350
Views
22
CrossRef citations to date
0
Altmetric
Articles

Discriminating toxicant classes by mode of action: 4. Baseline and excess toxicityFootnote

, &
Pages 393-405 | Received 27 Feb 2014, Accepted 28 Feb 2014, Published online: 28 Apr 2014

References

  • R.L. Lipnick, K.R. Watson, and A.K. Strausz, A QSAR study of the acute toxicity of some industrial organic chemicals to goldfish, narcosis, electrophile and proelectrophile mechanisms, Xenobiotica 17 (1987), pp. 1011–1025.
  • R.L. Lipnick, Outliers: Their origin and use in the classification of molecular mechanisms of toxicity, Sci. Tot. Environ. 109/110 (1991), pp. 131–153.
  • M. Nendza, S. Gabbert, R. Kühne, A. Lombardo, A. Roncaglioni, E. Benfenati, R. Benigni, C. Bossa, S. Strempel, M. Scheringer, A. Fernández, R. Rallo, F. Giralt, S. Dimitrov, O. Mekenyan, F. Bringezu, and G. Schüürmann, A comparative survey of chemistry-driven in silico methods to identify hazardous substances under REACH, Regulat. Toxicol. Pharmacol. 66 (2013), pp. 301–314.
  • S.C. Basak, G.D. Grunwald, G.E. Host, G.J. Niemi, and S.P. Bradbury, A comparative study of molecular similarity, statistical, and neural methods for predicting toxic modes of action, Environ. Toxicol. Chem. 17 (1998), pp. 1056–1064.
  • A.O. Aptula, T.I. Netzeva, I.V. Valkova, M.T.D. Cronin, T.W. Schultz, R. Kühne, and G. Schüürmann, Multivariate discrimination between modes of toxic action of phenols, Quant. Struct.-Act. Relat. 21 (2002), pp. 12–22.
  • A.B.A. Boxall, C.D. Watts, J.C. Dearden, G.M. Bresnen, and R. Scoffin, Classification of environmental pollutants into general mode of action classes, based on molecular descriptors, in Quantitative Structure-Activity Relationships in Environmental Sciences-VII, F. Chen and G. Schüürmann, eds., SETAC Press, Pensacola, 1997, pp. 263–275.
  • M. Nendza and M. Müller, Discriminating toxicant classes by mode of action: 2. Physico-chemical descriptors, Quant. Struct.-Act. Relat. 19 (2000), pp. 581–598.
  • M. Nendza, Structure-Activity Relationships in Environmental Sciences, Chapman & Hall, London, UK, 1998.
  • M. Nendza and A. Wenzel, Discriminating toxicant classes by mode of action: 1. (Eco)toxicity profiles, Environ. Sci. Pollut. Res. 13 (2006), pp. 192–203.
  • M. Nendza and M. Müller, Discriminating toxicant classes by mode of action: 3. Substructure indicators, SAR QSAR Environ. Res. 18 (2007), pp. 155–168.
  • H. Yuan, Y.Y. Wang, and Y.Y. Cheng, Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow, J. Mol. Graph. Modell. 26 (2007), pp. 327–335.
  • A. Colombo, E. Benfenati, M. Karelson, and U. Maran, The proposal of architecture for chemical splitting to optimize QSAR models for aquatic toxicity, Chemosphere 72 (2008), pp. 772–780.
  • S.J. Enoch, M. Hewitt, M.T.D. Cronin, S. Azam, and J.C. Madden, Classification of chemicals according to mechanism of aquatic toxicity: An evaluation of the implementation of the Verhaar scheme in Toxtree, Chemosphere 73 (2008), pp. 243–248.
  • C.L. Russom, C.R. Williams, T.W. Stewart, A.E. Swank, and A.M. Richard, DSSTox EPA Fathead Minnow Acute Toxicity Database (EPAFHM): SDF Files and Documentation, (2008) Updated version: EPAFHM_v4b_617_15Feb2008.; software available at http://www.epa.gov/ncct/dsstox/sdf_epafhm.html.
  • U. Blaschke, K. Eismann, A. Böhme, A. Paschke, and G. Schüürmann, Structural alerts for the excess toxicity of acrylates, methacrylates and propiolates derived from their short-term and long-term bacterial toxicity, Chem. Res. Toxicol. 25 (2012), pp. 170–180.
  • H. Jäckel and M. Nendza, Reactive substructures in the prediction of aquatic toxicity data, Aquat. Toxicol. 29 (1994), pp. 305–314.
  • F. Schramm, A. Müller, H. Hammer, A. Paschke, and G. Schüürmann, Epoxide and thiirane toxicity in vitro with the ciliates Tetrahymena pyriformis: Structural alerts indicating excess toxicity, Environ. Sci. Technol. 45 (2011), pp. 5812–5819.
  • P.C. von der Ohe, R. Kühne, R.U. Ebert, R. Altenburger, M. Liess, and G. Schüürmann, Structural alerts – A new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay, Chem. Res. Toxicol. 18 (2005), pp. 536–555.
