320
Views
19
CrossRef citations to date
0
Altmetric
Articles

QSARs for aquatic toxicity: celebrating, extending and displaying the pioneering contributions of Ferguson, Konemann and VeithFootnote

, , , &
Pages 343-355 | Received 30 Jan 2014, Accepted 21 Feb 2014, Published online: 25 Apr 2014

References

  • H. Meyer, Zur theorie der alkoholnarkose. Erste mittheilung, welche eigenschaft der anasthetica bedingt ihre narkotiste wirkung, Arch. Exper. Pathol. Pharmak. 42 (1899), p. 109.
  • E. Overton, Studien uber die narkose, Gustav Fischer, Jena, Germany, 1901.
  • K.H. Meyer and H. Hopff, Narcosis by inert gases under pressure, Hoppe-Seyler’s Z. Physiol. Chem. 126 (1923), pp. 288–298.
  • J. Ferguson, The use of chemical potentials as indices of toxicity, Proc. R. Soc. Lond. B. Biol. Sci. 127 (1939), pp. 387–404.
  • H. Konemann, Quantitative structure-activity relationships in fish toxicity studies. Part 1: Relationship for 50 industrial pollutants, Toxicology 19 (1981), pp. 209–221.
  • G.D. Veith, D.J. Call, and L.T. Brooke, Structure toxicity relationships for the fathead minnow, Pimephales promelas: Narcotic industrial chemicals, Can. J. Fish. Aquat. Sci. 40 (1983), pp. 743–748.
  • Organisation for Economic Co-operation and Development (OECD), Fish, acute toxicity testing, OECD Guidelines for Testing Chemicals 203, OECD, Paris, 1992.
  • D. Mackay, J.A. Arnot, E.P. Petkova, K.B. Wallace, D.J. Call, L.T. Brooke, and G.D. Veith, The physicochemical basis of QSARs for baseline toxicity, SAR QSAR Environ. Res. 20 (2009), pp. 393–414.
  • D. Mackay, J.A. Arnot, E.P. Petkova, K.B. Wallace, D.J. Call, L.T. Brooke, G.D. Veith, Corrigendum to The physicochemical basis of QSARs for baseline toxicity (SAR QSAR Environ. Res. 20, 2009, 393–414), SAR QSAR Environ. Res. 23 (2012), pp. 205–205.
  • D. Mackay, Correlation of bioconcentration factors, Environ. Sci. Technol. 16 (1982), pp. 274–278.
  • D. Mackay, Multimedia Environmental Models: The Fugacity Approach 2nd ed., Lewis Publishers Boca Raton, FL, 2001.
  • J. Sangster, Octanol–water partition coefficients of simple organic compounds, J. Phys. Chem. Ref. Data 18 (1989), pp. 1111–1229.
  • Y. Ran, N. Jain, and S.H. Yalkowsky, Prediction of aqueous solubility of organic compounds by the general solubility equation (GSE), J. Chem. Inf. Comp. Sci. 41 (2001), pp. 1208–1217.
  • Y.Q. Ran and S.H. Yalkowsky, Prediction of drug solubility by the general solubility equation (GSE), J. Chem. Inf. Comp. Sci. 41 (2001), pp. 354–357.
  • H. Xiao and F. Wania, Is vapor pressure or the octanol–air partition coefficient a better descriptor of the partitioning between gas phase and organic matter? Atmos. Environ. 37 (2003), pp. 2867–2878.
  • K.E.C. Smith, S.N. Schmidt, N. Dom, R. Blust, M. Holmstrup, and P. Mayer, Baseline toxic mixtures of non-toxic chemicals: ‘Solubility addition’ increases exposure for solid hydrophobic chemicals, Environ. Sci. Technol. 47 (2013), pp. 2026–2033.
  • J.A. Arnot and F.A.P.C. Gobas, A food web bioaccumulation model for organic chemicals in aquatic ecosystems, Environ. Toxicol. Chem. 23 (2004), pp. 2343–2355.
  • J. Stadnicka, K. Schirmer, and R. Ashauer, Predicting concentrations of organic chemicals in fish by using toxicokinetic models, Environ. Sci. Technol. 46 (2012), pp. 3273–3280.
  • J.A. Arnot and F.A.P.C. Gobas, A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms, Environ. Rev. 14 (2006), pp. 257–297.
  • L.S. McCarty and D. Mackay, Enhancing ecotoxicological modeling and assessment: Body residues and modes of toxic action, Environ. Sci. Technol. 27 (1993), pp. 1719–1728.
  • A.J. Hendriks, T.P. Traas, and M.A.J. Huijbregts, Critical body residues linked to octanol–water partitioning, organism composition, and LC50 QSARs: Meta-analysis and model, Environ. Sci. Technol. 39 (2005), pp. 3226–3236.
  • J.C. McGowan, The physical toxicity of chemicals III. A systematic treatment of physical toxicity in aqueous solutions, J. Appl. Chem. 2 (1952), pp. 323–328.
