4-hydrazine-cyclobut-3-ene-1,2-diones as potent and selective CXCR2 chemokine receptor antagonists, Bioorg. Med. Chem. Lett. 19, (2009), 5741–5745.
  • F. Hunt, C. Austin, R. Austin, R. Bonnert, P. Cage, J. Christie, M. Christie, C. Dixon, S. Hill, R. Jewell, I. Martin, D. Robinson and P. Willis, SAR studies on thiazolo[4,5-d]pyrimidine based CXCR2 antagonists involving a novel tandem displacement reaction, Bioorg. Med. Chem. Lett. 17, (2007), 2731–2734.
  • A. Baxter, A. Cooper, E. Kinchin, K. Moakes, J. Unitt and A. Wallace, Hit-to-Lead studies: The discovery of potent, orally bioavailable thiazolopyrimidine CXCR2 receptor antagonists, Bioorg. Med. Chem. Lett. 16, (2006), 960–963.
  • P. Biju, A.G. Taveras, Y. Yu, J. Zheng, R.W. Hipkin, J. Fossetta, X. Fan, J. Fine and D. Lundell, 3,4-Diamino-1,2,5-thiadiazole as potent and selective CXCR2 antagonists, Bioorg. Med. Chem. Lett. 19, (2009), 1434–1437.
  • P. Biju, A. Taveras, Y. Yu, J. Zheng, J. Chao, D. Rindgen, J. Jakway, R.W. Hipkin, J. Fossetta, X. Fan, J. Fine, H. Qiu, J.R. Merritt and J.J. Baldwin, 3,4-Diamino-2,5-thiadiazole-1-oxides as potent CXCR2/CXCR1 antagonists, Bioorg. Med. Chem. Lett. 18, (2008), 228–231.
  • M.R. Sablone, M.C. Cesta, A. Moriconi, A. Aramini, C. Bizzarri, C. Di Giacinto, R. Di Bitondo, I. Gloaguen, M. Aschi, M. Crucianelli, R. Bertini and M. Allegretti, Structure-activity relationship of novel phenylacetic CXCR1 inhibitors, Bioorg. Med. Chem. Lett. 19, (2009), 4026–4030.
  • H. Nie, K.L. Widdowson, M.R. Palovich, W. Fu, J.D. Elliott, D.L. Bryan, M. Burman, D.B. Schmidt, J.J. Foley, H.M. Sarau and J. Busch-Petersen, N, N’-Diarylcyanoguanidines as antagonists of the CXCR2 and CXCR1 chemokine receptors, Bioorg. Med. Chem. Lett. 16, (2006), 5513–5516.
  • M.P. Winters, C. Crysler, N. Subasinghe, D. Ryan, L. Leong, S. Zhao, R. Donatelli, E. Yurkow, M. Mazzulla, L. Boczon, C.L. Manthey, C. Molloy, H. Raymond, L. Murray, L. McAlonan and B. Tomczuk, Carboxylic acid bioisosteres acylsulfonamides, acylsulfamides and sulfonylureas as novel antagonists of the CXCR2 receptor, Bioorg. Med. Chem. Lett. 18, (2008), 1926–1930.
  • Q. Jin, H. Nie, B.W. McCleland, K.L. Widdowson, M.R. Palovich, J.D. Elliot, R.M. Goodman, M. Burman, H.M. Sarau, K.W. Ward, M. Nord, B.M. Orr, P.D. Gorycki and J. Busch-Petersen, Discovery of potent and orally bioavailable N.N’-diarylurea antagonists for the CXCR2 chemokine receptor, Bioorg. Med. Chem. Lett. 14, (2004), 4375–4378.
  • M.A. Weidner-Wells, T.C. Henninger, S.A. Fraga-Spano, C.M. Boggs, M. Matheis, D.M. Ritchie, D.C. Argentieri, M.P. Wachter and D.J. Hlasta, Synthesis and structure-activity relationships of 3,5-diarylisoxazoles and 3,5-diaryl-1,2,4-oxadiazoles, novel classes of small molecule interleukin-8 (IL-8) receptor antagonists, Bioorg. Med. Chem. Lett. 14, (2004), 4307–4311.