  • H.J.M. Verhaar, C.J. van Leeuwen, and J.L.M. Hermens, Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity, Chemosphere 25 (1992), pp. 471–491.
  • H.J.M. Verhaar, J. Solbé, J. Speksnijder, C.J. van Leeuwen, and J.L.M. Hermens, Classifying environmental pollutants: 3. External validation of the classification system, Chemosphere, 40 (2000), pp. 875–883.
  • S. Spycher, M. Nendza, and J. Gasteiger, Comparison of different classification methods applied to a mode of toxic action data set, Quant. Struct.-Act. Relat. 23 (2004), pp. 779–791.
  • C.L. Russom, S.P. Bradbury, S.J. Broderius, D.E. Hammermeister, and R.A. Drummond, Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas), Environ. Toxicol. Chem. 16 (1997), pp. 948–967.
  • H. Könemann, Quantitative structure-activity relationships in fish toxicity studies. Part I: Relationship for 50 industrial pollutants, Toxicology 19 (1981), pp. 209–221.
  • G.D. Veith, D.J. Call, and L.T. Brooke, Structure-toxicity relationships for the fathead minnow, Pimephales promelas: Narcotic industrial chemicals, Can. J. Fish. Aquat. Sci. 40 (1983), pp. 743–748.
  • G.D. Veith and S.J. Broderius, Rules for distinguishing toxicants that cause type I and type II narcosis syndromes, Environ. Health Persp. 87 (1990), pp. 207–211.
  • C.J. van Leeuwen, P.T.J. van der Zandt, T. Aldenberg, H.J.M. Verhaar, and J.L.M. Hermens, Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. 1. Narcotic industrial pollutants, Environ. Toxicol. Chem. 11 (1992), pp. 267–282.
  • M. Nendza and C.L. Russom, QSAR modeling of the ERL-D fathead minnow acute toxicity database, Xenobiotica 21 (1991), pp. 147–170.
  • US EPA, Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. United States Environmental Protection Agency, Washington DC, 2012; software available at http://www.epa.gov/oppt/newchems/tools/21ecosar.htm.
  • G. Patlewicz, N. Jeliazkova, R.J. Safford, A.P. Worth, and B. Aleksiev, An evaluation of the implementation of the Cramer classification scheme in the Toxtree software, SAR QSAR Environ. Res. 19 (2008), pp. 495–524.
  • ToxTree Version 2.6.0; software available at http://toxtree.sourceforge.net.
  • OECD, The OECD QSAR Toolbox for Grouping Chemicals into Categories, Version 3.2; software available at http://www.qsartoolbox.org.
  • European Commission, REGULATION (EC) No 1907/2006 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, European Commission, Brussels, Belgium, 2006.
  • European Commission, Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes, 2010.
  • J.M. McKim, S.P. Bradbury, and G.J. Niemi, Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment, Environ. Health Persp. 71 (1987), pp. 171–186.
  • C.L. Russom, S.P. Bradbury, S.J. Broderius, D.J. Hammermeister, R.A. Drummond, and G.D. Veith, Predicting modes of toxic action from chemical structure, Environ. Toxicol. Chem. 32 (2013), pp. 1441–1442.
  • S.P. Bradbury, Predicting modes of toxic action from chemical structure: An overview, SAR QSAR Environ. Res. 2 (1994), pp. 89–104.
  • J.A. Vonk, R. Benigni, M. Hewitt, M. Nendza, H. Segner, D. van De Meent, and M.T.D. Cronin, The use of mechanisms and modes of toxic action in integrated testing strategies: The report and recommendations of a workshop held as part of the European Union OSIRIS integrated project, ATLA 37 (2009), pp. 557–571.
  • J.L.M. Hermens, H. Canton, P. Janssen, and R. de Jong, Quantitative structure-activity relationships and toxicity studies of mixtures of chemicals with anaesthetic potency: Acute lethal and sublethal toxicity to Daphnia magna, Aquat. Toxicol. 5 (1984), pp. 143–154.
  • T. Shigeoka, Y. Sato, Y. Takeda, K. Yoshida, and F. Yamauchi, Acute toxicity of chlorophenols to green algae, Selenastrum capricornutum and Chlorella vulgaris, and quantitative structure-activity relationship, Environ. Toxicol. Chem. 7 (1988), pp. 847–854.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.