  • L.J. Mullins, Some physical mechanisms in narcosis, Chem. Rev. 54 (1954), pp. 289–323.
  • S.G. Abernethy, D. Mackay, and L.S. McCarty, Volume fraction correlation for narcosis in aquatic organisms – the key role of partitioning, Environ. Toxicol. Chem. 7 (1988), pp. 469–481.
  • D.E. Leahy, Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: Octanol–water partition coefficients, J. Pharm. Sci. 75 (1986), pp. 626–636.
  • R.C. Reid, J.M. Prausnitz, and B.E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New York, 1987.
  • P. Mayer and F. Reichenberg, Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity? Environ. Toxicol. Chem. 25 (2006), pp. 2639–2644.
  • V. Maeder, B.I. Escher, M. Scheringer, and K. Hungerbühler, Toxic ratio as an indicator of the intrinsic toxicity in the assessment of persistent, bioaccumulative, and toxic chemicals, Environ. Sci. Technol. 38 (2004), pp. 3659–3666.
  • R.L. Lipnick, K.R. Watson, and A.K. Strausz, A QSAR study of the acute toxicity of some industrial organic chemicals to goldfish. Narcosis, electrophile and proelectrophile mechanisms, Xenobiotica 17 (1987), pp. 1011–1025.
  • C.L. Russom, S.P. Bradbury, S.J. Broderius, D.E. Hammermeister, and R.A. Drummond, Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas), Environ. Toxicol. Chem. 16 (1997), pp. 948–967.
  • H.J.M. Verhaar, C.J. Van Leeuwen, and J.L.M. Hermens, Classifying environmental pollutants. 1. Structure-activity relationships for prediction of aquatic toxicity, Chemosphere 25 (1992), pp. 471–491.
  • S.J. Enoch, M. Hewitt, M.T.D. Cronin, S. Azam, and J.C. Madden, Classification of chemicals according to mechanism of aquatic toxicity: An evaluation of the implementation of the Verhaar scheme in Toxtree, Chemosphere 73 (2008), pp. 243–248.
  • G. Patlewicz, N. Jeliazkova, R.J. Safford, A.P. Worth, and B. Aleksiev, An evaluation of the implementation of the Cramer classification scheme in the Toxtree software, SAR QSAR Environ. Res. 19 (2008), pp. 495–524.
  • US Environmental Protection Agency, Estimation Programs Interface (EPI) Suite™ for Microsoft® Windows, Ver. 4.11., 2012; software available at http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm.
  • D. Mackay and J.A. Arnot, The application of fugacity and activity to simulating the environmental fate of organic contaminants, J. Chem. Eng. Data 56 (2011), pp. 1348–1355.
  • D. Mackay, J.A. Arnot, F. Wania, and R.E. Bailey, Chemical activity as an integrating concept in environmental assessment and management of contaminants, Integr. Environ. Assess. Manag. 7 (2011), pp. 248–255.
  • A. Klamt, Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena, J. Phys. Chem. 99 (1995), pp. 2224–2235.
  • A. Klamt, V. Jonas, T. Bürger, and J.C.W. Lohrenz, Refinement and parameterization of COSMO-RS, J. Phys. Chem. 102 (1998), pp. 5074–5085.
  • K.U. Goss, Predicting equilibrium sorption of neutral organic chemicals into various polymeric sorbents with COSMO-RS, J. Anal. Chem. 83 (2011), pp. 5304–5308.
  • K.U. Goss and C. Neider, Quantum chemical modeling of humic acid/air equilibrium partitioning of organic vapours, Environ. Sci. Technol. 41 (2007), pp. 3646–3652.
  • A.M. Zissimos, M.H. Abraham, A. Klamt, F. Eckert, and J. Wood, A comparison between the two general sets of linear free energy descriptors of Abraham and Klamt, J. Chem. Inf. Comp. Sci. 42 (2002), pp. 1320–1331.
  • C. Mehler, A. Klamt, and W. Peukert, Use of COSMO-RS for the prediction of adsorption equilibria, AIChE Journal 48 (2002), pp. 1093–1099.
  • S. Endo, T.N. Brown, and K.-U. Goss, General model for estimating partition coefficients to organisms and their tissues using the biological compositions and polyparameter linear free energy relationships, Environ. Sci. Technol. 47 (2013), pp. 6630–6639.
  • J.A. McGrath, T.F. Parkerton, and D.M. Di Toro, Application of the narcosis target lipid model to algal toxicity and deriving predicted-no-effect concentrations, Environ. Toxicol. Chem. 23 (2004), pp. 2503–2517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.