  • B.W. McCleland, R.S. Davis, M.R. Palovich, K.L. Widdowson, M.L. Werner, M. Burman, J.J. Foley, D.B. Schmidt, H.M. Sarau, M. Rogers, K.L. Salyers, P.D. Gorycki, T.J. Roethke, G.J. Stelman, L.M. Azzarano, K.W. Ward and J. Busch-Peterson, Comparison of N.N’-diarylsquaramides and N, N’-diarylureas as antagonists of the CXCR2 chemokine receptor, Bioorg. Med. Chem. Lett. 17, (2007), 1713–1717.
  • N.S. Cutshall, R. Ursino, K.A. Kucera, J. Latham and N.C. Ihle, Nicotinamide N-Oxides as CXCR2 antagonists, Bioorg. Med. Chem. Lett. 11, (2001), 1951–1954.
  • A. Baxter, C. Bennion, J. Bent, K. Boden, S. Brough, A. Cooper, E. Kinchin, N. Kindon, T. McInally, M. Mortimore, B. Roberts and J. Unitt, Hit-to-lead studies: the discovery of potent, orally bioavailable triazolethiol CXCR2 receptor antagonists, Bioorg. Med. Chem. Lett. 13, (2003), 2625–2628.
  • M. Allegretti, R. Bertini, M.C. Cesta, C. Bizarri, R. Di Bitondo, V. Di Cioccio, E. Galliera, V. Berdini, A. Topai, G. Zampella, V. Russo, N. Di Bello, G. Nano, L. Nicolini, M. Locati, P. Fantucci, S. Florio and F. Colotta, 2-Arylpropionic CXC chemokine receptor 1 (CXCR1) ligands as novel noncompetitive CXCL8 inhibitors, J. Med. Chem. 48, (2005), 4312–4331.
  • J. Busch-Petersen, Q. Jin, B.W. McCleland, H. Nie, M.R. Palovich, R.S. Davis, W. Fu, J.D. Elliott, M. Burman, J.J. Foley, D.B. Schmidt, P. Podolin, B.J. Bolognese, D.C. Underwood, R.R. Osborn, C.J. Dehaas, M. Salmon, D.C. Carpenter, D.J. Killian, H.M. Sarau, and K.L. Widdowson, Small molecule antagonists for the CXCR2 chemokine receptor: N.N’-diarylureas and related series, 228th National Meeting of American Chemical Society, Philadelphia, PA, USA, Book of Abstracts, August 22–26, (2004); Abstract MEDI-192.
  • P.L. Podolin, B.J. Bolognese, J.J. Foley, D.B. Schmidt, P.T. Buckley, K.L. Widdowson, Q. Jin, J.R. White, J.M. Lee, R.B. Goodman, T.R. Hagen, O. Kajikawa, L.A. Marshall, D.W. Hay and H.M. Sarau, A potent and selective nonpeptide antagonist of CXCR2 inhibits acute and chronic models of arthritis in the rabbit, J. Immunol. 169, (2002), 6435–6444.
  • C. Bizzarri, A.R. Beccari, R. Bertini, M.R. Cavicchia, S. Giorgini and M. Allegretti, ELR+ CXC chemokines and their receptors (CXC chemokine receptor 1 and CXC chemokine receptor 2) as new therapeutic targets, Pharmacol. Ther. 112, (2006), 139–149.
  • A.S. Michaelidou and D. Hadjipavlou-Litina, Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): A comparative QSAR Study, Chem. Rev. 105, (2005), 3235–3271.
  • E. Pontiki and D. Hadjipavlou-Litina, Review in quantitative structure activity relationships on lipoxygenase inhibitors, Mini Rev. Med. Chem. 3, (2003), 487–499.
  • E. Pontiki and D. Hadjipavlou-Litina, Lipoxygenase inhibitors: A comparative QSAR study, review and evaluation of new QSARs, Med. Res. Rev. 28, (2008), 39–117.
  • M.T. Lindenmeyer, A. Hrenn, C. Kern, V. Castro, R. Murillo, S. Müller, S. Laufer, J. Schulte-Mönting, B. Siedle and I. Merfort, Sesquiterpene lactones as inhibitors of IL-8 expression in HeLa cells, Bioorg. Med. Chem. 14, (2006), 2487–2497.
  • A.I. Khlebnikov, I.A. Schepetkin and M.T. Quinn, Quantitative structure-activity relationships for small non-peptide antagonists of CXCR2: Indirect 3D approach using the frontal polygon method, Bioorg. Med. Chem. 14, (2006), 352–365.
  • J.B. Ghasemi, P. Zohrabi and H. Khajehsharifi, Quantitative structure-activity relationship study of nonpeptide antagonists of CXCR2 using stepwise multiple linear regression analysis, Monatsh. Chem. 141, (2010), 111–118.
  • T. Asadollahi, S. Dadfarnia, A.M. Shabani, J.B. Ghasemi and M. Sarkhosh, QSAR models for CXCR2 receptor antagonists based on the genetic algorithm for data preprocessing prior to the application of the PLS linear regression method and design of the new compounds using in silico virtual screening, Molecules 16, (2011), 1928–1955.
  • L. Aureli, G. Cruciani, M.C. Cesta, R. Anacardio, L. De Simone and A. Moriconi, Predicting human serum albumin affinity of interleukin-8 (CXCL8) inhibitors by 3D-QSPR approach, J. Med. Chem. 48, (2005), 2469–2479.
  • C. Hansch, A.J. Leo and W.R. Taft, A survey of Hammett substituent constants and resonance and field parameters, Chem. Rev. 91, (1991), 165–195.
  • S.H. Unger and C. Hansch, Quantitative models of steric effects, Prog. Phys. Org. Chem. 12, (1976), 91–114.
  • C. Hansch and A. Leo, Exploring QSAR: Fundamentals and applications in chemistry and biology, American Chemical SocietyWashington, DC, 1995.
  • C. Hansch, A. Leo and D. Hoekman, Exploring QSAR: Hydrophobic, Electronic, and Steric constants, American Chemical SocietyWashington, DC, 1995.
  • C. Silippo and A. Vittoria, Comprehensive Medicinal Chemistry, in Three Dimensional Structure of Drugs, C. Hansch, P.G. Sammes and J.B. Taylor, eds., CA Ramsden Pergamon PressNew York, 1990.
  • A. Verloop, The Sterimol approach to drug design, Marcell DeckerNew York, 1987.
  • BioByte Corporation, C-QSAR database, 201 W Fourth Str., Suite # 204, Claremont CA 91711–4707, USA.
  • M. Abraham and J.C. McGowan, The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography, Chromatographia 23, (1987), 243–246.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20, (2002), 269–276.
  • C. Hwang, M. Gatanaga, G.A. Granger and T. Gatanaga, Mechanism of release of soluble forms of tumor necrosis factor/ lymphotoxin receptors by phorbol myristate acetate-stimulated human THP-1 cells in vitro, J. Immunol. 151, (1993), 5631–5638.
  • S. Qin, G. LaRosa, J.J. Campbell, H. Smith-Heath, N. Kassam, X. Shi, L. Zeng, E.C. Buthcher and C.R. Mackay, Expression of monocyte chemoattractant protein-1 and interleukin-8 receptors on subsets of T cells: Correlation with transendothelial chemotactic potential, Eur. J. Immunol. 26, (1996), 640–647.
  • A.S. Kraft and W.B. Anderson, Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane, Nature 301, (1983), 621–623.
  • R. Austen, A. Baxter, R. Bonnert, F. Hunt, E. Kinchin, and P. Willis, Int. Patent Appl. WO 00/09511.
  • W. Gonsiorek, X. Fan, D. Hesk, J. Fossetta, H. Qiu, J. Jakway, M. Billah, M. Dwyer, J. Chao, G. Deno, A. Taveras, D.J. Lundell and R.W. Hipkin, Pharmacological characterization of Sch527123, a potent CXCR1/CXCR2 antagonist, J. Pharmacol. Exp. Ther. 322, (2007), 477–485.
  • C. Hansch, A. Kurup, R. Garg and H. Gao, Chem-bioinformatics and QSAR: A review of QSAR lacking positive hydrophobic terms, Chem. Rev. 101, (2001), 619–672.
  • C. Hansch and T. Klein, Molecular graphics and QSAR in the study of enzyme-ligand interactions; on the definition of bioreceptors, Acc. Chem Res. 19, (1986), 392–400.
  • A.O. Aptula, N.G. Jeliazkova, T.W. Schultz and M.T.D. Cronin, The better predictive model: High q2 for the training set or low root mean square error of prediction for the test set?, QSAR Comb. Sci. 24, (2005), 385–396.
  • J.G. Topliss and R.J. Costello, Chance correlations in structure–activity studies using multiple regression analysis, J. Med. Chem. 15, (1972), 1066–1068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.